Does high sugar intake really alter the oral microbiota?: A systematic review
https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001561382
- Autores:
-
Angarita-Díaz, María del Pilar
Universidad Cooperativa de Colombia
Fong, Cristian
Claudia, Bedoya-Correa
Claudia, Cabrera-Arango
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2022
- Institución:
- Universidad Cooperativa de Colombia
- Repositorio:
- Repositorio UCC
- Idioma:
- OAI Identifier:
- oai:repository.ucc.edu.co:20.500.12494/47568
- Acceso en línea:
- https://hdl.handle.net/20.500.12494/47568
- Palabra clave:
- microbiota oral
azúcar
caries
oral microbiota
sugar
caries
- Rights
- openAccess
- License
- Atribución
id |
COOPER2_e62e9ba509a5131a3162eb55763fb356 |
---|---|
oai_identifier_str |
oai:repository.ucc.edu.co:20.500.12494/47568 |
network_acronym_str |
COOPER2 |
network_name_str |
Repositorio UCC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Does high sugar intake really alter the oral microbiota?: A systematic review |
title |
Does high sugar intake really alter the oral microbiota?: A systematic review |
spellingShingle |
Does high sugar intake really alter the oral microbiota?: A systematic review microbiota oral azúcar caries oral microbiota sugar caries |
title_short |
Does high sugar intake really alter the oral microbiota?: A systematic review |
title_full |
Does high sugar intake really alter the oral microbiota?: A systematic review |
title_fullStr |
Does high sugar intake really alter the oral microbiota?: A systematic review |
title_full_unstemmed |
Does high sugar intake really alter the oral microbiota?: A systematic review |
title_sort |
Does high sugar intake really alter the oral microbiota?: A systematic review |
dc.creator.fl_str_mv |
Angarita-Díaz, María del Pilar Universidad Cooperativa de Colombia Fong, Cristian Claudia, Bedoya-Correa Claudia, Cabrera-Arango |
dc.contributor.advisor.none.fl_str_mv |
Clinical and Experimental Dental Research |
dc.contributor.author.none.fl_str_mv |
Angarita-Díaz, María del Pilar Universidad Cooperativa de Colombia Fong, Cristian Claudia, Bedoya-Correa Claudia, Cabrera-Arango |
dc.subject.spa.fl_str_mv |
microbiota oral azúcar caries |
topic |
microbiota oral azúcar caries oral microbiota sugar caries |
dc.subject.other.spa.fl_str_mv |
oral microbiota sugar caries |
description |
https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001561382 |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-12-18T23:06:59Z |
dc.date.available.none.fl_str_mv |
2022-12-18T23:06:59Z |
dc.date.issued.none.fl_str_mv |
2022-08-09 |
dc.type.none.fl_str_mv |
Artículos Científicos |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.uri.spa.fl_str_mv |
10.1002/cre2.640 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12494/47568 |
dc.identifier.bibliographicCitation.spa.fl_str_mv |
Angarita-Díaz MDP, Fong C, Bedoya-Correa CM, Cabrera-Arango CL. Does high sugar intake really alter the oral microbiota?: A systematic review. Clin Exp Dent Res. 2022. 8(6): 1376-1390 |
identifier_str_mv |
10.1002/cre2.640 Angarita-Díaz MDP, Fong C, Bedoya-Correa CM, Cabrera-Arango CL. Does high sugar intake really alter the oral microbiota?: A systematic review. Clin Exp Dent Res. 2022. 8(6): 1376-1390 |
url |
https://hdl.handle.net/20.500.12494/47568 |
dc.relation.ispartofjournal.spa.fl_str_mv |
Clinical and Experimental Dental Research |
dc.relation.references.spa.fl_str_mv |
Abranches, J., Zeng, L., Kajfasz, J. K., Palmer, S. R., Chakraborty, B., Wen, Z. T., Richards, V. P., Brady, L. J., & Lemos, J. A. (2018). Biology of oral Streptococci. Microbiology Spectrum, 6(5). https://doi.org/10.1128/microbiolspec.GPP3-0042-2018 Anderson, A. C., Rothballer, M., Altenburger, M. J., Woelber, J. P., Karygianni, L., Lagkouvardos, I., Hellwig, E., & Al-Ahmad, A. (2018). In-vivo shift of the microbiota in oral biofilm in response to frequent sucrose consumption. Scientific Reports, 8(1), 14202. Anderson, A. C., Rothballer, M., Altenburger, M. J., Woelber, J. P., Karygianni, L., Vach, K., Hellwig, E., & Al-Ahmad, A. (2020). Long-term fluctuation of oral biofilm microbiota following different dietary phases. Applied and Environmental Microbiology, 86(20), 01421–20. Anderson, C. A., Curzon, M. E., Van, L. C., Tatsi, C., & Duggal, M. S. (2009). Sucrose and dental caries: A review of the evidence. Obesity Reviews, 10(1), 41– 54. Arif, N., Sheehy, E. C., Do, T., & Beighton, D. (2008). Diversity of Veillonella spp. from sound and carious sites in children. Journal of Dental Research, 87(3), 278– 282. Chen, X., Hu, X., Fang, J., Sun, X., Zhu, F., Sun, Y., & Wang, Y. (2021). Association of oral microbiota profile with sugar-sweetened beverages consumption in school-aged children. International Journal of Food Sciences and Nutrition, 73(1), 1– 11. Dang, M. H., Jung, J. E., Choi, H. M., & Jeon, J. G. (2018). Difference in virulence and composition of a cariogenic biofilm according to substratum direction. Scientific Reports, 8(1), 6244. Du, Q., Fu, M., Zhou, Y., Cao, Y., Guo, T., Zhou, Z., Mingyun, L., Peng, X., Zheng, X., Li, Y., Xu, X., He, J., & Zhou, X. (2020). Sucrose promotes caries progression by disrupting the microecological balance in oral biofilms: An in vitro study. Scientific Reports, 10(1), 2961. Esberg, A., Eriksson, L., Hasslöf, P., Haworth, S., Holgerson, P. L., & Johansson, I. (2021). Using oral microbiota data to design a short sucrose intake index. Nutrients, 13(5), 1400. Esberg, A., Haworth, S., Hasslöf, P., Lif Holgerson, P., & Johansson, I. (2020). Oral microbiota profile associates with sugar intake and taste preference genes. Nutrients, 12(3), 681. Ferlazzo, N., Currò, M., Zinellu, A., Caccamo, D., Isola, G., Ventura, V., Carru, C., Matarese, G., & Ientile, R. (2017, March 29). Influence of MTHFR genetic background on p16 and MGMT methylation in oral squamous cell cancer. International Journal of Molecular Sciences, 18(4), 724. Gross, E. L., Beall, C. J., Kutsch, S. R., Firestone, N. D., Leys, E. J., & Griffen, A. L. (2012). Beyond Streptococcus mutans: Dental caries onset linked to multiple species by 16S rRNA community analysis. PLoS One, 7(10), 47722. https://doi.org/10.1371/journal.pone.0047722 Hao, W., Xu, H., Chen, X., Zhou, Q., Zhang, P., Chen, F., & Qin, M. (2015). Changes in dental plaque microbial richness and oral behavioral habits during caries development in young Chinese children. Caries Research, 49(2), 116– 123. https://doi.org/10.1159/000366505 Havsed, K., Stensson, M., Jansson, H., Carda-Diéguez, M., Pedersen, A., Neilands, J., Svensäter, G., & Mira, A. (2021). Bacterial composition and metabolomics of dental plaque from adolescents. Frontiers in Cellular and Infection Microbiology, 11, 716493. He, X. S., & Shi, W. Y. (2009). Oral microbiology: Past, present and future. International Journal Oral Science, 1, 47– 58. Hong, J., Whelton, H., Douglas, G., & Kang, J. (2018). Consumption frequency of added sugars and UK children's dental caries. Community Dentistry and Oral Epidemiology, 46(5), 457– 464. Hurley, E., Barrett, M. P. J., Kinirons, M., Whelton, H., Ryan, C. A., Stanton, C., Harris, H., & O'Toole, P. W. (2019). Comparison of the salivary and dentinal microbiome of children with severe-early childhood caries to the salivary microbiome of caries-free children. BMC Oral Health, 19(1), 13. Iebba, V., Totino, V., Gagliardi, A., Santangelo, F., Cacciotti, F., Trancassini, M., Mancini, C., Cicerone, C., Corazziari, E., Pantanella, F., & Schippa, S. (2016). Eubiosis and dysbiosis: The two sides of the microbiota. New Microbiologica, 39, 1– 12. Isola, G., Polizzi, A., Santonocito, S., Alibrandi, A., & Williams, R. C. (2022, January). Periodontitis activates the NLRP3 inflammasome in serum and saliva. Journal of Periodontology, 93(1), 135– 145. Jagathrakshakan, S. N., Sethumadhava, R. J., Mehta, D. T., & Ramanathan, A. (2015). 16S rRNA gene-based metagenomic analysis identifies a novel bacterial co-prevalence pattern in dental caries. European Journal Dentistry, 9(1), 127– 132. Kameda, M., Abiko, Y., Washio, J., Tanner, A. C. R., Kressirer, C. A., Mizoguchi, I., & Takahashi, N. (2020). Sugar metabolism of Scardovia wiggsiae, a novel caries-associated bacterium. Frontiers in Microbioliology, 11, 479. Keller, M. K., Kressirer, C. A., Belstrøm, D., Twetman, S., & Tanner, A. C. R. (2017). Oral microbial profiles of individuals with different levels of sugar intake. Journal of Oral Microbiology, 9(1), 1355207. Kuramitsu, H. K., & Wang, B. Y. (2006). Virulence properties of cariogenic bacteria. BMC Oral health, 6(1), S11. Lamont, R. J., Koo, H., & Hajishengallis, G. (2018). The oral microbiota: Dynamic communities and host interactions. Nature Reviews Microbiology, 16(12), 745– 759. Lapirattanakul, J., Nomura, R., Okawa, R., Morimoto, S., Tantivitayakul, P., Maudcheingka, T., Nakano, K., & Matsumoto-Nakano, M. (2020). Oral Lactobacilli related to caries status of children with primary dentition. Caries Research, 54, 194– 204. Li, S., Huang, S., Guo, Y., Zhang, Y., Zhang, L., Li, F., Tan, K., Lu, J., Chen, Z., Guo, Q., Tang, Y., Teng, F., & Yang, F. (2021). Geographic variation did not affect the predictive power of salivary microbiota for caries in children with mixed dentition. Frontiers in Cellullar and Infection Microbiology, 11, 680288. Li, Y., Ge, Y., Saxena, D., & Caufield, P. W. (2007). Genetic profiling of the oral microbiota associated with severe early-childhood caries. Journal of Clinical Microbiology, 45, 81– 87. Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gotzsche, P. C., Ioannidis, J. P. A., Clarke, M., Devereaux, P. J., Kleijnen, J., & Moher, D. (2009). The PRISMA statement for reporting systematic reviews and meta-analysis of studies that evaluate health care interventions: Explanation and elaboration. BMJ, 339, b2700. Lommi, S., Manzoor, M., Engberg, E., Agrawal, N., Lakka, T. A., Leinonen, J., Kolho, K. L., & Viljakainen, H. (2022). The composition and functional capacities of saliva microbiota differ between children with low and high sweet treat consumption. Frontiers in Nutrition, 9, 864687. Mager, D. L., Ximenez-Fyvie, L. A., Haffajee, A. D., & Socransky, S. S. (2003). Distribution of selected bacterial species on intraoral surfaces. Journal of Clinical Periodontology, 30, 644– 654. Manzoor, M., Lommi, S., Furuholm, J., Sarkkola, C., Engberg, E., Raju, S., & Viljakainen, H. (2021). High abundance of sugar metabolisers in saliva of children with caries. Scientific Reports, 11, 4424. Marsh, P. D. (2006). Dental plaque as a biofilm and a microbial community—Implications for health and disease. BMC Oral Health, 6(1), S14 McDaniel, S., McDaniel, J., Howard, K. M., & Kingsley, K. (2021). Molecular screening and analysis reveal novel oral site-specific locations for the cariogenic pathogen Scardovia wiggsiae. Dentistry Journal, 9(6), 73. Minah, G. E., Lovekin, G. B., & Finney, J. P. (1981). Sucrose-induced ecological response of experimental dental plaques from caries-free and caries-susceptible human volunteers. Infection and Immunity, 34(3), 662– 675 Minty, M., Canceill, T., Lê, S., Dubois, P., Amestoy, O., Loubieres, P., Christensen, J. E., Champion, C., Azalbert, V., Grasset, E., Hardy, S., Loubes, J. M., Mallet, J. P., Tercé, F., Vergnes, J. N., Burcelin, R., Serino, M., Diemer, F., & Blasco-Baque, V. (2018). Oral health and microbiota status in professional rugby players: A case–control study. Journal of Dentistry, 79, 53– 60. Moynihan, P. J., & Kelly, S. A. (2014). Effect on caries of restricting sugars intake: Systematic review to inform WHO guidelines. Journal of Dental Research, 93(1), 8– 18. Nyvad, B., & Takahashi, N. (2020). Integrated hypothesis of dental caries and periodontal diseases. Journal of Oral Microbiology, 12(1), 1710953. Philip, N., Suneja, B., & Walsh, L. J. (2018). Ecological approaches to dental caries prevention: Paradigm shift or shibboleth. Caries Research, 52(1–2), 153– 165. Prabhu Matondkar, S., Yavagal, C., Kugaji, M., & Bhat, K. G. (2020). Quantitative assessment of Scardovia wiggsiae from dental plaque samples of children suffering from severe early childhood caries and caries free children. Anaerobe, 62, 102110. Ravikumar, D., Ramani, P., & Gayathri, R. (2021). Genotypic diversity of Streptococcus mutans in children with and without early childhood caries—A systematic review. Journal of Oral Biolology and Craniofacial Research, 11(2), 308– 312. Rosier, B. T., Marsh, P. D., & Mira, A. (2018). Resilience of the oral microbiota in health: Mechanisms that prevent dysbiosis. Journal of Dental Research, 97, 371– 380. Shi, C., Cai, L., Xun, Z., Zheng, S., Shao, F., Wang, B., Zhu, R., & He, Y. (2021). Metagenomic analysis of the salivary microbiota in patients with caries, periodontitis and comorbid diseases. Journal of Dental Sciences, 16(4), 1264– 1273 Simón-Soro, A., & Mira, A. (2015). Solving the etiology of dental caries. Trends in Microbiology, 23(2), 76– 82. Stang, A. (2010). Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. European Journal of Epidemiology, 25(9), 603– 605. Tang, G., Samaranayake, L. P., Yip, H. K., Chu, F. C., Tsang, P. C., & Cheung, B. P. (2003). Direct detection of Actinomyces spp. from infected root canals in a Chinese population: A study using PCR-based, oligonucleotide-DNA hybridization technique. Journal of Dentistry, 31, 559– 568. Tanzer, J. M., Thompson, A. M., Grant, L. P., Vickerman, M. M., & Scannapieco, F. A. (2008). Streptococcus gordonii's sequenced strain CH1 glucosyltransferase determines persistent but not initial colonization of teeth of rats. Archives of Oral Biology, 53(2), 133– 140. Tian, J., Qin, M., Ma, W., Xia, B., Xu, H., Zhang, Q., & Chen, F. (2015). Microbiome interaction with sugar plays an important role in relapse of childhood caries. Biochemical and Biophysical Research Communications, 468(1–2), 294– 299. Tinanoff, N., & Palmer, C. A. (2000). Dietary determinants of dental caries and dietary recommendations for preschool children. Journal of Public Health Dentistry, 60(3), 197– 206. Touger-Decker, R., & van Loveren, C. (2003). Sugars and dental caries. The American Journal of Clinical Nutrition, 78(4), 881S– 892S Wang, Y., Wang, S., Wu, C., Chen, X., Duan, Z., Xu, Q., Jiang, W., Xu, L., Wang, T., Su, L., Wang, Y., Chen, Y., Zhang, J., Huang, Y., Tong, S., Zhou, C., Deng, S., & Qin, N. (2019). Oral microbiome alterations associated with early childhood caries highlight the importance of carbohydrate metabolic activities. mSystems, 4(6), e00450-19. World Health Organization (WHO). (2015). Guideline: Sugars intake for adults and children. https://www.who.int/publications/i/item/9789241549028 Xu, L., Chen, X., Wang, Y., Jiang, W., Wang, S., Ling, Z., & Chen, H. (2018). Dynamic alterations in salivary microbiota related to dental caries and age in preschool children with deciduous dentition: A 2-year follow-up study. Frontiers in Physiology, 4(9), 342. Zhu, H., Willcox, M. D., Green, R. M., & Knox, K. W. (1997). Effect of different diets on oral bacteria and caries activity in Sprague–Dawley rats. Microbios, 91(367), 105– 120. |
dc.rights.license.none.fl_str_mv |
Atribución |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
1376-1390 |
dc.coverage.temporal.spa.fl_str_mv |
8 |
dc.publisher.spa.fl_str_mv |
Universidad Cooperativa de Colombia |
dc.publisher.program.spa.fl_str_mv |
Odontología |
dc.publisher.place.spa.fl_str_mv |
Villavicencio |
institution |
Universidad Cooperativa de Colombia |
bitstream.url.fl_str_mv |
https://repository.ucc.edu.co/bitstreams/40b92744-2cf0-419a-889e-37af690a584b/download https://repository.ucc.edu.co/bitstreams/b27d6f37-f3a0-4d67-803d-1f4da2d77c2d/download https://repository.ucc.edu.co/bitstreams/41f89aea-1920-4767-a07b-193b3d614ea7/download https://repository.ucc.edu.co/bitstreams/5353f12e-9dec-4674-8486-4f9969b97527/download https://repository.ucc.edu.co/bitstreams/b8a75631-3fe9-4698-94a9-d0fb0765676e/download https://repository.ucc.edu.co/bitstreams/ad9c1cf4-dd9e-4a77-8038-b44b7078b61f/download https://repository.ucc.edu.co/bitstreams/61ed3e58-6428-4602-9cdd-ccf450527ead/download |
bitstream.checksum.fl_str_mv |
1b50bc5b482b1370a4892fb771d4a621 83287e9e78efdbc711062c299723c9ca 8a4605be74aa9ea9d79846c1fba20a33 1c5c0022f18c98e8b865dbab33ba2292 1e4226b86df01c6d63e8dbe423b6fcfd 74131155957e8a88da7436d527b67e24 faaa0028849743adb777931e02522502 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Cooperativa de Colombia |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1811565650900942848 |
spelling |
Clinical and Experimental Dental ResearchAngarita-Díaz, María del PilarUniversidad Cooperativa de ColombiaFong, CristianClaudia, Bedoya-CorreaClaudia, Cabrera-Arango82022-12-18T23:06:59Z2022-12-18T23:06:59Z2022-08-0910.1002/cre2.640https://hdl.handle.net/20.500.12494/47568Angarita-Díaz MDP, Fong C, Bedoya-Correa CM, Cabrera-Arango CL. Does high sugar intake really alter the oral microbiota?: A systematic review. Clin Exp Dent Res. 2022. 8(6): 1376-13901376-1390Universidad Cooperativa de ColombiaOdontologíaVillavicenciomicrobiota oralazúcarcariesoral microbiotasugarcariesDoes high sugar intake really alter the oral microbiota?: A systematic reviewArtículos Científicoshttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionAtribucióninfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=00015613820000-0002-5435-3456GIOMETmaria.angaritad@campusucc.edu.coClinical and Experimental Dental ResearchAbranches, J., Zeng, L., Kajfasz, J. K., Palmer, S. R., Chakraborty, B., Wen, Z. T., Richards, V. P., Brady, L. J., & Lemos, J. A. (2018). Biology of oral Streptococci. Microbiology Spectrum, 6(5). https://doi.org/10.1128/microbiolspec.GPP3-0042-2018Anderson, A. C., Rothballer, M., Altenburger, M. J., Woelber, J. P., Karygianni, L., Lagkouvardos, I., Hellwig, E., & Al-Ahmad, A. (2018). In-vivo shift of the microbiota in oral biofilm in response to frequent sucrose consumption. Scientific Reports, 8(1), 14202.Anderson, A. C., Rothballer, M., Altenburger, M. J., Woelber, J. P., Karygianni, L., Vach, K., Hellwig, E., & Al-Ahmad, A. (2020). Long-term fluctuation of oral biofilm microbiota following different dietary phases. Applied and Environmental Microbiology, 86(20), 01421–20.Anderson, C. A., Curzon, M. E., Van, L. C., Tatsi, C., & Duggal, M. S. (2009). Sucrose and dental caries: A review of the evidence. Obesity Reviews, 10(1), 41– 54.Arif, N., Sheehy, E. C., Do, T., & Beighton, D. (2008). Diversity of Veillonella spp. from sound and carious sites in children. Journal of Dental Research, 87(3), 278– 282.Chen, X., Hu, X., Fang, J., Sun, X., Zhu, F., Sun, Y., & Wang, Y. (2021). Association of oral microbiota profile with sugar-sweetened beverages consumption in school-aged children. International Journal of Food Sciences and Nutrition, 73(1), 1– 11.Dang, M. H., Jung, J. E., Choi, H. M., & Jeon, J. G. (2018). Difference in virulence and composition of a cariogenic biofilm according to substratum direction. Scientific Reports, 8(1), 6244.Du, Q., Fu, M., Zhou, Y., Cao, Y., Guo, T., Zhou, Z., Mingyun, L., Peng, X., Zheng, X., Li, Y., Xu, X., He, J., & Zhou, X. (2020). Sucrose promotes caries progression by disrupting the microecological balance in oral biofilms: An in vitro study. Scientific Reports, 10(1), 2961.Esberg, A., Eriksson, L., Hasslöf, P., Haworth, S., Holgerson, P. L., & Johansson, I. (2021). Using oral microbiota data to design a short sucrose intake index. Nutrients, 13(5), 1400.Esberg, A., Haworth, S., Hasslöf, P., Lif Holgerson, P., & Johansson, I. (2020). Oral microbiota profile associates with sugar intake and taste preference genes. Nutrients, 12(3), 681.Ferlazzo, N., Currò, M., Zinellu, A., Caccamo, D., Isola, G., Ventura, V., Carru, C., Matarese, G., & Ientile, R. (2017, March 29). Influence of MTHFR genetic background on p16 and MGMT methylation in oral squamous cell cancer. International Journal of Molecular Sciences, 18(4), 724.Gross, E. L., Beall, C. J., Kutsch, S. R., Firestone, N. D., Leys, E. J., & Griffen, A. L. (2012). Beyond Streptococcus mutans: Dental caries onset linked to multiple species by 16S rRNA community analysis. PLoS One, 7(10), 47722. https://doi.org/10.1371/journal.pone.0047722Hao, W., Xu, H., Chen, X., Zhou, Q., Zhang, P., Chen, F., & Qin, M. (2015). Changes in dental plaque microbial richness and oral behavioral habits during caries development in young Chinese children. Caries Research, 49(2), 116– 123. https://doi.org/10.1159/000366505Havsed, K., Stensson, M., Jansson, H., Carda-Diéguez, M., Pedersen, A., Neilands, J., Svensäter, G., & Mira, A. (2021). Bacterial composition and metabolomics of dental plaque from adolescents. Frontiers in Cellular and Infection Microbiology, 11, 716493.He, X. S., & Shi, W. Y. (2009). Oral microbiology: Past, present and future. International Journal Oral Science, 1, 47– 58.Hong, J., Whelton, H., Douglas, G., & Kang, J. (2018). Consumption frequency of added sugars and UK children's dental caries. Community Dentistry and Oral Epidemiology, 46(5), 457– 464.Hurley, E., Barrett, M. P. J., Kinirons, M., Whelton, H., Ryan, C. A., Stanton, C., Harris, H., & O'Toole, P. W. (2019). Comparison of the salivary and dentinal microbiome of children with severe-early childhood caries to the salivary microbiome of caries-free children. BMC Oral Health, 19(1), 13.Iebba, V., Totino, V., Gagliardi, A., Santangelo, F., Cacciotti, F., Trancassini, M., Mancini, C., Cicerone, C., Corazziari, E., Pantanella, F., & Schippa, S. (2016). Eubiosis and dysbiosis: The two sides of the microbiota. New Microbiologica, 39, 1– 12.Isola, G., Polizzi, A., Santonocito, S., Alibrandi, A., & Williams, R. C. (2022, January). Periodontitis activates the NLRP3 inflammasome in serum and saliva. Journal of Periodontology, 93(1), 135– 145.Jagathrakshakan, S. N., Sethumadhava, R. J., Mehta, D. T., & Ramanathan, A. (2015). 16S rRNA gene-based metagenomic analysis identifies a novel bacterial co-prevalence pattern in dental caries. European Journal Dentistry, 9(1), 127– 132.Kameda, M., Abiko, Y., Washio, J., Tanner, A. C. R., Kressirer, C. A., Mizoguchi, I., & Takahashi, N. (2020). Sugar metabolism of Scardovia wiggsiae, a novel caries-associated bacterium. Frontiers in Microbioliology, 11, 479.Keller, M. K., Kressirer, C. A., Belstrøm, D., Twetman, S., & Tanner, A. C. R. (2017). Oral microbial profiles of individuals with different levels of sugar intake. Journal of Oral Microbiology, 9(1), 1355207.Kuramitsu, H. K., & Wang, B. Y. (2006). Virulence properties of cariogenic bacteria. BMC Oral health, 6(1), S11.Lamont, R. J., Koo, H., & Hajishengallis, G. (2018). The oral microbiota: Dynamic communities and host interactions. Nature Reviews Microbiology, 16(12), 745– 759.Lapirattanakul, J., Nomura, R., Okawa, R., Morimoto, S., Tantivitayakul, P., Maudcheingka, T., Nakano, K., & Matsumoto-Nakano, M. (2020). Oral Lactobacilli related to caries status of children with primary dentition. Caries Research, 54, 194– 204.Li, S., Huang, S., Guo, Y., Zhang, Y., Zhang, L., Li, F., Tan, K., Lu, J., Chen, Z., Guo, Q., Tang, Y., Teng, F., & Yang, F. (2021). Geographic variation did not affect the predictive power of salivary microbiota for caries in children with mixed dentition. Frontiers in Cellullar and Infection Microbiology, 11, 680288.Li, Y., Ge, Y., Saxena, D., & Caufield, P. W. (2007). Genetic profiling of the oral microbiota associated with severe early-childhood caries. Journal of Clinical Microbiology, 45, 81– 87.Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gotzsche, P. C., Ioannidis, J. P. A., Clarke, M., Devereaux, P. J., Kleijnen, J., & Moher, D. (2009). The PRISMA statement for reporting systematic reviews and meta-analysis of studies that evaluate health care interventions: Explanation and elaboration. BMJ, 339, b2700.Lommi, S., Manzoor, M., Engberg, E., Agrawal, N., Lakka, T. A., Leinonen, J., Kolho, K. L., & Viljakainen, H. (2022). The composition and functional capacities of saliva microbiota differ between children with low and high sweet treat consumption. Frontiers in Nutrition, 9, 864687.Mager, D. L., Ximenez-Fyvie, L. A., Haffajee, A. D., & Socransky, S. S. (2003). Distribution of selected bacterial species on intraoral surfaces. Journal of Clinical Periodontology, 30, 644– 654.Manzoor, M., Lommi, S., Furuholm, J., Sarkkola, C., Engberg, E., Raju, S., & Viljakainen, H. (2021). High abundance of sugar metabolisers in saliva of children with caries. Scientific Reports, 11, 4424.Marsh, P. D. (2006). Dental plaque as a biofilm and a microbial community—Implications for health and disease. BMC Oral Health, 6(1), S14McDaniel, S., McDaniel, J., Howard, K. M., & Kingsley, K. (2021). Molecular screening and analysis reveal novel oral site-specific locations for the cariogenic pathogen Scardovia wiggsiae. Dentistry Journal, 9(6), 73.Minah, G. E., Lovekin, G. B., & Finney, J. P. (1981). Sucrose-induced ecological response of experimental dental plaques from caries-free and caries-susceptible human volunteers. Infection and Immunity, 34(3), 662– 675Minty, M., Canceill, T., Lê, S., Dubois, P., Amestoy, O., Loubieres, P., Christensen, J. E., Champion, C., Azalbert, V., Grasset, E., Hardy, S., Loubes, J. M., Mallet, J. P., Tercé, F., Vergnes, J. N., Burcelin, R., Serino, M., Diemer, F., & Blasco-Baque, V. (2018). Oral health and microbiota status in professional rugby players: A case–control study. Journal of Dentistry, 79, 53– 60.Moynihan, P. J., & Kelly, S. A. (2014). Effect on caries of restricting sugars intake: Systematic review to inform WHO guidelines. Journal of Dental Research, 93(1), 8– 18.Nyvad, B., & Takahashi, N. (2020). Integrated hypothesis of dental caries and periodontal diseases. Journal of Oral Microbiology, 12(1), 1710953.Philip, N., Suneja, B., & Walsh, L. J. (2018). Ecological approaches to dental caries prevention: Paradigm shift or shibboleth. Caries Research, 52(1–2), 153– 165.Prabhu Matondkar, S., Yavagal, C., Kugaji, M., & Bhat, K. G. (2020). Quantitative assessment of Scardovia wiggsiae from dental plaque samples of children suffering from severe early childhood caries and caries free children. Anaerobe, 62, 102110.Ravikumar, D., Ramani, P., & Gayathri, R. (2021). Genotypic diversity of Streptococcus mutans in children with and without early childhood caries—A systematic review. Journal of Oral Biolology and Craniofacial Research, 11(2), 308– 312.Rosier, B. T., Marsh, P. D., & Mira, A. (2018). Resilience of the oral microbiota in health: Mechanisms that prevent dysbiosis. Journal of Dental Research, 97, 371– 380.Shi, C., Cai, L., Xun, Z., Zheng, S., Shao, F., Wang, B., Zhu, R., & He, Y. (2021). Metagenomic analysis of the salivary microbiota in patients with caries, periodontitis and comorbid diseases. Journal of Dental Sciences, 16(4), 1264– 1273Simón-Soro, A., & Mira, A. (2015). Solving the etiology of dental caries. Trends in Microbiology, 23(2), 76– 82.Stang, A. (2010). Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. European Journal of Epidemiology, 25(9), 603– 605.Tang, G., Samaranayake, L. P., Yip, H. K., Chu, F. C., Tsang, P. C., & Cheung, B. P. (2003). Direct detection of Actinomyces spp. from infected root canals in a Chinese population: A study using PCR-based, oligonucleotide-DNA hybridization technique. Journal of Dentistry, 31, 559– 568.Tanzer, J. M., Thompson, A. M., Grant, L. P., Vickerman, M. M., & Scannapieco, F. A. (2008). Streptococcus gordonii's sequenced strain CH1 glucosyltransferase determines persistent but not initial colonization of teeth of rats. Archives of Oral Biology, 53(2), 133– 140.Tian, J., Qin, M., Ma, W., Xia, B., Xu, H., Zhang, Q., & Chen, F. (2015). Microbiome interaction with sugar plays an important role in relapse of childhood caries. Biochemical and Biophysical Research Communications, 468(1–2), 294– 299.Tinanoff, N., & Palmer, C. A. (2000). Dietary determinants of dental caries and dietary recommendations for preschool children. Journal of Public Health Dentistry, 60(3), 197– 206.Touger-Decker, R., & van Loveren, C. (2003). Sugars and dental caries. The American Journal of Clinical Nutrition, 78(4), 881S– 892SWang, Y., Wang, S., Wu, C., Chen, X., Duan, Z., Xu, Q., Jiang, W., Xu, L., Wang, T., Su, L., Wang, Y., Chen, Y., Zhang, J., Huang, Y., Tong, S., Zhou, C., Deng, S., & Qin, N. (2019). Oral microbiome alterations associated with early childhood caries highlight the importance of carbohydrate metabolic activities. mSystems, 4(6), e00450-19.World Health Organization (WHO). (2015). Guideline: Sugars intake for adults and children. https://www.who.int/publications/i/item/9789241549028Xu, L., Chen, X., Wang, Y., Jiang, W., Wang, S., Ling, Z., & Chen, H. (2018). Dynamic alterations in salivary microbiota related to dental caries and age in preschool children with deciduous dentition: A 2-year follow-up study. Frontiers in Physiology, 4(9), 342.Zhu, H., Willcox, M. D., Green, R. M., & Knox, K. W. (1997). Effect of different diets on oral bacteria and caries activity in Sprague–Dawley rats. Microbios, 91(367), 105– 120.PublicationORIGINALLicencia de uso RI Ver5 Does high.pdfLicencia de uso RI Ver5 Does high.pdfLicenciaapplication/pdf231542https://repository.ucc.edu.co/bitstreams/40b92744-2cf0-419a-889e-37af690a584b/download1b50bc5b482b1370a4892fb771d4a621MD512022_Does high sugar intake really alter the oral microbiota.pdf2022_Does high sugar intake really alter the oral microbiota.pdfapplication/pdf1497113https://repository.ucc.edu.co/bitstreams/b27d6f37-f3a0-4d67-803d-1f4da2d77c2d/download83287e9e78efdbc711062c299723c9caMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repository.ucc.edu.co/bitstreams/41f89aea-1920-4767-a07b-193b3d614ea7/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILLicencia de uso RI Ver5 Does high.pdf.jpgLicencia de uso RI Ver5 Does high.pdf.jpgGenerated Thumbnailimage/jpeg5010https://repository.ucc.edu.co/bitstreams/5353f12e-9dec-4674-8486-4f9969b97527/download1c5c0022f18c98e8b865dbab33ba2292MD542022_Does high sugar intake really alter the oral microbiota.pdf.jpg2022_Does high sugar intake really alter the oral microbiota.pdf.jpgGenerated Thumbnailimage/jpeg5730https://repository.ucc.edu.co/bitstreams/b8a75631-3fe9-4698-94a9-d0fb0765676e/download1e4226b86df01c6d63e8dbe423b6fcfdMD55TEXTLicencia de uso RI Ver5 Does high.pdf.txtLicencia de uso RI Ver5 Does high.pdf.txtExtracted texttext/plain6142https://repository.ucc.edu.co/bitstreams/ad9c1cf4-dd9e-4a77-8038-b44b7078b61f/download74131155957e8a88da7436d527b67e24MD562022_Does high sugar intake really alter the oral microbiota.pdf.txt2022_Does high sugar intake really alter the oral microbiota.pdf.txtExtracted texttext/plain79844https://repository.ucc.edu.co/bitstreams/61ed3e58-6428-4602-9cdd-ccf450527ead/downloadfaaa0028849743adb777931e02522502MD5720.500.12494/47568oai:repository.ucc.edu.co:20.500.12494/475682024-08-20 16:24:12.601open.accesshttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |