Upcycling agro-industrial blueberry waste into platform chemicals and structured materials for application in marine environments
Los desechos de poda de arándanos (BPw), obtenidos como residuos de operaciones agroforestales en Chile, se utilizaron para producir productos de valor agregado, incluidos productos químicos y materiales para plataformas. El fraccionamiento de BPw se implementó utilizando solventes de base biológica...
- Autores:
-
Reyes, Guillermo
Pacheco Pinilla, Claudia Marcela
Isaza Ferro, Estefania
González, Amaidy
Pasquier, Eva
Alejandro Martín, Serguei
Arteaga Pérez, Luis E.
Carrillo, Romina R.
Carrillo Varela, Isabel
Teixeira Mendonça, Regis
Flanigan, Colleen
Rojas, Orlando J.
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2022
- Institución:
- Universidad Cooperativa de Colombia
- Repositorio:
- Repositorio UCC
- Idioma:
- OAI Identifier:
- oai:repository.ucc.edu.co:20.500.12494/46607
- Palabra clave:
- Desechos de poda de arándanos (BPw)
Filamentos
Líquido iónico
Restauración arrecifes de coral
Antioxidantes
Blueberry pruning waste (BPw)
Filaments
Lonic liquid
Restore coral reefs
Antioxidants
- Rights
- openAccess
- License
- Atribución
id |
COOPER2_e70223556c1cc7085c71a8546892fb3e |
---|---|
oai_identifier_str |
oai:repository.ucc.edu.co:20.500.12494/46607 |
network_acronym_str |
COOPER2 |
network_name_str |
Repositorio UCC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Upcycling agro-industrial blueberry waste into platform chemicals and structured materials for application in marine environments |
title |
Upcycling agro-industrial blueberry waste into platform chemicals and structured materials for application in marine environments |
spellingShingle |
Upcycling agro-industrial blueberry waste into platform chemicals and structured materials for application in marine environments Desechos de poda de arándanos (BPw) Filamentos Líquido iónico Restauración arrecifes de coral Antioxidantes Blueberry pruning waste (BPw) Filaments Lonic liquid Restore coral reefs Antioxidants |
title_short |
Upcycling agro-industrial blueberry waste into platform chemicals and structured materials for application in marine environments |
title_full |
Upcycling agro-industrial blueberry waste into platform chemicals and structured materials for application in marine environments |
title_fullStr |
Upcycling agro-industrial blueberry waste into platform chemicals and structured materials for application in marine environments |
title_full_unstemmed |
Upcycling agro-industrial blueberry waste into platform chemicals and structured materials for application in marine environments |
title_sort |
Upcycling agro-industrial blueberry waste into platform chemicals and structured materials for application in marine environments |
dc.creator.fl_str_mv |
Reyes, Guillermo Pacheco Pinilla, Claudia Marcela Isaza Ferro, Estefania González, Amaidy Pasquier, Eva Alejandro Martín, Serguei Arteaga Pérez, Luis E. Carrillo, Romina R. Carrillo Varela, Isabel Teixeira Mendonça, Regis Flanigan, Colleen Rojas, Orlando J. |
dc.contributor.author.none.fl_str_mv |
Reyes, Guillermo Pacheco Pinilla, Claudia Marcela Isaza Ferro, Estefania González, Amaidy Pasquier, Eva Alejandro Martín, Serguei Arteaga Pérez, Luis E. Carrillo, Romina R. Carrillo Varela, Isabel Teixeira Mendonça, Regis Flanigan, Colleen Rojas, Orlando J. |
dc.subject.spa.fl_str_mv |
Desechos de poda de arándanos (BPw) Filamentos Líquido iónico Restauración arrecifes de coral Antioxidantes |
topic |
Desechos de poda de arándanos (BPw) Filamentos Líquido iónico Restauración arrecifes de coral Antioxidantes Blueberry pruning waste (BPw) Filaments Lonic liquid Restore coral reefs Antioxidants |
dc.subject.other.spa.fl_str_mv |
Blueberry pruning waste (BPw) Filaments Lonic liquid Restore coral reefs Antioxidants |
description |
Los desechos de poda de arándanos (BPw), obtenidos como residuos de operaciones agroforestales en Chile, se utilizaron para producir productos de valor agregado, incluidos productos químicos y materiales para plataformas. El fraccionamiento de BPw se implementó utilizando solventes de base biológica (γ-valerolactona, GVL) y pirólisis (500 °C), produciendo fracciones sólidas ricas en fenoles y antioxidantes. Se encontró que la fracción líquida estaba enriquecida en azúcares, ácidos y amidas. Además, se produjeron filamentos y mallas impresas en 3D mediante hilado en húmedo y Escritura directa de tinta (DIW), respectivamente. Para este último propósito, BPw se disolvió en un líquido iónico, acetato de 1-etil-3-metilimidazolio ([emim][OAc]), y se regeneró en filamentos de lignocelulosa con nanofibrillas altamente alineadas (dispersión de rayos X de gran angular) que simultáneamente mostraron extensibilidad (tensión húmeda de hasta 39%). Los filamentos de lignocelulosa derivados de BPw mostraron una tenacidad (hasta 2,3 cN dtex-1) que es comparable a la de las fibras de rayón y mostraron una baja reflectancia de la luz (factor RES <3%). Mientras tanto, DIW de los respectivos geles condujo a mallas con hasta un 60% de capacidad de estiramiento en húmedo. Se demostró que el LCF y las mallas tienen un rendimiento fiable en entornos marinos. A modo de demostración, mostramos las perspectivas de reemplazar cuerdas de plástico y otros materiales utilizados para restaurar los arrecifes de coral en la costa de México. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-10-05T13:11:06Z |
dc.date.available.none.fl_str_mv |
2022-10-05T13:11:06Z |
dc.date.issued.none.fl_str_mv |
2022-04-07 |
dc.type.none.fl_str_mv |
Artículo |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
1463-9270 |
dc.identifier.uri.spa.fl_str_mv |
https://doi.org/10.1039/d2gc00573e |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12494/46607 |
dc.identifier.bibliographicCitation.spa.fl_str_mv |
Reyes, G., Pacheco, C. M., Isaza-Ferro, E., González, A., Pasquier, E., Alejandro-Martín, S., Arteaga-Peréz, L. E., Carrillo, R. R., Carrillo-Varela, I., Mendonça, R. T., Flanigan, C., & Rojas, O. J. (2022). Upcycling agro-industrial blueberry waste into platform chemicals and structured materials for application in marine environments. Green Chemistry, 24, 3794-3804. https://doi.org/10.1039/d2gc00573e |
identifier_str_mv |
1463-9270 Reyes, G., Pacheco, C. M., Isaza-Ferro, E., González, A., Pasquier, E., Alejandro-Martín, S., Arteaga-Peréz, L. E., Carrillo, R. R., Carrillo-Varela, I., Mendonça, R. T., Flanigan, C., & Rojas, O. J. (2022). Upcycling agro-industrial blueberry waste into platform chemicals and structured materials for application in marine environments. Green Chemistry, 24, 3794-3804. https://doi.org/10.1039/d2gc00573e |
url |
https://doi.org/10.1039/d2gc00573e https://hdl.handle.net/20.500.12494/46607 |
dc.relation.isversionof.spa.fl_str_mv |
https://pubs.rsc.org/en/content/articlelanding/2022/gc/d2gc00573e |
dc.relation.ispartofjournal.spa.fl_str_mv |
Green Chemistry |
dc.relation.references.spa.fl_str_mv |
J. A. Melero, J. Iglesias and A. Garcia, Energy Environ. Sci., 2012, 5, 7393–7420. F. H. Isikgor and C. R. Becer, Polym. Chem., 2015, 6, 4497– 4559. P. Manzanares, Acta Innov., 2020, 47–56. A. Rashidinejad, in Nutritional Composition and Antioxidant Properties of Fruits and Vegetables, ed. A. K. Jaiswal, Academic Press, 2020, pp. 467–482. A. Michalska and G. Łysiak, Int. J. Mol. Sci., 2015, 16, 18642–18663. C. M. Pacheco, C. Bustos, G. Reyes, M. G. Aguayo and O. J. Rojas, Characterization of Residues from Chilean Blueberry Bushes: A Potential Source of Cellulose, 2018, vol. 13. D. Pinochet, P. Artacho and A. Maraboli, Manual de fertilización de arándanos cultivados en el sur de Chile, 2014. Knoema(R), The production of blueberries in the world, https:// knoema.com/data/agriculture-indicators-production+blueberries. C. Marcela Pacheco, C. Avila, G. Reyes, M. Graciela Aguayo and O. Rojas, BioResources, 2018, 13, 7345–7359. P. Morone and G. Yilan, Acta Innov., 2020, 5–16. D. M. Alonso, S. G. Wettstein and J. A. Dumesic, Green Chem., 2013, 15, 584–595. S. Dutta, I. K. M. Yu, D. C. W. Tsang, Y. H. Ng, Y. S. Ok, J. Sherwood and J. H. Clark, Chem. Eng. J., 2019, 372, 992– 1006. W. Fang and H. Sixta, ChemSusChem, 2015, 8, 73–76. H. Q. Lê, Y. Ma, M. Borrega and H. Sixta, Green Chem., 2016, 18, 5466–5476 M. J. Earle, J. M. S. S. Esperança, M. A. Gilea, J. N. Canongia Lopes, L. P. N. Rebelo, J. W. Magee, K. R. Seddon and J. A. Widegren, Nature, 2006, 439, 831– 834. M. Maase, K. Massonne, E. Uerdingen and V. Uwe, Aldrich ChemFiles, 2006, 6.9, 3. A. M. Da Costa Lopes, M. Brenner, P. Falé, L. B. Roseiro and R. Bogel-Łukasik, ACS Sustainable Chem. Eng., 2016, 4, 3357–3367. A. M. Da Costa Lopes, R. M. G. Lins, R. A. Rebelo and R. M. Łukasik, Green Chem., 2018, 20, 4043–4057. A. M. da Costa Lopes, K. G. João, A. R. C. Morais, E. BogelŁukasik and R. Bogel-Łukasik, Sustainable Chem. Processes, 2013, 1, 3. S. Gillet, M. Aguedo, L. Petitjean, A. R. C. Morais, A. M. Da Costa Lopes, R. M. Łukasik and P. T. Anastas, Green Chem., 2017, 19, 4200–4233. H. Sixta, A. Michud, L. Hauru, S. Asaadi, Y. Ma, A. W. T. King, I. Kilpeläinen and M. Hummel, Nord. Pulp Pap. Res. J., 2015, 30(1), 43–57. K. Niinimäki, G. Peters, H. Dahlbo, P. Perry, T. Rissanen and A. Gwilt, Nat. Rev. Earth Environ., 2020, 1, 189–200. ILO, The future of work in textiles, clothing, leather and footwear, 2019. J. Xu, P. Zhou, L. Dai, Y. Gui, L. Yuan, X. Shen, C. Zhang and K. Huo, Green Chem., 2021, 23, 6008–6019. R. A. Sequeira, D. Mondal, K. Prasad and D. Mondal, Green Chem., 2021, 23, 8821–8847. Y. Luo, Z. Zhao, B. Jiang, M. Wei, Z. Zhang, L. Zeng, J. H. Clark and J. Fan, Green Chem., 2022, 24, 1515–1526. F. A. Ferrari, G. P. Nogueira, T. T. Franco, M. O. S. Dias, C. K. N. Cavaliero, G. J. Witkamp, L. A. M. Van Der Wielen and M. B. S. Forte, Green Chem., 2021, 23, 9126–9139. T. I. J. Dugmore, J. H. Clark, J. Bustamante, J. A. Houghton and A. S. Matharu, Top. Curr. Chem., 2017, 375, 1–49. W. Nor, R. Wan, M. W. M. Hisham, M. Ambar and T. Y. Hin, Renewable Sustainable Energy Rev., 2012, 16, 5910–5923. D. Mohan, C. U. Pittman and P. H. Steele, Energy Fuels, 2006, 20, 848–889. A. I. Ruiz-Matute, O. Hernández-Hernández, S. RodríguezSánchez, M. L. Sanz and I. Martínez-Castro, J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 2011, 879, 1226– 1240. A. W. Krotscheck and H. Sixta, in Handbook of Pulp, John Wiley & Sons, Ltd, 2006, pp. 967–996. L. Dessbesell, M. Paleologou, M. Leitch, R. Pulkki and C. (Charles) Xu, Renewable Sustainable Energy Rev., 2020, 123, 109768. T. Aro and P. Fatehi, Sep. Purif. Technol., 2017, 175, 469–480. A. M. Asim, M. Uroos, S. Naz, M. Sultan, G. Griffin, N. Muhammad and A. S. Khan, J. Mol. Liq., 2019, 287, 110943. P. Halder, S. Kundu, S. Patel, A. Setiawan, R. Atkin, R. Parthasarthy, J. Paz-Ferreiro, A. Surapaneni and K. Shah, Renewable Sustainable Energy Rev., 2019, 105, 268–292. S. Alejandro-Martín, A. Montecinos Acaricia, C. CerdaBarrera and H. Díaz Pérez, Catalysts, 2019, 9, 465. M. H. Mohamad, R. Awang and W. M. Z. W. Yunus, Am. J. Appl. Sci., 2011, 8(11), 1135–1139. X. Li, S. R. A. Kersten and B. Schuur, Sep. Purif. Technol., 2017, 175, 498–505. T. Varila, E. Mäkelä, R. Kupila, H. Romar, T. Hu, R. Karinen, R. L. Puurunen and U. Lassi, Catal. Today, 2021, 367, 16–27. A. Majira, B. Godon, L. Foulon, J. C. van der Putten, L. Cézard, M. Thierry, F. Pion, A. Bado-Nilles, P. Pandard, T. Jayabalan, V. Aguié-Béghin, P. H. Ducrot, C. Lapierre, G. Marlair, R. J. A. Gosselink, S. Baumberger and B. Cottyn, ChemSusChem, 2019, 12, 4799–4809. C. Tessini, R. Romero, M. Escobar, A. Gordon and M. Flores, J. Chil. Chem. Soc., 2016, 61, 2837–2842. D. Precht and J. Molkentin, Int. Dairy J., 1996, 6, 791– 809. S. Jayaraman and E. J. Variyar, J. Ethnopharmacol., 2021, 278, 114307. R. J. Van Putten, J. C. Van Der Waal, E. De Jong, C. B. Rasrendra, H. J. Heeres and J. G. De Vries, Chem. Rev., 2013, 113, 1499–1597. S. Shan, J. Luo, D. Xu, X. Niu, D. Xu, P. Zhang and L. Kong, Ind. Crops Prod., 2018, 112, 830–838. K. Drugkar, W. Rathod, T. Sharma, A. Sharma, J. Joshi, V. K. Pareek, L. Ledwani and U. Diwekar, Sep. Purif. Technol., 2022, 283, 120149. S. Ren, X. P. Ye and A. P. Borole, J. Anal. Appl. Pyrolysis, 2017, 123, 30–39. J. S. Kim, Bioresour. Technol., 2015, 178, 90–98. A. Tutus, A. C. Ezici and S. Ates, Sci. Res. Essays, 2010, 5, 1553–1560. K. Anupam, Deepika, V. Swaroop and P. S. Lal, J. Cleaner Prod., 2018, 199(20), 420–430. J. Zhou, H. Sui, Z. Jia, Z. Yang, L. He and X. Li, RSC Adv., 2018, 8, 32832–32864. T. Guo, Z. Wan, D. Li, J. Song, O. J. Rojas and Y. Jin, Chem. Eng. J., 2021, 416, 128981. M. P. Vocht, R. Beyer, P. Thomasic, A. Müller, A. Ota, F. Hermanutz and M. R. Buchmeiser, Cellulose, 2021, 28, 3055–3067. L. Wang, M. Ago, M. Borghei, A. Ishaq, A. C. Papageorgiou, M. Lundahl and O. J. Rojas, ACS Sustainable Chem. Eng., 2019, 7, 6013–6022. M. J. Lundahl, V. Klar, L. Wang, M. Ago and O. J. Rojas, Ind. Eng. Chem. Res., 2017, 56, 8–19. J. Bengtsson, K. Jedvert, T. Köhnke and H. Theliander, J. Appl. Polym. Sci., 2021, 138, 1–10. A. D. French, Cellulose, 2014, 21, 885–896. R. A. C. Gomide, A. C. S. de Oliveira, D. A. C. Rodrigues, C. R. de Oliveira, O. B. G. de Assis, M. V. Dias and S. V. Borges, J. Polym. Environ., 2020, 28, 1326– 1334. O. Prakash, M. Naik, R. Katiyar, S. Naik, D. Kumar, D. Maji, A. Shukla, A. D. Nannaware, A. Kalra and P. K. Rout, Ind. Crops Prod., 2018, 119, 1–8. S. Nam, A. D. French, B. D. Condon and M. Concha, Carbohydr. Polym., 2016, 135, 1–9. T. Sebio-Puñal, S. Naya, J. López-Beceiro, J. Tarrío-Saavedra and R. Artiaga, J. Therm. Anal. Calorim., 2012, 109, 1163– 1167. R. J. Crawford, K. J. Edler, S. Lindhoud, J. L. Scott and G. Unali, Green Chem., 2012, 14, 300–303. L. K. J. Hauru, M. Hummel, A. Michud and H. Sixta, Cellulose, 2014, 21, 4471–4481. V. M. Irklei, Y. Y. Kleiner, O. S. Vavrinyuk and L. S. Gal’braikh, Fibre Chem., 2005, 37, 447–451. U. G. K. Wegst and M. F. Ashby, Philos. Mag., 2004, 84, 2167–2186. U. G. K. Wegst, H. Bai, E. Saiz, A. P. Tomsia and R. O. Ritchie, Nat. Mater., 2015, 14, 23–36. F. Libonati and M. J. Buehler, Adv. Eng. Mater., 2017, 19(5), DOI: 10.1002/adem.201600787. R. J. Moon, A. Martini, J. Nairn, J. Simonsen and J. Youngblood, Cellulose nanomaterials review: Structure, properties and nanocomposites, 2011, vol. 40. S. Asaadi, T. Kakko, A. W. T. King, I. Kilpeläinen, M. Hummel and H. Sixta, ACS Sustainable Chem. Eng., 2018, 6, 9418–9426. M. J. Lundahl, A. G. Cunha, E. Rojo, A. C. Papageorgiou, L. Rautkari, J. C. Arboleda and O. J. Rojas, Sci. Rep., 2016, 6, 1–13. J. J. Richardson, W. Liao, J. Li, B. Cheng, C. Wang, T. Maruyama, B. L. Tardy, J. Guo, L. Zhao, W. Aw and H. Ejima, Sci. Rep., 2022, 12, 1–8. S. Shin and J. Hyun, Carbohydr. Polym., 2021, 263, 117976 R. Ajdary, S. Huan, N. Z. Ezazi, W. Xiang, R. Grande, H. A. Santos and O. J. Rojas, Biomacromolecules, 2019, 20(7), 2770–2778. A. Satharasinghe, T. Hughes-Riley and T. Dias, Prog. Photovoltaics Res. Appl., 2020, 28, 578–592. K. Jost, G. Dion and Y. Gogotsi, J. Mater. Chem. A, 2014, 2, 10776–10787. K. Singha, J. Kumar and P. Pandit, Mater. Today: Proc., 2019, 16, 1518–1523. R. Ajdary, N. Z. Ezazi, A. Correia, M. Kemell, S. Huan, H. J. Ruskoaho, J. Hirvonen, H. A. Santos and O. J. Rojas, Adv. Funct. Mater., 2020, 30, 1–10. L. M. Degenstein, D. Sameoto, J. D. Hogan, A. Asad and P. I. Dolez, Micromachines, 2021, 12(7), DOI: 10.3390/ mi12070773. M. Guan, A. Psikuta, M. Camenzind, J. Li, S. Mandal, R. M. Rossi and S. Annaheim, Text. Res. J., 2019, 89(18), 3663–3676. A. Sharma, V. V. Tyagi, C. R. Chen and D. Buddhi, Renewable Sustainable Energy Rev., 2009, 13, 318–345. Coral restoration foundation, Plastic-free tree design challenge, https://www.coralrestoration.org/plastic-free-tree-challenge. C. Flanigan, Zoe, a living sea sculpture, https://zoecoral.com/. N. Fijoł, A. Aguilar-Sánchez and A. P. Mathew, Chem. Eng. J., 2022, 430(3), DOI: 10.1016/j.cej.2021.132964 M. Shahbazi and H. Jäger, ACS Appl. Bio Mater., 2021, 4, 325–369. Y. H. Chan, S. K. Loh, B. L. F. Chin, C. L. Yiin, B. S. How, K. W. Cheah, M. K. Wong, A. C. M. Loy, Y. L. Gwee, S. L. Y. Lo, S. Yusup and S. S. Lam, Chem. Eng. J., 2020, 397, 125406. J. Wang, H. Cui, S. Wei, S. Zhuo, L. Wang, Z. Li and W. Yi, Smart Grid Renewable Energy, 2010, 01, 98–107. M. McVey, Y. Elkasabi and D. Ciolkosz, Biomass Convers. Biorefin., 2020, 10, 15–23. X. Jiang, C. Abbati De Assis, M. Kollman, R. Sun, H. Jameel, H. M. Chang and R. Gonzalez, Green Chem., 2020, 22, 7448–7459. J. Zetterholm, E. Bryngemark, J. Ahlström, P. Söderholm, S. Harvey and E. Wetterlund, Sustainability, 2020, 12(17), DOI: 10.3390/su12177126. |
dc.rights.license.none.fl_str_mv |
Atribución |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
3794-3804 |
dc.coverage.temporal.spa.fl_str_mv |
Vol. 24 |
dc.publisher.spa.fl_str_mv |
Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Civil, Villavicencio |
dc.publisher.program.spa.fl_str_mv |
Ingeniería Civil |
dc.publisher.place.spa.fl_str_mv |
Villavicencio |
institution |
Universidad Cooperativa de Colombia |
bitstream.url.fl_str_mv |
https://repository.ucc.edu.co/bitstreams/d3e9c6dc-6d61-4a7d-a915-205dffe95e59/download |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Cooperativa de Colombia |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1814247145507651584 |
spelling |
Reyes, GuillermoPacheco Pinilla, Claudia MarcelaIsaza Ferro, EstefaniaGonzález, AmaidyPasquier, EvaAlejandro Martín, SergueiArteaga Pérez, Luis E.Carrillo, Romina R.Carrillo Varela, IsabelTeixeira Mendonça, RegisFlanigan, ColleenRojas, Orlando J.Vol. 242022-10-05T13:11:06Z2022-10-05T13:11:06Z2022-04-071463-9270https://doi.org/10.1039/d2gc00573ehttps://hdl.handle.net/20.500.12494/46607Reyes, G., Pacheco, C. M., Isaza-Ferro, E., González, A., Pasquier, E., Alejandro-Martín, S., Arteaga-Peréz, L. E., Carrillo, R. R., Carrillo-Varela, I., Mendonça, R. T., Flanigan, C., & Rojas, O. J. (2022). Upcycling agro-industrial blueberry waste into platform chemicals and structured materials for application in marine environments. Green Chemistry, 24, 3794-3804. https://doi.org/10.1039/d2gc00573eLos desechos de poda de arándanos (BPw), obtenidos como residuos de operaciones agroforestales en Chile, se utilizaron para producir productos de valor agregado, incluidos productos químicos y materiales para plataformas. El fraccionamiento de BPw se implementó utilizando solventes de base biológica (γ-valerolactona, GVL) y pirólisis (500 °C), produciendo fracciones sólidas ricas en fenoles y antioxidantes. Se encontró que la fracción líquida estaba enriquecida en azúcares, ácidos y amidas. Además, se produjeron filamentos y mallas impresas en 3D mediante hilado en húmedo y Escritura directa de tinta (DIW), respectivamente. Para este último propósito, BPw se disolvió en un líquido iónico, acetato de 1-etil-3-metilimidazolio ([emim][OAc]), y se regeneró en filamentos de lignocelulosa con nanofibrillas altamente alineadas (dispersión de rayos X de gran angular) que simultáneamente mostraron extensibilidad (tensión húmeda de hasta 39%). Los filamentos de lignocelulosa derivados de BPw mostraron una tenacidad (hasta 2,3 cN dtex-1) que es comparable a la de las fibras de rayón y mostraron una baja reflectancia de la luz (factor RES <3%). Mientras tanto, DIW de los respectivos geles condujo a mallas con hasta un 60% de capacidad de estiramiento en húmedo. Se demostró que el LCF y las mallas tienen un rendimiento fiable en entornos marinos. A modo de demostración, mostramos las perspectivas de reemplazar cuerdas de plástico y otros materiales utilizados para restaurar los arrecifes de coral en la costa de México.Blueberry pruning waste (BPw), sourced as residues from agroforestry operations in Chile, was used to produce added-value products, including platform chemicals and materials. BPw fractionation was implemented using biobased solvents (γ-valerolactone, GVL) and pyrolysis (500 °C), yielding solid fractions that are rich in phenols and antioxidants. The liquid fraction was found to be enriched in sugars, acids, and amides. Alongside, filaments and 3D-printed meshes were produced via wet spinning and Direct-Ink-Writing (DIW), respectively. For the latter purpose, BPw was dissolved in an ionic liquid, 1-ethyl-3-methylimidazolium acetate ([emim][OAc]), and regenerated into lignocellulose filaments with highly aligned nanofibrils (wide-angle X-ray scattering) that simultaneously showed extensibility (wet strain as high as 39%). BPw-derived lignocellulose filaments showed a tenacity (up to 2.3 cN dtex−1 ) that is comparable to that of rayon fibers and showed low light reflectance (RES factor <3%). Meanwhile, DIW of the respective gels led to meshes with up to 60% wet stretchability. The LCF and meshes were demonstrated to have reliable performance in marine environments. As a demonstration, we show the prospects of replacing plastic cords and other materials used to restore coral reefs on the coast of Mexico.1. Introduction -- 2. Materials and methods -- 2.1 GVL solvolysis and pyrolysis -- 2.2 IL dissolution towards functional textiles -- 3. Results and discussion -- 3.1 Fractionation with GVL and pyrolysis -- 3.2 Valorization by ionic liquid dissolution -- 4. Conclusions -- Author contributions -- Conflicts of interest -- Acknowledgements -- Referenceshttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=00014265750000-0003-3640-6363https://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000005897claudia.pacheco@campusucc.edu.cohttps://scholar.google.com/citations?user=l9eLAlcAAAAJ&hl=es&oi=ao3794-3804Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Civil, VillavicencioIngeniería CivilVillavicenciohttps://pubs.rsc.org/en/content/articlelanding/2022/gc/d2gc00573eGreen ChemistryJ. A. Melero, J. Iglesias and A. Garcia, Energy Environ. Sci., 2012, 5, 7393–7420.F. H. Isikgor and C. R. Becer, Polym. Chem., 2015, 6, 4497– 4559.P. Manzanares, Acta Innov., 2020, 47–56.A. Rashidinejad, in Nutritional Composition and Antioxidant Properties of Fruits and Vegetables, ed. A. K. Jaiswal, Academic Press, 2020, pp. 467–482.A. Michalska and G. Łysiak, Int. J. Mol. Sci., 2015, 16, 18642–18663.C. M. Pacheco, C. Bustos, G. Reyes, M. G. Aguayo and O. J. Rojas, Characterization of Residues from Chilean Blueberry Bushes: A Potential Source of Cellulose, 2018, vol. 13.D. Pinochet, P. Artacho and A. Maraboli, Manual de fertilización de arándanos cultivados en el sur de Chile, 2014.Knoema(R), The production of blueberries in the world, https:// knoema.com/data/agriculture-indicators-production+blueberries.C. Marcela Pacheco, C. Avila, G. Reyes, M. Graciela Aguayo and O. Rojas, BioResources, 2018, 13, 7345–7359.P. Morone and G. Yilan, Acta Innov., 2020, 5–16.D. M. Alonso, S. G. Wettstein and J. A. Dumesic, Green Chem., 2013, 15, 584–595.S. Dutta, I. K. M. Yu, D. C. W. Tsang, Y. H. Ng, Y. S. Ok, J. Sherwood and J. H. Clark, Chem. Eng. J., 2019, 372, 992– 1006.W. Fang and H. Sixta, ChemSusChem, 2015, 8, 73–76.H. Q. Lê, Y. Ma, M. Borrega and H. Sixta, Green Chem., 2016, 18, 5466–5476M. J. Earle, J. M. S. S. Esperança, M. A. Gilea, J. N. Canongia Lopes, L. P. N. Rebelo, J. W. Magee, K. R. Seddon and J. A. Widegren, Nature, 2006, 439, 831– 834.M. Maase, K. Massonne, E. Uerdingen and V. Uwe, Aldrich ChemFiles, 2006, 6.9, 3.A. M. Da Costa Lopes, M. Brenner, P. Falé, L. B. Roseiro and R. Bogel-Łukasik, ACS Sustainable Chem. Eng., 2016, 4, 3357–3367.A. M. Da Costa Lopes, R. M. G. Lins, R. A. Rebelo and R. M. Łukasik, Green Chem., 2018, 20, 4043–4057.A. M. da Costa Lopes, K. G. João, A. R. C. Morais, E. BogelŁukasik and R. Bogel-Łukasik, Sustainable Chem. Processes, 2013, 1, 3.S. Gillet, M. Aguedo, L. Petitjean, A. R. C. Morais, A. M. Da Costa Lopes, R. M. Łukasik and P. T. Anastas, Green Chem., 2017, 19, 4200–4233.H. Sixta, A. Michud, L. Hauru, S. Asaadi, Y. Ma, A. W. T. King, I. Kilpeläinen and M. Hummel, Nord. Pulp Pap. Res. J., 2015, 30(1), 43–57.K. Niinimäki, G. Peters, H. Dahlbo, P. Perry, T. Rissanen and A. Gwilt, Nat. Rev. Earth Environ., 2020, 1, 189–200.ILO, The future of work in textiles, clothing, leather and footwear, 2019.J. Xu, P. Zhou, L. Dai, Y. Gui, L. Yuan, X. Shen, C. Zhang and K. Huo, Green Chem., 2021, 23, 6008–6019.R. A. Sequeira, D. Mondal, K. Prasad and D. Mondal, Green Chem., 2021, 23, 8821–8847.Y. Luo, Z. Zhao, B. Jiang, M. Wei, Z. Zhang, L. Zeng, J. H. Clark and J. Fan, Green Chem., 2022, 24, 1515–1526.F. A. Ferrari, G. P. Nogueira, T. T. Franco, M. O. S. Dias, C. K. N. Cavaliero, G. J. Witkamp, L. A. M. Van Der Wielen and M. B. S. Forte, Green Chem., 2021, 23, 9126–9139.T. I. J. Dugmore, J. H. Clark, J. Bustamante, J. A. Houghton and A. S. Matharu, Top. Curr. Chem., 2017, 375, 1–49.W. Nor, R. Wan, M. W. M. Hisham, M. Ambar and T. Y. Hin, Renewable Sustainable Energy Rev., 2012, 16, 5910–5923.D. Mohan, C. U. Pittman and P. H. Steele, Energy Fuels, 2006, 20, 848–889.A. I. Ruiz-Matute, O. Hernández-Hernández, S. RodríguezSánchez, M. L. Sanz and I. Martínez-Castro, J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 2011, 879, 1226– 1240.A. W. Krotscheck and H. Sixta, in Handbook of Pulp, John Wiley & Sons, Ltd, 2006, pp. 967–996.L. Dessbesell, M. Paleologou, M. Leitch, R. Pulkki and C. (Charles) Xu, Renewable Sustainable Energy Rev., 2020, 123, 109768.T. Aro and P. Fatehi, Sep. Purif. Technol., 2017, 175, 469–480.A. M. Asim, M. Uroos, S. Naz, M. Sultan, G. Griffin, N. Muhammad and A. S. Khan, J. Mol. Liq., 2019, 287, 110943.P. Halder, S. Kundu, S. Patel, A. Setiawan, R. Atkin, R. Parthasarthy, J. Paz-Ferreiro, A. Surapaneni and K. Shah, Renewable Sustainable Energy Rev., 2019, 105, 268–292.S. Alejandro-Martín, A. Montecinos Acaricia, C. CerdaBarrera and H. Díaz Pérez, Catalysts, 2019, 9, 465.M. H. Mohamad, R. Awang and W. M. Z. W. Yunus, Am. J. Appl. Sci., 2011, 8(11), 1135–1139.X. Li, S. R. A. Kersten and B. Schuur, Sep. Purif. Technol., 2017, 175, 498–505.T. Varila, E. Mäkelä, R. Kupila, H. Romar, T. Hu, R. Karinen, R. L. Puurunen and U. Lassi, Catal. Today, 2021, 367, 16–27.A. Majira, B. Godon, L. Foulon, J. C. van der Putten, L. Cézard, M. Thierry, F. Pion, A. Bado-Nilles, P. Pandard, T. Jayabalan, V. Aguié-Béghin, P. H. Ducrot, C. Lapierre, G. Marlair, R. J. A. Gosselink, S. Baumberger and B. Cottyn, ChemSusChem, 2019, 12, 4799–4809.C. Tessini, R. Romero, M. Escobar, A. Gordon and M. Flores, J. Chil. Chem. Soc., 2016, 61, 2837–2842.D. Precht and J. Molkentin, Int. Dairy J., 1996, 6, 791– 809.S. Jayaraman and E. J. Variyar, J. Ethnopharmacol., 2021, 278, 114307.R. J. Van Putten, J. C. Van Der Waal, E. De Jong, C. B. Rasrendra, H. J. Heeres and J. G. De Vries, Chem. Rev., 2013, 113, 1499–1597.S. Shan, J. Luo, D. Xu, X. Niu, D. Xu, P. Zhang and L. Kong, Ind. Crops Prod., 2018, 112, 830–838.K. Drugkar, W. Rathod, T. Sharma, A. Sharma, J. Joshi, V. K. Pareek, L. Ledwani and U. Diwekar, Sep. Purif. Technol., 2022, 283, 120149.S. Ren, X. P. Ye and A. P. Borole, J. Anal. Appl. Pyrolysis, 2017, 123, 30–39.J. S. Kim, Bioresour. Technol., 2015, 178, 90–98.A. Tutus, A. C. Ezici and S. Ates, Sci. Res. Essays, 2010, 5, 1553–1560.K. Anupam, Deepika, V. Swaroop and P. S. Lal, J. Cleaner Prod., 2018, 199(20), 420–430.J. Zhou, H. Sui, Z. Jia, Z. Yang, L. He and X. Li, RSC Adv., 2018, 8, 32832–32864.T. Guo, Z. Wan, D. Li, J. Song, O. J. Rojas and Y. Jin, Chem. Eng. J., 2021, 416, 128981.M. P. Vocht, R. Beyer, P. Thomasic, A. Müller, A. Ota, F. Hermanutz and M. R. Buchmeiser, Cellulose, 2021, 28, 3055–3067.L. Wang, M. Ago, M. Borghei, A. Ishaq, A. C. Papageorgiou, M. Lundahl and O. J. Rojas, ACS Sustainable Chem. Eng., 2019, 7, 6013–6022.M. J. Lundahl, V. Klar, L. Wang, M. Ago and O. J. Rojas, Ind. Eng. Chem. Res., 2017, 56, 8–19.J. Bengtsson, K. Jedvert, T. Köhnke and H. Theliander, J. Appl. Polym. Sci., 2021, 138, 1–10.A. D. French, Cellulose, 2014, 21, 885–896.R. A. C. Gomide, A. C. S. de Oliveira, D. A. C. Rodrigues, C. R. de Oliveira, O. B. G. de Assis, M. V. Dias and S. V. Borges, J. Polym. Environ., 2020, 28, 1326– 1334.O. Prakash, M. Naik, R. Katiyar, S. Naik, D. Kumar, D. Maji, A. Shukla, A. D. Nannaware, A. Kalra and P. K. Rout, Ind. Crops Prod., 2018, 119, 1–8.S. Nam, A. D. French, B. D. Condon and M. Concha, Carbohydr. Polym., 2016, 135, 1–9.T. Sebio-Puñal, S. Naya, J. López-Beceiro, J. Tarrío-Saavedra and R. Artiaga, J. Therm. Anal. Calorim., 2012, 109, 1163– 1167.R. J. Crawford, K. J. Edler, S. Lindhoud, J. L. Scott and G. Unali, Green Chem., 2012, 14, 300–303.L. K. J. Hauru, M. Hummel, A. Michud and H. Sixta, Cellulose, 2014, 21, 4471–4481.V. M. Irklei, Y. Y. Kleiner, O. S. Vavrinyuk and L. S. Gal’braikh, Fibre Chem., 2005, 37, 447–451.U. G. K. Wegst and M. F. Ashby, Philos. Mag., 2004, 84, 2167–2186.U. G. K. Wegst, H. Bai, E. Saiz, A. P. Tomsia and R. O. Ritchie, Nat. Mater., 2015, 14, 23–36.F. Libonati and M. J. Buehler, Adv. Eng. Mater., 2017, 19(5), DOI: 10.1002/adem.201600787.R. J. Moon, A. Martini, J. Nairn, J. Simonsen and J. Youngblood, Cellulose nanomaterials review: Structure, properties and nanocomposites, 2011, vol. 40.S. Asaadi, T. Kakko, A. W. T. King, I. Kilpeläinen, M. Hummel and H. Sixta, ACS Sustainable Chem. Eng., 2018, 6, 9418–9426.M. J. Lundahl, A. G. Cunha, E. Rojo, A. C. Papageorgiou, L. Rautkari, J. C. Arboleda and O. J. Rojas, Sci. Rep., 2016, 6, 1–13.J. J. Richardson, W. Liao, J. Li, B. Cheng, C. Wang, T. Maruyama, B. L. Tardy, J. Guo, L. Zhao, W. Aw and H. Ejima, Sci. Rep., 2022, 12, 1–8.S. Shin and J. Hyun, Carbohydr. Polym., 2021, 263, 117976R. Ajdary, S. Huan, N. Z. Ezazi, W. Xiang, R. Grande, H. A. Santos and O. J. Rojas, Biomacromolecules, 2019, 20(7), 2770–2778.A. Satharasinghe, T. Hughes-Riley and T. Dias, Prog. Photovoltaics Res. Appl., 2020, 28, 578–592.K. Jost, G. Dion and Y. Gogotsi, J. Mater. Chem. A, 2014, 2, 10776–10787.K. Singha, J. Kumar and P. Pandit, Mater. Today: Proc., 2019, 16, 1518–1523.R. Ajdary, N. Z. Ezazi, A. Correia, M. Kemell, S. Huan, H. J. Ruskoaho, J. Hirvonen, H. A. Santos and O. J. Rojas, Adv. Funct. Mater., 2020, 30, 1–10.L. M. Degenstein, D. Sameoto, J. D. Hogan, A. Asad and P. I. Dolez, Micromachines, 2021, 12(7), DOI: 10.3390/ mi12070773.M. Guan, A. Psikuta, M. Camenzind, J. Li, S. Mandal, R. M. Rossi and S. Annaheim, Text. Res. J., 2019, 89(18), 3663–3676.A. Sharma, V. V. Tyagi, C. R. Chen and D. Buddhi, Renewable Sustainable Energy Rev., 2009, 13, 318–345.Coral restoration foundation, Plastic-free tree design challenge, https://www.coralrestoration.org/plastic-free-tree-challenge.C. Flanigan, Zoe, a living sea sculpture, https://zoecoral.com/.N. Fijoł, A. Aguilar-Sánchez and A. P. Mathew, Chem. Eng. J., 2022, 430(3), DOI: 10.1016/j.cej.2021.132964M. Shahbazi and H. Jäger, ACS Appl. Bio Mater., 2021, 4, 325–369.Y. H. Chan, S. K. Loh, B. L. F. Chin, C. L. Yiin, B. S. How, K. W. Cheah, M. K. Wong, A. C. M. Loy, Y. L. Gwee, S. L. Y. Lo, S. Yusup and S. S. Lam, Chem. Eng. J., 2020, 397, 125406.J. Wang, H. Cui, S. Wei, S. Zhuo, L. Wang, Z. Li and W. Yi, Smart Grid Renewable Energy, 2010, 01, 98–107.M. McVey, Y. Elkasabi and D. Ciolkosz, Biomass Convers. Biorefin., 2020, 10, 15–23.X. Jiang, C. Abbati De Assis, M. Kollman, R. Sun, H. Jameel, H. M. Chang and R. Gonzalez, Green Chem., 2020, 22, 7448–7459.J. Zetterholm, E. Bryngemark, J. Ahlström, P. Söderholm, S. Harvey and E. Wetterlund, Sustainability, 2020, 12(17), DOI: 10.3390/su12177126.Desechos de poda de arándanos (BPw)FilamentosLíquido iónicoRestauración arrecifes de coralAntioxidantesBlueberry pruning waste (BPw)FilamentsLonic liquidRestore coral reefsAntioxidantsUpcycling agro-industrial blueberry waste into platform chemicals and structured materials for application in marine environmentsArtículohttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribucióninfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repository.ucc.edu.co/bitstreams/d3e9c6dc-6d61-4a7d-a915-205dffe95e59/download8a4605be74aa9ea9d79846c1fba20a33MD5120.500.12494/46607oai:repository.ucc.edu.co:20.500.12494/466072024-08-10 21:00:49.47metadata.onlyhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |