Molecular analysis of several in-house rRT-PCR protocols for SARS-CoV-2 detection in the context of genetic variability of the virus in Colombia

The COVID-19 pandemic caused by SARS-CoV-2 is a public health problem unprecedented in the recent history of humanity. Different in-house real-time RT-PCR (rRT-PCR) methods for SARS-CoV-2 diagnosis and the appearance of genomes with mutations in primer regions have been reported. Hence, whole-genome...

Full description

Autores:
Álvarez Díaz, Diego Alejandro
Franco Muñoz, Carlos
Laiton Donato, Katherine
Usme Ciro, José Aldemar
Franco Sierra, Nicolas D.
Flórez Sánchez, Astrid C.
Gómez Rangel, Sergio
Rodriguez Calderon, Luz D.
Barbosa Ramirez, Juliana
Ospitia Baez, Erika
Walteros, Diana Marcela
Ospina Martínez, Martha L.
Mercado Reyes, Marcela
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/32691
Acceso en línea:
https://hdl.handle.net/20.500.12494/32691
Palabra clave:
SARS-CoV-2
COVID-19
Diagnóstico
Diversidad Genética
RT-PCR
Secuenciación de próxima generación
SARS-CoV-2
COVID-19
Next-generation sequencing
RT-PCR
Genetic diversity
Diagnostic testing
Rights
openAccess
License
Atribución
id COOPER2_e63103f29415f9bdb2e6d7d13c71f916
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/32691
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.spa.fl_str_mv Molecular analysis of several in-house rRT-PCR protocols for SARS-CoV-2 detection in the context of genetic variability of the virus in Colombia
title Molecular analysis of several in-house rRT-PCR protocols for SARS-CoV-2 detection in the context of genetic variability of the virus in Colombia
spellingShingle Molecular analysis of several in-house rRT-PCR protocols for SARS-CoV-2 detection in the context of genetic variability of the virus in Colombia
SARS-CoV-2
COVID-19
Diagnóstico
Diversidad Genética
RT-PCR
Secuenciación de próxima generación
SARS-CoV-2
COVID-19
Next-generation sequencing
RT-PCR
Genetic diversity
Diagnostic testing
title_short Molecular analysis of several in-house rRT-PCR protocols for SARS-CoV-2 detection in the context of genetic variability of the virus in Colombia
title_full Molecular analysis of several in-house rRT-PCR protocols for SARS-CoV-2 detection in the context of genetic variability of the virus in Colombia
title_fullStr Molecular analysis of several in-house rRT-PCR protocols for SARS-CoV-2 detection in the context of genetic variability of the virus in Colombia
title_full_unstemmed Molecular analysis of several in-house rRT-PCR protocols for SARS-CoV-2 detection in the context of genetic variability of the virus in Colombia
title_sort Molecular analysis of several in-house rRT-PCR protocols for SARS-CoV-2 detection in the context of genetic variability of the virus in Colombia
dc.creator.fl_str_mv Álvarez Díaz, Diego Alejandro
Franco Muñoz, Carlos
Laiton Donato, Katherine
Usme Ciro, José Aldemar
Franco Sierra, Nicolas D.
Flórez Sánchez, Astrid C.
Gómez Rangel, Sergio
Rodriguez Calderon, Luz D.
Barbosa Ramirez, Juliana
Ospitia Baez, Erika
Walteros, Diana Marcela
Ospina Martínez, Martha L.
Mercado Reyes, Marcela
dc.contributor.author.none.fl_str_mv Álvarez Díaz, Diego Alejandro
Franco Muñoz, Carlos
Laiton Donato, Katherine
Usme Ciro, José Aldemar
Franco Sierra, Nicolas D.
Flórez Sánchez, Astrid C.
Gómez Rangel, Sergio
Rodriguez Calderon, Luz D.
Barbosa Ramirez, Juliana
Ospitia Baez, Erika
Walteros, Diana Marcela
Ospina Martínez, Martha L.
Mercado Reyes, Marcela
dc.subject.spa.fl_str_mv SARS-CoV-2
COVID-19
Diagnóstico
Diversidad Genética
RT-PCR
Secuenciación de próxima generación
topic SARS-CoV-2
COVID-19
Diagnóstico
Diversidad Genética
RT-PCR
Secuenciación de próxima generación
SARS-CoV-2
COVID-19
Next-generation sequencing
RT-PCR
Genetic diversity
Diagnostic testing
dc.subject.other.spa.fl_str_mv SARS-CoV-2
COVID-19
Next-generation sequencing
RT-PCR
Genetic diversity
Diagnostic testing
description The COVID-19 pandemic caused by SARS-CoV-2 is a public health problem unprecedented in the recent history of humanity. Different in-house real-time RT-PCR (rRT-PCR) methods for SARS-CoV-2 diagnosis and the appearance of genomes with mutations in primer regions have been reported. Hence, whole-genome data from locally-circulating SARS-CoV-2 strains contribute to the knowledge of its global variability and the development and fine tuning of diagnostic protocols. To describe the genetic variability of Colombian SARS-CoV-2 genomes in hybridization regions of oligonucleotides of the main in-house methods for SARS-CoV-2 detection, RNA samples with confirmed SARS-CoV-2 molecular diagnosis were processed through next-generation sequencing. Primers/probes sequences from 13 target regions for SARS-CoV-2 detection suggested by 7 institutions and consolidated by WHO during the early stage of the pandemic were aligned with Muscle tool to assess the genetic variability potentially affecting their performance. Finally, the corresponding codon positions at the 3′ end of each primer, the open reading frame inspection was identified for each gene/protein product. Complete SARS-CoV-2 genomes were obtained from 30 COVID-19 cases, representative of the current epidemiology in the country. Mismatches between at least one Colombian sequence and five oligonucleotides targeting the RdRP and N genes were observed. The 3′ end of 4 primers aligned to the third codon position, showed high risk of nucleotide substitution and potential mismatches at this critical position. Genetic variability was detected in Colombian SARS-CoV-2 sequences in some of the primer/probe regions for in-house rRT-PCR diagnostic tests available at WHO COVID-19 technical guidelines; its impact on the performance and rates of false-negative results should be experimentally evaluated. The genomic surveillance of SARS-CoV-2 is highly recommended for the early identification of mutations in critical regions and to issue recommendations on specific diagnostic tests to ensure the coverage of locally-circulating genetic variants.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020-06-04
dc.date.accessioned.none.fl_str_mv 2021-01-20T21:57:16Z
dc.date.available.none.fl_str_mv 2021-01-20T21:57:16Z
dc.type.none.fl_str_mv Artículo
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 1567-1348
dc.identifier.uri.spa.fl_str_mv 10.1016/j.meegid.2020.104390
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12494/32691
dc.identifier.bibliographicCitation.spa.fl_str_mv Álvarez-Díaz, D. A., Franco-Muñoz, C., Laiton-Donato, K., Usme-Ciro, J. A., Franco-Sierra, N. D., Flórez-Sánchez, A. C., Gómez-Rangel, S., Rodríguez-Calderon, L. D., Barbosa-Ramirez, J., Ospitia-Baez, E., Walteros, D. M., Ospina-Martinez, M. L., & Mercado-Reyes, M. (2020). Molecular analysis of several in-house rRT-PCR protocols for SARS-CoV-2 detection in the context of genetic variability of the virus in Colombia. Infection, Genetics and Evolution: Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 84, 104390.
identifier_str_mv 1567-1348
10.1016/j.meegid.2020.104390
Álvarez-Díaz, D. A., Franco-Muñoz, C., Laiton-Donato, K., Usme-Ciro, J. A., Franco-Sierra, N. D., Flórez-Sánchez, A. C., Gómez-Rangel, S., Rodríguez-Calderon, L. D., Barbosa-Ramirez, J., Ospitia-Baez, E., Walteros, D. M., Ospina-Martinez, M. L., & Mercado-Reyes, M. (2020). Molecular analysis of several in-house rRT-PCR protocols for SARS-CoV-2 detection in the context of genetic variability of the virus in Colombia. Infection, Genetics and Evolution: Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 84, 104390.
url https://hdl.handle.net/20.500.12494/32691
dc.relation.isversionof.spa.fl_str_mv https://www.sciencedirect.com/science/article/abs/pii/S1567134820302215?via%3Dihub
dc.relation.ispartofjournal.spa.fl_str_mv Infection, Genetics and Evolution
dc.relation.references.spa.fl_str_mv Andersen, K.G., Rambaut, A., Lipkin, W.I., Holmes, E.C., Garry, R.F., 2020. The proximal origin of SARS-CoV-2. Nat. Med. 26, 450–452.
BII/GIS, 2020. Analysis Update. (GISAID).
brian-jgi, 2020. BBMap Short Read Aligner, and Other Bioinformatic Tools.
Chu, D.K.W., Pan, Y., Cheng, S.M.S., Hui, K.P.Y., Krishnan, P., Liu, Y., Ng, D.Y.M., Wan, C.K.C., Yang, P., Wang, Q., Peiris, M., Poon, L.L.M., 2020. Molecular diagnosis of a Novel Coronavirus (2019-nCoV) causing an outbreak of pneumonia. Clin. Chem. 66, 549–555.
Corman, V.M., Rasche, A., Baronti, C., Aldabbagh, S., Cadar, D., Reusken, C.B., Pas, S.D., Goorhuis, A., Schinkel, J., Molenkamp, R., Kummerer, B.M., Bleicker, T., Brunink, S., Eschbach-Bludau, M., Eis-Hubinger, A.M., Koopmans, M.P., Schmidt-Chanasit, J., Grobusch, M.P., de Lamballerie, X., Drosten, C., Drexler, J.F., 2016. Assay optimization for molecular detection of Zika virus. Bull. World Health Organ. 94, 880–892.
Corman, V.M., Landt, O., Kaiser, M., Molenkamp, R., Meijer, A., Chu, D.K., Bleicker, T., Brünink, S., Schneider, J., Schmidt, M.L., Mulders, D.G., Haagmans, B.L., van der Veer, B., van den Brink, S., Wijsman, L., Goderski, G., Romette, J.-L., Ellis, J., Zambon, M., Peiris, M., Goossens, H., Reusken, C., Koopmans, M.P., Drosten, C., 2020. Detection of 2019 Novel Coronavirus (2019-nCoV) by Real-Time RT-PCR. Euro Surveillance : Bulletin Europeen Sur les Maladies Transmissibles = European Communicable Disease Bulletin. 25 (2000045).
Dong, E., Du, H., Gardner, L., 2020. An interactive web-based dashboard to track COVID19 in real time. Lancet Infect. Dis. 20, 533–534.
Edgar, R.C., 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797.
Gwinn, M., MacCannell, D., Armstrong, G.L., 2019. Next-generation sequencing of infectious pathogens. JAMA 321, 893–894.
Holshue, M.L., DeBolt, C., Lindquist, S., Lofy, K.H., Wiesman, J., Bruce, H., Spitters, C., Ericson, K., Wilkerson, S., Tural, A., Diaz, G., Cohn, A., Fox, L., Patel, A., Gerber, S.I., Kim, L., Tong, S., Lu, X., Lindstrom, S., Pallansch, M.A., Weldon, W.C., Biggs, H.M., Uyeki, T.M., Pillai, S.K., Washington State -nCo, V.C.I.T., 2020. First case of 2019 Novel Coronavirus in the United States. N. Engl. J. Med. 382, 929–936.
Hu, X.M., Xu, J.X., Jiang, L.X., Deng, L.R., Gu, Z.M., Xie, X.Y., Ji, H.C., Wang, W.H., Li, L.M., Tian, C.N., Song, F.L., Huang, S., Zheng, L., Zhong, T.Y., 2019. Design and evaluation of a Novel multiplex real-time PCR melting curve assay for the simultaneous detection of nine sexually transmitted disease pathogens in genitourinary secretions. Front. Cell. Infect. Microbiol. 9, 382.
Kumar, S., Stecher, G., Li, M., Knyaz, C., Tamura, K., 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549.
Li, M., Knyaz, C., Tamura, K., 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549. Li, J., Li, Z., Cui, X., Wu, C., 2020. Bayesian phylodynamic inference on the temporal evolution and global transmission of SARS-CoV-2. J. Inf. Secur.
PAHO, J., 2020. Directrices de Laboratorio para la Detección y el Diagnóstico de la Infección con el Virus COVID-19. Pan American Health Organization.
Quick, J., 2020. nCoV-2019 Sequencing Protocol. Protocols.io.
Sanjuan, R., Nebot, M.R., Chirico, N., Mansky, L.M., Belshaw, R., 2010. Viral mutation rates. J. Virol. 84, 9733–9748.
Staheli, J.P., Ryan, J.T., Bruce, A.G., Boyce, R., Rose, T.M., 2009. Consensus-degenerate hybrid oligonucleotide primers (CODEHOPs) for the detection of novel viruses in non-human primates. Methods 49, 32–41.
Tang, X., Wu, C., Li, X., Song, Y., Yao, X., Wu, X., Duan, Y., Zhang, H., Wang, Y., Qian, Z., Cui, J., Lu, J., 2020. On the origin and continuing evolution of SARS-CoV-2. Natl. Sci. Rev.
Wang, H., Pipes, L., Nielsen, R., 2020. Synonymous mutations and the molecular evolution of SARS-Cov-2 origins. bioRxiv (2020.2004.2020.052019). WHO, 2020a.
WHO Director-General's Opening Remarks at the Media Briefing on COVID19 - 11 March 2020. World Health Organization.
WHO, 2020b. Coronavirus Disease 2019 (COVID-19). World Health Organization.
WHO, 2020c. Novel Coronavirus (2019-nCoV) Technical Guidance: Laboratory Testing for 2019-nCoV in Humans. World Health Organization.
WHO, 2020d. Coronavirus Disease (COVID-19).
Zhang, T., Wu, Q., Zhang, Z., 2020. Probable pangolin origin of SARS-CoV-2 associated with the COVID-19 outbreak. Curr. Biol. 30, 1346–1351 e1342.
Zhou, P., Yang, X.L., Wang, X.G., Hu, B., Zhang, L., Zhang, W., Si, H.R., Zhu, Y., Li, B., Huang, C.L., Chen, H.D., Chen, J., Luo, Y., Guo, H., Jiang, R.D., Liu, M.Q., Chen, Y., Shen, X.R., Wang, X., Zheng, X.S., Zhao, K., Chen, Q.J., Deng, F., Liu, L.L., Yan, B., Zhan, F.X., Wang, Y.Y., Xiao, G.F., Shi, Z.L., 2020. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273.
Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., Niu, P., Zhan, F., Ma, X., Wang, D., Xu, W., Wu, G., Gao, G.F., Tan, W., China Novel Coronavirus, I., Research, T., 2020. A Novel Coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 382, 727–733.
dc.rights.license.none.fl_str_mv Atribución
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 7
dc.coverage.temporal.spa.fl_str_mv 84
dc.publisher.spa.fl_str_mv Centro de Investigación en Salud para el Trópico–CIST, Universidad Cooperativa de Colombia, Santa Marta 470003, Colombia
Dr. Michel Tibayrenc
dc.publisher.program.spa.fl_str_mv Medicina
dc.publisher.place.spa.fl_str_mv Santa Marta
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/fa12f9ac-c503-4b73-98cb-58f1e5f92548/download
https://repository.ucc.edu.co/bitstreams/3b287604-5bd0-43fd-b8aa-f1f5f175a6ec/download
https://repository.ucc.edu.co/bitstreams/0141443c-bafa-4c77-b7ff-2db87fedf927/download
https://repository.ucc.edu.co/bitstreams/650e98f6-5e56-4326-ab2f-1a63dc403085/download
bitstream.checksum.fl_str_mv 748f51f89324e063be87fecf81c27105
3bce4f7ab09dfc588f126e1e36e98a45
111f5b8dde75d78c4576e4da302940cb
6f1185d39e1ad5a8eb0dfadd7be0a539
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1814246996856274944
spelling Álvarez Díaz, Diego AlejandroFranco Muñoz, CarlosLaiton Donato, KatherineUsme Ciro, José AldemarFranco Sierra, Nicolas D.Flórez Sánchez, Astrid C.Gómez Rangel, SergioRodriguez Calderon, Luz D.Barbosa Ramirez, JulianaOspitia Baez, ErikaWalteros, Diana MarcelaOspina Martínez, Martha L.Mercado Reyes, Marcela842021-01-20T21:57:16Z2021-01-20T21:57:16Z2020-06-041567-134810.1016/j.meegid.2020.104390https://hdl.handle.net/20.500.12494/32691Álvarez-Díaz, D. A., Franco-Muñoz, C., Laiton-Donato, K., Usme-Ciro, J. A., Franco-Sierra, N. D., Flórez-Sánchez, A. C., Gómez-Rangel, S., Rodríguez-Calderon, L. D., Barbosa-Ramirez, J., Ospitia-Baez, E., Walteros, D. M., Ospina-Martinez, M. L., & Mercado-Reyes, M. (2020). Molecular analysis of several in-house rRT-PCR protocols for SARS-CoV-2 detection in the context of genetic variability of the virus in Colombia. Infection, Genetics and Evolution: Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 84, 104390.The COVID-19 pandemic caused by SARS-CoV-2 is a public health problem unprecedented in the recent history of humanity. Different in-house real-time RT-PCR (rRT-PCR) methods for SARS-CoV-2 diagnosis and the appearance of genomes with mutations in primer regions have been reported. Hence, whole-genome data from locally-circulating SARS-CoV-2 strains contribute to the knowledge of its global variability and the development and fine tuning of diagnostic protocols. To describe the genetic variability of Colombian SARS-CoV-2 genomes in hybridization regions of oligonucleotides of the main in-house methods for SARS-CoV-2 detection, RNA samples with confirmed SARS-CoV-2 molecular diagnosis were processed through next-generation sequencing. Primers/probes sequences from 13 target regions for SARS-CoV-2 detection suggested by 7 institutions and consolidated by WHO during the early stage of the pandemic were aligned with Muscle tool to assess the genetic variability potentially affecting their performance. Finally, the corresponding codon positions at the 3′ end of each primer, the open reading frame inspection was identified for each gene/protein product. Complete SARS-CoV-2 genomes were obtained from 30 COVID-19 cases, representative of the current epidemiology in the country. Mismatches between at least one Colombian sequence and five oligonucleotides targeting the RdRP and N genes were observed. The 3′ end of 4 primers aligned to the third codon position, showed high risk of nucleotide substitution and potential mismatches at this critical position. Genetic variability was detected in Colombian SARS-CoV-2 sequences in some of the primer/probe regions for in-house rRT-PCR diagnostic tests available at WHO COVID-19 technical guidelines; its impact on the performance and rates of false-negative results should be experimentally evaluated. The genomic surveillance of SARS-CoV-2 is highly recommended for the early identification of mutations in critical regions and to issue recommendations on specific diagnostic tests to ensure the coverage of locally-circulating genetic variants.https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000318507https://orcid.org/0000-0002-8093-0544https://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000008981jose.usmec@campusucc.edu.codaalvarezd@unal.edu.cohttps://scholar.google.com.co/citations?user=cU2KyT4AAAAJ&hl=en7Centro de Investigación en Salud para el Trópico–CIST, Universidad Cooperativa de Colombia, Santa Marta 470003, ColombiaDr. Michel TibayrencMedicinaSanta Martahttps://www.sciencedirect.com/science/article/abs/pii/S1567134820302215?via%3DihubInfection, Genetics and EvolutionAndersen, K.G., Rambaut, A., Lipkin, W.I., Holmes, E.C., Garry, R.F., 2020. The proximal origin of SARS-CoV-2. Nat. Med. 26, 450–452.BII/GIS, 2020. Analysis Update. (GISAID).brian-jgi, 2020. BBMap Short Read Aligner, and Other Bioinformatic Tools.Chu, D.K.W., Pan, Y., Cheng, S.M.S., Hui, K.P.Y., Krishnan, P., Liu, Y., Ng, D.Y.M., Wan, C.K.C., Yang, P., Wang, Q., Peiris, M., Poon, L.L.M., 2020. Molecular diagnosis of a Novel Coronavirus (2019-nCoV) causing an outbreak of pneumonia. Clin. Chem. 66, 549–555.Corman, V.M., Rasche, A., Baronti, C., Aldabbagh, S., Cadar, D., Reusken, C.B., Pas, S.D., Goorhuis, A., Schinkel, J., Molenkamp, R., Kummerer, B.M., Bleicker, T., Brunink, S., Eschbach-Bludau, M., Eis-Hubinger, A.M., Koopmans, M.P., Schmidt-Chanasit, J., Grobusch, M.P., de Lamballerie, X., Drosten, C., Drexler, J.F., 2016. Assay optimization for molecular detection of Zika virus. Bull. World Health Organ. 94, 880–892.Corman, V.M., Landt, O., Kaiser, M., Molenkamp, R., Meijer, A., Chu, D.K., Bleicker, T., Brünink, S., Schneider, J., Schmidt, M.L., Mulders, D.G., Haagmans, B.L., van der Veer, B., van den Brink, S., Wijsman, L., Goderski, G., Romette, J.-L., Ellis, J., Zambon, M., Peiris, M., Goossens, H., Reusken, C., Koopmans, M.P., Drosten, C., 2020. Detection of 2019 Novel Coronavirus (2019-nCoV) by Real-Time RT-PCR. Euro Surveillance : Bulletin Europeen Sur les Maladies Transmissibles = European Communicable Disease Bulletin. 25 (2000045).Dong, E., Du, H., Gardner, L., 2020. An interactive web-based dashboard to track COVID19 in real time. Lancet Infect. Dis. 20, 533–534.Edgar, R.C., 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797.Gwinn, M., MacCannell, D., Armstrong, G.L., 2019. Next-generation sequencing of infectious pathogens. JAMA 321, 893–894.Holshue, M.L., DeBolt, C., Lindquist, S., Lofy, K.H., Wiesman, J., Bruce, H., Spitters, C., Ericson, K., Wilkerson, S., Tural, A., Diaz, G., Cohn, A., Fox, L., Patel, A., Gerber, S.I., Kim, L., Tong, S., Lu, X., Lindstrom, S., Pallansch, M.A., Weldon, W.C., Biggs, H.M., Uyeki, T.M., Pillai, S.K., Washington State -nCo, V.C.I.T., 2020. First case of 2019 Novel Coronavirus in the United States. N. Engl. J. Med. 382, 929–936.Hu, X.M., Xu, J.X., Jiang, L.X., Deng, L.R., Gu, Z.M., Xie, X.Y., Ji, H.C., Wang, W.H., Li, L.M., Tian, C.N., Song, F.L., Huang, S., Zheng, L., Zhong, T.Y., 2019. Design and evaluation of a Novel multiplex real-time PCR melting curve assay for the simultaneous detection of nine sexually transmitted disease pathogens in genitourinary secretions. Front. Cell. Infect. Microbiol. 9, 382.Kumar, S., Stecher, G., Li, M., Knyaz, C., Tamura, K., 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549.Li, M., Knyaz, C., Tamura, K., 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549. Li, J., Li, Z., Cui, X., Wu, C., 2020. Bayesian phylodynamic inference on the temporal evolution and global transmission of SARS-CoV-2. J. Inf. Secur.PAHO, J., 2020. Directrices de Laboratorio para la Detección y el Diagnóstico de la Infección con el Virus COVID-19. Pan American Health Organization.Quick, J., 2020. nCoV-2019 Sequencing Protocol. Protocols.io.Sanjuan, R., Nebot, M.R., Chirico, N., Mansky, L.M., Belshaw, R., 2010. Viral mutation rates. J. Virol. 84, 9733–9748.Staheli, J.P., Ryan, J.T., Bruce, A.G., Boyce, R., Rose, T.M., 2009. Consensus-degenerate hybrid oligonucleotide primers (CODEHOPs) for the detection of novel viruses in non-human primates. Methods 49, 32–41.Tang, X., Wu, C., Li, X., Song, Y., Yao, X., Wu, X., Duan, Y., Zhang, H., Wang, Y., Qian, Z., Cui, J., Lu, J., 2020. On the origin and continuing evolution of SARS-CoV-2. Natl. Sci. Rev.Wang, H., Pipes, L., Nielsen, R., 2020. Synonymous mutations and the molecular evolution of SARS-Cov-2 origins. bioRxiv (2020.2004.2020.052019). WHO, 2020a.WHO Director-General's Opening Remarks at the Media Briefing on COVID19 - 11 March 2020. World Health Organization.WHO, 2020b. Coronavirus Disease 2019 (COVID-19). World Health Organization.WHO, 2020c. Novel Coronavirus (2019-nCoV) Technical Guidance: Laboratory Testing for 2019-nCoV in Humans. World Health Organization.WHO, 2020d. Coronavirus Disease (COVID-19).Zhang, T., Wu, Q., Zhang, Z., 2020. Probable pangolin origin of SARS-CoV-2 associated with the COVID-19 outbreak. Curr. Biol. 30, 1346–1351 e1342.Zhou, P., Yang, X.L., Wang, X.G., Hu, B., Zhang, L., Zhang, W., Si, H.R., Zhu, Y., Li, B., Huang, C.L., Chen, H.D., Chen, J., Luo, Y., Guo, H., Jiang, R.D., Liu, M.Q., Chen, Y., Shen, X.R., Wang, X., Zheng, X.S., Zhao, K., Chen, Q.J., Deng, F., Liu, L.L., Yan, B., Zhan, F.X., Wang, Y.Y., Xiao, G.F., Shi, Z.L., 2020. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273.Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., Niu, P., Zhan, F., Ma, X., Wang, D., Xu, W., Wu, G., Gao, G.F., Tan, W., China Novel Coronavirus, I., Research, T., 2020. A Novel Coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 382, 727–733.SARS-CoV-2COVID-19DiagnósticoDiversidad GenéticaRT-PCRSecuenciación de próxima generaciónSARS-CoV-2COVID-19Next-generation sequencingRT-PCRGenetic diversityDiagnostic testingMolecular analysis of several in-house rRT-PCR protocols for SARS-CoV-2 detection in the context of genetic variability of the virus in ColombiaArtículohttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribucióninfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationORIGINAL29. Molecular analysis of several in-house rRT-PCR protocols for SARS-CoV-2 detection. Alvarez-Díaz et al 2020.pdf29. Molecular analysis of several in-house rRT-PCR protocols for SARS-CoV-2 detection. Alvarez-Díaz et al 2020.pdfArtículo publicadoapplication/pdf2256479https://repository.ucc.edu.co/bitstreams/fa12f9ac-c503-4b73-98cb-58f1e5f92548/download748f51f89324e063be87fecf81c27105MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/3b287604-5bd0-43fd-b8aa-f1f5f175a6ec/download3bce4f7ab09dfc588f126e1e36e98a45MD52THUMBNAIL29. Molecular analysis of several in-house rRT-PCR protocols for SARS-CoV-2 detection. Alvarez-Díaz et al 2020.pdf.jpg29. Molecular analysis of several in-house rRT-PCR protocols for SARS-CoV-2 detection. Alvarez-Díaz et al 2020.pdf.jpgGenerated Thumbnailimage/jpeg5514https://repository.ucc.edu.co/bitstreams/0141443c-bafa-4c77-b7ff-2db87fedf927/download111f5b8dde75d78c4576e4da302940cbMD53TEXT29. Molecular analysis of several in-house rRT-PCR protocols for SARS-CoV-2 detection. Alvarez-Díaz et al 2020.pdf.txt29. Molecular analysis of several in-house rRT-PCR protocols for SARS-CoV-2 detection. Alvarez-Díaz et al 2020.pdf.txtExtracted texttext/plain45545https://repository.ucc.edu.co/bitstreams/650e98f6-5e56-4326-ab2f-1a63dc403085/download6f1185d39e1ad5a8eb0dfadd7be0a539MD5420.500.12494/32691oai:repository.ucc.edu.co:20.500.12494/326912024-08-10 22:40:46.227restrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo=