Does high sugar intake really alter the oral microbiota?: A systematic review

https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001561382

Autores:
Angarita-Díaz, María del Pilar
Universidad Cooperativa de Colombia
Fong, Cristian
Claudia, Bedoya-Correa
Claudia, Cabrera-Arango
Tipo de recurso:
Article of investigation
Fecha de publicación:
2022
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/47568
Acceso en línea:
https://hdl.handle.net/20.500.12494/47568
Palabra clave:
microbiota oral
azúcar
caries
oral microbiota
sugar
caries
Rights
openAccess
License
Atribución
id COOPER2_e62e9ba509a5131a3162eb55763fb356
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/47568
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.spa.fl_str_mv Does high sugar intake really alter the oral microbiota?: A systematic review
title Does high sugar intake really alter the oral microbiota?: A systematic review
spellingShingle Does high sugar intake really alter the oral microbiota?: A systematic review
microbiota oral
azúcar
caries
oral microbiota
sugar
caries
title_short Does high sugar intake really alter the oral microbiota?: A systematic review
title_full Does high sugar intake really alter the oral microbiota?: A systematic review
title_fullStr Does high sugar intake really alter the oral microbiota?: A systematic review
title_full_unstemmed Does high sugar intake really alter the oral microbiota?: A systematic review
title_sort Does high sugar intake really alter the oral microbiota?: A systematic review
dc.creator.fl_str_mv Angarita-Díaz, María del Pilar
Universidad Cooperativa de Colombia
Fong, Cristian
Claudia, Bedoya-Correa
Claudia, Cabrera-Arango
dc.contributor.advisor.none.fl_str_mv Clinical and Experimental Dental Research
dc.contributor.author.none.fl_str_mv Angarita-Díaz, María del Pilar
Universidad Cooperativa de Colombia
Fong, Cristian
Claudia, Bedoya-Correa
Claudia, Cabrera-Arango
dc.subject.spa.fl_str_mv microbiota oral
azúcar
caries
topic microbiota oral
azúcar
caries
oral microbiota
sugar
caries
dc.subject.other.spa.fl_str_mv oral microbiota
sugar
caries
description https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001561382
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-12-18T23:06:59Z
dc.date.available.none.fl_str_mv 2022-12-18T23:06:59Z
dc.date.issued.none.fl_str_mv 2022-08-09
dc.type.none.fl_str_mv Artículos Científicos
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.uri.spa.fl_str_mv 10.1002/cre2.640
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12494/47568
dc.identifier.bibliographicCitation.spa.fl_str_mv Angarita-Díaz MDP, Fong C, Bedoya-Correa CM, Cabrera-Arango CL. Does high sugar intake really alter the oral microbiota?: A systematic review. Clin Exp Dent Res. 2022. 8(6): 1376-1390
identifier_str_mv 10.1002/cre2.640
Angarita-Díaz MDP, Fong C, Bedoya-Correa CM, Cabrera-Arango CL. Does high sugar intake really alter the oral microbiota?: A systematic review. Clin Exp Dent Res. 2022. 8(6): 1376-1390
url https://hdl.handle.net/20.500.12494/47568
dc.relation.ispartofjournal.spa.fl_str_mv Clinical and Experimental Dental Research
dc.relation.references.spa.fl_str_mv Abranches, J., Zeng, L., Kajfasz, J. K., Palmer, S. R., Chakraborty, B., Wen, Z. T., Richards, V. P., Brady, L. J., & Lemos, J. A. (2018). Biology of oral Streptococci. Microbiology Spectrum, 6(5). https://doi.org/10.1128/microbiolspec.GPP3-0042-2018
Anderson, A. C., Rothballer, M., Altenburger, M. J., Woelber, J. P., Karygianni, L., Lagkouvardos, I., Hellwig, E., & Al-Ahmad, A. (2018). In-vivo shift of the microbiota in oral biofilm in response to frequent sucrose consumption. Scientific Reports, 8(1), 14202.
Anderson, A. C., Rothballer, M., Altenburger, M. J., Woelber, J. P., Karygianni, L., Vach, K., Hellwig, E., & Al-Ahmad, A. (2020). Long-term fluctuation of oral biofilm microbiota following different dietary phases. Applied and Environmental Microbiology, 86(20), 01421–20.
Anderson, C. A., Curzon, M. E., Van, L. C., Tatsi, C., & Duggal, M. S. (2009). Sucrose and dental caries: A review of the evidence. Obesity Reviews, 10(1), 41– 54.
Arif, N., Sheehy, E. C., Do, T., & Beighton, D. (2008). Diversity of Veillonella spp. from sound and carious sites in children. Journal of Dental Research, 87(3), 278– 282.
Chen, X., Hu, X., Fang, J., Sun, X., Zhu, F., Sun, Y., & Wang, Y. (2021). Association of oral microbiota profile with sugar-sweetened beverages consumption in school-aged children. International Journal of Food Sciences and Nutrition, 73(1), 1– 11.
Dang, M. H., Jung, J. E., Choi, H. M., & Jeon, J. G. (2018). Difference in virulence and composition of a cariogenic biofilm according to substratum direction. Scientific Reports, 8(1), 6244.
Du, Q., Fu, M., Zhou, Y., Cao, Y., Guo, T., Zhou, Z., Mingyun, L., Peng, X., Zheng, X., Li, Y., Xu, X., He, J., & Zhou, X. (2020). Sucrose promotes caries progression by disrupting the microecological balance in oral biofilms: An in vitro study. Scientific Reports, 10(1), 2961.
Esberg, A., Eriksson, L., Hasslöf, P., Haworth, S., Holgerson, P. L., & Johansson, I. (2021). Using oral microbiota data to design a short sucrose intake index. Nutrients, 13(5), 1400.
Esberg, A., Haworth, S., Hasslöf, P., Lif Holgerson, P., & Johansson, I. (2020). Oral microbiota profile associates with sugar intake and taste preference genes. Nutrients, 12(3), 681.
Ferlazzo, N., Currò, M., Zinellu, A., Caccamo, D., Isola, G., Ventura, V., Carru, C., Matarese, G., & Ientile, R. (2017, March 29). Influence of MTHFR genetic background on p16 and MGMT methylation in oral squamous cell cancer. International Journal of Molecular Sciences, 18(4), 724.
Gross, E. L., Beall, C. J., Kutsch, S. R., Firestone, N. D., Leys, E. J., & Griffen, A. L. (2012). Beyond Streptococcus mutans: Dental caries onset linked to multiple species by 16S rRNA community analysis. PLoS One, 7(10), 47722. https://doi.org/10.1371/journal.pone.0047722
Hao, W., Xu, H., Chen, X., Zhou, Q., Zhang, P., Chen, F., & Qin, M. (2015). Changes in dental plaque microbial richness and oral behavioral habits during caries development in young Chinese children. Caries Research, 49(2), 116– 123. https://doi.org/10.1159/000366505
Havsed, K., Stensson, M., Jansson, H., Carda-Diéguez, M., Pedersen, A., Neilands, J., Svensäter, G., & Mira, A. (2021). Bacterial composition and metabolomics of dental plaque from adolescents. Frontiers in Cellular and Infection Microbiology, 11, 716493.
He, X. S., & Shi, W. Y. (2009). Oral microbiology: Past, present and future. International Journal Oral Science, 1, 47– 58.
Hong, J., Whelton, H., Douglas, G., & Kang, J. (2018). Consumption frequency of added sugars and UK children's dental caries. Community Dentistry and Oral Epidemiology, 46(5), 457– 464.
Hurley, E., Barrett, M. P. J., Kinirons, M., Whelton, H., Ryan, C. A., Stanton, C., Harris, H., & O'Toole, P. W. (2019). Comparison of the salivary and dentinal microbiome of children with severe-early childhood caries to the salivary microbiome of caries-free children. BMC Oral Health, 19(1), 13.
Iebba, V., Totino, V., Gagliardi, A., Santangelo, F., Cacciotti, F., Trancassini, M., Mancini, C., Cicerone, C., Corazziari, E., Pantanella, F., & Schippa, S. (2016). Eubiosis and dysbiosis: The two sides of the microbiota. New Microbiologica, 39, 1– 12.
Isola, G., Polizzi, A., Santonocito, S., Alibrandi, A., & Williams, R. C. (2022, January). Periodontitis activates the NLRP3 inflammasome in serum and saliva. Journal of Periodontology, 93(1), 135– 145.
Jagathrakshakan, S. N., Sethumadhava, R. J., Mehta, D. T., & Ramanathan, A. (2015). 16S rRNA gene-based metagenomic analysis identifies a novel bacterial co-prevalence pattern in dental caries. European Journal Dentistry, 9(1), 127– 132.
Kameda, M., Abiko, Y., Washio, J., Tanner, A. C. R., Kressirer, C. A., Mizoguchi, I., & Takahashi, N. (2020). Sugar metabolism of Scardovia wiggsiae, a novel caries-associated bacterium. Frontiers in Microbioliology, 11, 479.
Keller, M. K., Kressirer, C. A., Belstrøm, D., Twetman, S., & Tanner, A. C. R. (2017). Oral microbial profiles of individuals with different levels of sugar intake. Journal of Oral Microbiology, 9(1), 1355207.
Kuramitsu, H. K., & Wang, B. Y. (2006). Virulence properties of cariogenic bacteria. BMC Oral health, 6(1), S11.
Lamont, R. J., Koo, H., & Hajishengallis, G. (2018). The oral microbiota: Dynamic communities and host interactions. Nature Reviews Microbiology, 16(12), 745– 759.
Lapirattanakul, J., Nomura, R., Okawa, R., Morimoto, S., Tantivitayakul, P., Maudcheingka, T., Nakano, K., & Matsumoto-Nakano, M. (2020). Oral Lactobacilli related to caries status of children with primary dentition. Caries Research, 54, 194– 204.
Li, S., Huang, S., Guo, Y., Zhang, Y., Zhang, L., Li, F., Tan, K., Lu, J., Chen, Z., Guo, Q., Tang, Y., Teng, F., & Yang, F. (2021). Geographic variation did not affect the predictive power of salivary microbiota for caries in children with mixed dentition. Frontiers in Cellullar and Infection Microbiology, 11, 680288.
Li, Y., Ge, Y., Saxena, D., & Caufield, P. W. (2007). Genetic profiling of the oral microbiota associated with severe early-childhood caries. Journal of Clinical Microbiology, 45, 81– 87.
Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gotzsche, P. C., Ioannidis, J. P. A., Clarke, M., Devereaux, P. J., Kleijnen, J., & Moher, D. (2009). The PRISMA statement for reporting systematic reviews and meta-analysis of studies that evaluate health care interventions: Explanation and elaboration. BMJ, 339, b2700.
Lommi, S., Manzoor, M., Engberg, E., Agrawal, N., Lakka, T. A., Leinonen, J., Kolho, K. L., & Viljakainen, H. (2022). The composition and functional capacities of saliva microbiota differ between children with low and high sweet treat consumption. Frontiers in Nutrition, 9, 864687.
Mager, D. L., Ximenez-Fyvie, L. A., Haffajee, A. D., & Socransky, S. S. (2003). Distribution of selected bacterial species on intraoral surfaces. Journal of Clinical Periodontology, 30, 644– 654.
Manzoor, M., Lommi, S., Furuholm, J., Sarkkola, C., Engberg, E., Raju, S., & Viljakainen, H. (2021). High abundance of sugar metabolisers in saliva of children with caries. Scientific Reports, 11, 4424.
Marsh, P. D. (2006). Dental plaque as a biofilm and a microbial community—Implications for health and disease. BMC Oral Health, 6(1), S14
McDaniel, S., McDaniel, J., Howard, K. M., & Kingsley, K. (2021). Molecular screening and analysis reveal novel oral site-specific locations for the cariogenic pathogen Scardovia wiggsiae. Dentistry Journal, 9(6), 73.
Minah, G. E., Lovekin, G. B., & Finney, J. P. (1981). Sucrose-induced ecological response of experimental dental plaques from caries-free and caries-susceptible human volunteers. Infection and Immunity, 34(3), 662– 675
Minty, M., Canceill, T., Lê, S., Dubois, P., Amestoy, O., Loubieres, P., Christensen, J. E., Champion, C., Azalbert, V., Grasset, E., Hardy, S., Loubes, J. M., Mallet, J. P., Tercé, F., Vergnes, J. N., Burcelin, R., Serino, M., Diemer, F., & Blasco-Baque, V. (2018). Oral health and microbiota status in professional rugby players: A case–control study. Journal of Dentistry, 79, 53– 60.
Moynihan, P. J., & Kelly, S. A. (2014). Effect on caries of restricting sugars intake: Systematic review to inform WHO guidelines. Journal of Dental Research, 93(1), 8– 18.
Nyvad, B., & Takahashi, N. (2020). Integrated hypothesis of dental caries and periodontal diseases. Journal of Oral Microbiology, 12(1), 1710953.
Philip, N., Suneja, B., & Walsh, L. J. (2018). Ecological approaches to dental caries prevention: Paradigm shift or shibboleth. Caries Research, 52(1–2), 153– 165.
Prabhu Matondkar, S., Yavagal, C., Kugaji, M., & Bhat, K. G. (2020). Quantitative assessment of Scardovia wiggsiae from dental plaque samples of children suffering from severe early childhood caries and caries free children. Anaerobe, 62, 102110.
Ravikumar, D., Ramani, P., & Gayathri, R. (2021). Genotypic diversity of Streptococcus mutans in children with and without early childhood caries—A systematic review. Journal of Oral Biolology and Craniofacial Research, 11(2), 308– 312.
Rosier, B. T., Marsh, P. D., & Mira, A. (2018). Resilience of the oral microbiota in health: Mechanisms that prevent dysbiosis. Journal of Dental Research, 97, 371– 380.
Shi, C., Cai, L., Xun, Z., Zheng, S., Shao, F., Wang, B., Zhu, R., & He, Y. (2021). Metagenomic analysis of the salivary microbiota in patients with caries, periodontitis and comorbid diseases. Journal of Dental Sciences, 16(4), 1264– 1273
Simón-Soro, A., & Mira, A. (2015). Solving the etiology of dental caries. Trends in Microbiology, 23(2), 76– 82.
Stang, A. (2010). Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. European Journal of Epidemiology, 25(9), 603– 605.
Tang, G., Samaranayake, L. P., Yip, H. K., Chu, F. C., Tsang, P. C., & Cheung, B. P. (2003). Direct detection of Actinomyces spp. from infected root canals in a Chinese population: A study using PCR-based, oligonucleotide-DNA hybridization technique. Journal of Dentistry, 31, 559– 568.
Tanzer, J. M., Thompson, A. M., Grant, L. P., Vickerman, M. M., & Scannapieco, F. A. (2008). Streptococcus gordonii's sequenced strain CH1 glucosyltransferase determines persistent but not initial colonization of teeth of rats. Archives of Oral Biology, 53(2), 133– 140.
Tian, J., Qin, M., Ma, W., Xia, B., Xu, H., Zhang, Q., & Chen, F. (2015). Microbiome interaction with sugar plays an important role in relapse of childhood caries. Biochemical and Biophysical Research Communications, 468(1–2), 294– 299.
Tinanoff, N., & Palmer, C. A. (2000). Dietary determinants of dental caries and dietary recommendations for preschool children. Journal of Public Health Dentistry, 60(3), 197– 206.
Touger-Decker, R., & van Loveren, C. (2003). Sugars and dental caries. The American Journal of Clinical Nutrition, 78(4), 881S– 892S
Wang, Y., Wang, S., Wu, C., Chen, X., Duan, Z., Xu, Q., Jiang, W., Xu, L., Wang, T., Su, L., Wang, Y., Chen, Y., Zhang, J., Huang, Y., Tong, S., Zhou, C., Deng, S., & Qin, N. (2019). Oral microbiome alterations associated with early childhood caries highlight the importance of carbohydrate metabolic activities. mSystems, 4(6), e00450-19.
World Health Organization (WHO). (2015). Guideline: Sugars intake for adults and children. https://www.who.int/publications/i/item/9789241549028
Xu, L., Chen, X., Wang, Y., Jiang, W., Wang, S., Ling, Z., & Chen, H. (2018). Dynamic alterations in salivary microbiota related to dental caries and age in preschool children with deciduous dentition: A 2-year follow-up study. Frontiers in Physiology, 4(9), 342.
Zhu, H., Willcox, M. D., Green, R. M., & Knox, K. W. (1997). Effect of different diets on oral bacteria and caries activity in Sprague–Dawley rats. Microbios, 91(367), 105– 120.
dc.rights.license.none.fl_str_mv Atribución
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 1376-1390
dc.coverage.temporal.spa.fl_str_mv 8
dc.publisher.spa.fl_str_mv Universidad Cooperativa de Colombia
dc.publisher.program.spa.fl_str_mv Odontología
dc.publisher.place.spa.fl_str_mv Villavicencio
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/40b92744-2cf0-419a-889e-37af690a584b/download
https://repository.ucc.edu.co/bitstreams/b27d6f37-f3a0-4d67-803d-1f4da2d77c2d/download
https://repository.ucc.edu.co/bitstreams/41f89aea-1920-4767-a07b-193b3d614ea7/download
https://repository.ucc.edu.co/bitstreams/5353f12e-9dec-4674-8486-4f9969b97527/download
https://repository.ucc.edu.co/bitstreams/b8a75631-3fe9-4698-94a9-d0fb0765676e/download
https://repository.ucc.edu.co/bitstreams/ad9c1cf4-dd9e-4a77-8038-b44b7078b61f/download
https://repository.ucc.edu.co/bitstreams/61ed3e58-6428-4602-9cdd-ccf450527ead/download
bitstream.checksum.fl_str_mv 1b50bc5b482b1370a4892fb771d4a621
83287e9e78efdbc711062c299723c9ca
8a4605be74aa9ea9d79846c1fba20a33
1c5c0022f18c98e8b865dbab33ba2292
1e4226b86df01c6d63e8dbe423b6fcfd
74131155957e8a88da7436d527b67e24
faaa0028849743adb777931e02522502
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808789399455924224
spelling Clinical and Experimental Dental ResearchAngarita-Díaz, María del PilarUniversidad Cooperativa de ColombiaFong, CristianClaudia, Bedoya-CorreaClaudia, Cabrera-Arango82022-12-18T23:06:59Z2022-12-18T23:06:59Z2022-08-0910.1002/cre2.640https://hdl.handle.net/20.500.12494/47568Angarita-Díaz MDP, Fong C, Bedoya-Correa CM, Cabrera-Arango CL. Does high sugar intake really alter the oral microbiota?: A systematic review. Clin Exp Dent Res. 2022. 8(6): 1376-13901376-1390Universidad Cooperativa de ColombiaOdontologíaVillavicenciomicrobiota oralazúcarcariesoral microbiotasugarcariesDoes high sugar intake really alter the oral microbiota?: A systematic reviewArtículos Científicoshttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionAtribucióninfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=00015613820000-0002-5435-3456GIOMETmaria.angaritad@campusucc.edu.coClinical and Experimental Dental ResearchAbranches, J., Zeng, L., Kajfasz, J. K., Palmer, S. R., Chakraborty, B., Wen, Z. T., Richards, V. P., Brady, L. J., & Lemos, J. A. (2018). Biology of oral Streptococci. Microbiology Spectrum, 6(5). https://doi.org/10.1128/microbiolspec.GPP3-0042-2018Anderson, A. C., Rothballer, M., Altenburger, M. J., Woelber, J. P., Karygianni, L., Lagkouvardos, I., Hellwig, E., & Al-Ahmad, A. (2018). In-vivo shift of the microbiota in oral biofilm in response to frequent sucrose consumption. Scientific Reports, 8(1), 14202.Anderson, A. C., Rothballer, M., Altenburger, M. J., Woelber, J. P., Karygianni, L., Vach, K., Hellwig, E., & Al-Ahmad, A. (2020). Long-term fluctuation of oral biofilm microbiota following different dietary phases. Applied and Environmental Microbiology, 86(20), 01421–20.Anderson, C. A., Curzon, M. E., Van, L. C., Tatsi, C., & Duggal, M. S. (2009). Sucrose and dental caries: A review of the evidence. Obesity Reviews, 10(1), 41– 54.Arif, N., Sheehy, E. C., Do, T., & Beighton, D. (2008). Diversity of Veillonella spp. from sound and carious sites in children. Journal of Dental Research, 87(3), 278– 282.Chen, X., Hu, X., Fang, J., Sun, X., Zhu, F., Sun, Y., & Wang, Y. (2021). Association of oral microbiota profile with sugar-sweetened beverages consumption in school-aged children. International Journal of Food Sciences and Nutrition, 73(1), 1– 11.Dang, M. H., Jung, J. E., Choi, H. M., & Jeon, J. G. (2018). Difference in virulence and composition of a cariogenic biofilm according to substratum direction. Scientific Reports, 8(1), 6244.Du, Q., Fu, M., Zhou, Y., Cao, Y., Guo, T., Zhou, Z., Mingyun, L., Peng, X., Zheng, X., Li, Y., Xu, X., He, J., & Zhou, X. (2020). Sucrose promotes caries progression by disrupting the microecological balance in oral biofilms: An in vitro study. Scientific Reports, 10(1), 2961.Esberg, A., Eriksson, L., Hasslöf, P., Haworth, S., Holgerson, P. L., & Johansson, I. (2021). Using oral microbiota data to design a short sucrose intake index. Nutrients, 13(5), 1400.Esberg, A., Haworth, S., Hasslöf, P., Lif Holgerson, P., & Johansson, I. (2020). Oral microbiota profile associates with sugar intake and taste preference genes. Nutrients, 12(3), 681.Ferlazzo, N., Currò, M., Zinellu, A., Caccamo, D., Isola, G., Ventura, V., Carru, C., Matarese, G., & Ientile, R. (2017, March 29). Influence of MTHFR genetic background on p16 and MGMT methylation in oral squamous cell cancer. International Journal of Molecular Sciences, 18(4), 724.Gross, E. L., Beall, C. J., Kutsch, S. R., Firestone, N. D., Leys, E. J., & Griffen, A. L. (2012). Beyond Streptococcus mutans: Dental caries onset linked to multiple species by 16S rRNA community analysis. PLoS One, 7(10), 47722. https://doi.org/10.1371/journal.pone.0047722Hao, W., Xu, H., Chen, X., Zhou, Q., Zhang, P., Chen, F., & Qin, M. (2015). Changes in dental plaque microbial richness and oral behavioral habits during caries development in young Chinese children. Caries Research, 49(2), 116– 123. https://doi.org/10.1159/000366505Havsed, K., Stensson, M., Jansson, H., Carda-Diéguez, M., Pedersen, A., Neilands, J., Svensäter, G., & Mira, A. (2021). Bacterial composition and metabolomics of dental plaque from adolescents. Frontiers in Cellular and Infection Microbiology, 11, 716493.He, X. S., & Shi, W. Y. (2009). Oral microbiology: Past, present and future. International Journal Oral Science, 1, 47– 58.Hong, J., Whelton, H., Douglas, G., & Kang, J. (2018). Consumption frequency of added sugars and UK children's dental caries. Community Dentistry and Oral Epidemiology, 46(5), 457– 464.Hurley, E., Barrett, M. P. J., Kinirons, M., Whelton, H., Ryan, C. A., Stanton, C., Harris, H., & O'Toole, P. W. (2019). Comparison of the salivary and dentinal microbiome of children with severe-early childhood caries to the salivary microbiome of caries-free children. BMC Oral Health, 19(1), 13.Iebba, V., Totino, V., Gagliardi, A., Santangelo, F., Cacciotti, F., Trancassini, M., Mancini, C., Cicerone, C., Corazziari, E., Pantanella, F., & Schippa, S. (2016). Eubiosis and dysbiosis: The two sides of the microbiota. New Microbiologica, 39, 1– 12.Isola, G., Polizzi, A., Santonocito, S., Alibrandi, A., & Williams, R. C. (2022, January). Periodontitis activates the NLRP3 inflammasome in serum and saliva. Journal of Periodontology, 93(1), 135– 145.Jagathrakshakan, S. N., Sethumadhava, R. J., Mehta, D. T., & Ramanathan, A. (2015). 16S rRNA gene-based metagenomic analysis identifies a novel bacterial co-prevalence pattern in dental caries. European Journal Dentistry, 9(1), 127– 132.Kameda, M., Abiko, Y., Washio, J., Tanner, A. C. R., Kressirer, C. A., Mizoguchi, I., & Takahashi, N. (2020). Sugar metabolism of Scardovia wiggsiae, a novel caries-associated bacterium. Frontiers in Microbioliology, 11, 479.Keller, M. K., Kressirer, C. A., Belstrøm, D., Twetman, S., & Tanner, A. C. R. (2017). Oral microbial profiles of individuals with different levels of sugar intake. Journal of Oral Microbiology, 9(1), 1355207.Kuramitsu, H. K., & Wang, B. Y. (2006). Virulence properties of cariogenic bacteria. BMC Oral health, 6(1), S11.Lamont, R. J., Koo, H., & Hajishengallis, G. (2018). The oral microbiota: Dynamic communities and host interactions. Nature Reviews Microbiology, 16(12), 745– 759.Lapirattanakul, J., Nomura, R., Okawa, R., Morimoto, S., Tantivitayakul, P., Maudcheingka, T., Nakano, K., & Matsumoto-Nakano, M. (2020). Oral Lactobacilli related to caries status of children with primary dentition. Caries Research, 54, 194– 204.Li, S., Huang, S., Guo, Y., Zhang, Y., Zhang, L., Li, F., Tan, K., Lu, J., Chen, Z., Guo, Q., Tang, Y., Teng, F., & Yang, F. (2021). Geographic variation did not affect the predictive power of salivary microbiota for caries in children with mixed dentition. Frontiers in Cellullar and Infection Microbiology, 11, 680288.Li, Y., Ge, Y., Saxena, D., & Caufield, P. W. (2007). Genetic profiling of the oral microbiota associated with severe early-childhood caries. Journal of Clinical Microbiology, 45, 81– 87.Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gotzsche, P. C., Ioannidis, J. P. A., Clarke, M., Devereaux, P. J., Kleijnen, J., & Moher, D. (2009). The PRISMA statement for reporting systematic reviews and meta-analysis of studies that evaluate health care interventions: Explanation and elaboration. BMJ, 339, b2700.Lommi, S., Manzoor, M., Engberg, E., Agrawal, N., Lakka, T. A., Leinonen, J., Kolho, K. L., & Viljakainen, H. (2022). The composition and functional capacities of saliva microbiota differ between children with low and high sweet treat consumption. Frontiers in Nutrition, 9, 864687.Mager, D. L., Ximenez-Fyvie, L. A., Haffajee, A. D., & Socransky, S. S. (2003). Distribution of selected bacterial species on intraoral surfaces. Journal of Clinical Periodontology, 30, 644– 654.Manzoor, M., Lommi, S., Furuholm, J., Sarkkola, C., Engberg, E., Raju, S., & Viljakainen, H. (2021). High abundance of sugar metabolisers in saliva of children with caries. Scientific Reports, 11, 4424.Marsh, P. D. (2006). Dental plaque as a biofilm and a microbial community—Implications for health and disease. BMC Oral Health, 6(1), S14McDaniel, S., McDaniel, J., Howard, K. M., & Kingsley, K. (2021). Molecular screening and analysis reveal novel oral site-specific locations for the cariogenic pathogen Scardovia wiggsiae. Dentistry Journal, 9(6), 73.Minah, G. E., Lovekin, G. B., & Finney, J. P. (1981). Sucrose-induced ecological response of experimental dental plaques from caries-free and caries-susceptible human volunteers. Infection and Immunity, 34(3), 662– 675Minty, M., Canceill, T., Lê, S., Dubois, P., Amestoy, O., Loubieres, P., Christensen, J. E., Champion, C., Azalbert, V., Grasset, E., Hardy, S., Loubes, J. M., Mallet, J. P., Tercé, F., Vergnes, J. N., Burcelin, R., Serino, M., Diemer, F., & Blasco-Baque, V. (2018). Oral health and microbiota status in professional rugby players: A case–control study. Journal of Dentistry, 79, 53– 60.Moynihan, P. J., & Kelly, S. A. (2014). Effect on caries of restricting sugars intake: Systematic review to inform WHO guidelines. Journal of Dental Research, 93(1), 8– 18.Nyvad, B., & Takahashi, N. (2020). Integrated hypothesis of dental caries and periodontal diseases. Journal of Oral Microbiology, 12(1), 1710953.Philip, N., Suneja, B., & Walsh, L. J. (2018). Ecological approaches to dental caries prevention: Paradigm shift or shibboleth. Caries Research, 52(1–2), 153– 165.Prabhu Matondkar, S., Yavagal, C., Kugaji, M., & Bhat, K. G. (2020). Quantitative assessment of Scardovia wiggsiae from dental plaque samples of children suffering from severe early childhood caries and caries free children. Anaerobe, 62, 102110.Ravikumar, D., Ramani, P., & Gayathri, R. (2021). Genotypic diversity of Streptococcus mutans in children with and without early childhood caries—A systematic review. Journal of Oral Biolology and Craniofacial Research, 11(2), 308– 312.Rosier, B. T., Marsh, P. D., & Mira, A. (2018). Resilience of the oral microbiota in health: Mechanisms that prevent dysbiosis. Journal of Dental Research, 97, 371– 380.Shi, C., Cai, L., Xun, Z., Zheng, S., Shao, F., Wang, B., Zhu, R., & He, Y. (2021). Metagenomic analysis of the salivary microbiota in patients with caries, periodontitis and comorbid diseases. Journal of Dental Sciences, 16(4), 1264– 1273Simón-Soro, A., & Mira, A. (2015). Solving the etiology of dental caries. Trends in Microbiology, 23(2), 76– 82.Stang, A. (2010). Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. European Journal of Epidemiology, 25(9), 603– 605.Tang, G., Samaranayake, L. P., Yip, H. K., Chu, F. C., Tsang, P. C., & Cheung, B. P. (2003). Direct detection of Actinomyces spp. from infected root canals in a Chinese population: A study using PCR-based, oligonucleotide-DNA hybridization technique. Journal of Dentistry, 31, 559– 568.Tanzer, J. M., Thompson, A. M., Grant, L. P., Vickerman, M. M., & Scannapieco, F. A. (2008). Streptococcus gordonii's sequenced strain CH1 glucosyltransferase determines persistent but not initial colonization of teeth of rats. Archives of Oral Biology, 53(2), 133– 140.Tian, J., Qin, M., Ma, W., Xia, B., Xu, H., Zhang, Q., & Chen, F. (2015). Microbiome interaction with sugar plays an important role in relapse of childhood caries. Biochemical and Biophysical Research Communications, 468(1–2), 294– 299.Tinanoff, N., & Palmer, C. A. (2000). Dietary determinants of dental caries and dietary recommendations for preschool children. Journal of Public Health Dentistry, 60(3), 197– 206.Touger-Decker, R., & van Loveren, C. (2003). Sugars and dental caries. The American Journal of Clinical Nutrition, 78(4), 881S– 892SWang, Y., Wang, S., Wu, C., Chen, X., Duan, Z., Xu, Q., Jiang, W., Xu, L., Wang, T., Su, L., Wang, Y., Chen, Y., Zhang, J., Huang, Y., Tong, S., Zhou, C., Deng, S., & Qin, N. (2019). Oral microbiome alterations associated with early childhood caries highlight the importance of carbohydrate metabolic activities. mSystems, 4(6), e00450-19.World Health Organization (WHO). (2015). Guideline: Sugars intake for adults and children. https://www.who.int/publications/i/item/9789241549028Xu, L., Chen, X., Wang, Y., Jiang, W., Wang, S., Ling, Z., & Chen, H. (2018). Dynamic alterations in salivary microbiota related to dental caries and age in preschool children with deciduous dentition: A 2-year follow-up study. Frontiers in Physiology, 4(9), 342.Zhu, H., Willcox, M. D., Green, R. M., & Knox, K. W. (1997). Effect of different diets on oral bacteria and caries activity in Sprague–Dawley rats. Microbios, 91(367), 105– 120.PublicationORIGINALLicencia de uso RI Ver5 Does high.pdfLicencia de uso RI Ver5 Does high.pdfLicenciaapplication/pdf231542https://repository.ucc.edu.co/bitstreams/40b92744-2cf0-419a-889e-37af690a584b/download1b50bc5b482b1370a4892fb771d4a621MD512022_Does high sugar intake really alter the oral microbiota.pdf2022_Does high sugar intake really alter the oral microbiota.pdfapplication/pdf1497113https://repository.ucc.edu.co/bitstreams/b27d6f37-f3a0-4d67-803d-1f4da2d77c2d/download83287e9e78efdbc711062c299723c9caMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repository.ucc.edu.co/bitstreams/41f89aea-1920-4767-a07b-193b3d614ea7/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILLicencia de uso RI Ver5 Does high.pdf.jpgLicencia de uso RI Ver5 Does high.pdf.jpgGenerated Thumbnailimage/jpeg5010https://repository.ucc.edu.co/bitstreams/5353f12e-9dec-4674-8486-4f9969b97527/download1c5c0022f18c98e8b865dbab33ba2292MD542022_Does high sugar intake really alter the oral microbiota.pdf.jpg2022_Does high sugar intake really alter the oral microbiota.pdf.jpgGenerated Thumbnailimage/jpeg5730https://repository.ucc.edu.co/bitstreams/b8a75631-3fe9-4698-94a9-d0fb0765676e/download1e4226b86df01c6d63e8dbe423b6fcfdMD55TEXTLicencia de uso RI Ver5 Does high.pdf.txtLicencia de uso RI Ver5 Does high.pdf.txtExtracted texttext/plain6142https://repository.ucc.edu.co/bitstreams/ad9c1cf4-dd9e-4a77-8038-b44b7078b61f/download74131155957e8a88da7436d527b67e24MD562022_Does high sugar intake really alter the oral microbiota.pdf.txt2022_Does high sugar intake really alter the oral microbiota.pdf.txtExtracted texttext/plain79844https://repository.ucc.edu.co/bitstreams/61ed3e58-6428-4602-9cdd-ccf450527ead/downloadfaaa0028849743adb777931e02522502MD5720.500.12494/47568oai:repository.ucc.edu.co:20.500.12494/475682024-08-20 16:24:12.601open.accesshttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=