Gas phase synthesis of dimethyl carbonate from CO2 and CH3OH over Cu-Ni/AC. A kinetic study

Se reporta la actividad catalítica en la formación de dimetil carbonato a partir de dióxido de carbono y metanol sobre catalizadores mono y bimetálicos de Cu-Ni soportado en carbón activado. Los catalizadores bimetálicos presentaron una mayor actividad catalítica que los monometálicos, siendo la mue...

Full description

Autores:
Arbeláez Pérez, Oscar Felipe
Domínguez Cardozo, Sara
Orrego Romero, Andrés Felipe
Villa Holguín, Aida Luz
Bustamante Londoño, Felipe
Tipo de recurso:
Article of journal
Fecha de publicación:
2019
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/15621
Acceso en línea:
https://hdl.handle.net/20.500.12494/15621
https://aprendeenlinea.udea.edu.co/revistas/index.php/ingenieria/article/view/338344
Palabra clave:
Metanol
catalizadores
mecanismo de reacción
velocidad de reacción
análisis FT-IR in situ
catalysts
reaction mechanism
reaction rate
in situ FT-IR analysis
Rights
closedAccess
License
Atribución
id COOPER2_e5b744fe0d3f8c5a01250453243df8b1
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/15621
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.spa.fl_str_mv Gas phase synthesis of dimethyl carbonate from CO2 and CH3OH over Cu-Ni/AC. A kinetic study
title Gas phase synthesis of dimethyl carbonate from CO2 and CH3OH over Cu-Ni/AC. A kinetic study
spellingShingle Gas phase synthesis of dimethyl carbonate from CO2 and CH3OH over Cu-Ni/AC. A kinetic study
Metanol
catalizadores
mecanismo de reacción
velocidad de reacción
análisis FT-IR in situ
catalysts
reaction mechanism
reaction rate
in situ FT-IR analysis
title_short Gas phase synthesis of dimethyl carbonate from CO2 and CH3OH over Cu-Ni/AC. A kinetic study
title_full Gas phase synthesis of dimethyl carbonate from CO2 and CH3OH over Cu-Ni/AC. A kinetic study
title_fullStr Gas phase synthesis of dimethyl carbonate from CO2 and CH3OH over Cu-Ni/AC. A kinetic study
title_full_unstemmed Gas phase synthesis of dimethyl carbonate from CO2 and CH3OH over Cu-Ni/AC. A kinetic study
title_sort Gas phase synthesis of dimethyl carbonate from CO2 and CH3OH over Cu-Ni/AC. A kinetic study
dc.creator.fl_str_mv Arbeláez Pérez, Oscar Felipe
Domínguez Cardozo, Sara
Orrego Romero, Andrés Felipe
Villa Holguín, Aida Luz
Bustamante Londoño, Felipe
dc.contributor.author.none.fl_str_mv Arbeláez Pérez, Oscar Felipe
Domínguez Cardozo, Sara
Orrego Romero, Andrés Felipe
Villa Holguín, Aida Luz
Bustamante Londoño, Felipe
dc.subject.spa.fl_str_mv Metanol
catalizadores
mecanismo de reacción
velocidad de reacción
análisis FT-IR in situ
topic Metanol
catalizadores
mecanismo de reacción
velocidad de reacción
análisis FT-IR in situ
catalysts
reaction mechanism
reaction rate
in situ FT-IR analysis
dc.subject.other.spa.fl_str_mv catalysts
reaction mechanism
reaction rate
in situ FT-IR analysis
description Se reporta la actividad catalítica en la formación de dimetil carbonato a partir de dióxido de carbono y metanol sobre catalizadores mono y bimetálicos de Cu-Ni soportado en carbón activado. Los catalizadores bimetálicos presentaron una mayor actividad catalítica que los monometálicos, siendo la muestra Cu:Ni-2:1 el mejor catalizador. La caracterización de los materiales mediante análisis de difracción de rayos X, microscopía electrónica de transmisión y dispersión metálica permitieron sugerir una explicación al porqué de su mejor desempeño. Se realizaron experimentos de FT-IR in situ para investigar el mecanismo de formación de carbonato de dimetilo a partir de metanol y dióxido de carbono sobre Cu-Ni:2-1. Se estudió la cinética de la síntesis directa de dimetil carbonato en fase gaseosa sobre Cu:Ni-2:1 soportado en carbón activado, a 12 bar y temperaturas entre 90 oC y 130 oC, como función de la presión parcial del dióxido de carbono y del metanol. Los datos experimentales fueron consistentes con un mecanismo Langmuir-Hinshelwood, el cual incluyó la adsorción de dióxido de carbono y metanol sobre los sitios activos del catalizador (Cu, Ni, y Cu-Ni), siendo la reacción del dióxido de carbono adsorbido con las especies metoxi como etapa limitante. La energía de activación aparente estimada de la reacción fue 94,2 kJ mol-1.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-12-13T16:13:54Z
dc.date.available.none.fl_str_mv 2019-12-13T16:13:54Z
dc.date.issued.none.fl_str_mv 2020-04
dc.type.none.fl_str_mv Artículo
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 2357-53280
dc.identifier.uri.spa.fl_str_mv 10.17533/ udea.redin.20190941
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12494/15621
dc.identifier.bibliographicCitation.spa.fl_str_mv https://aprendeenlinea.udea.edu.co/revistas/index.php/ingenieria/article/view/338344
identifier_str_mv 2357-53280
10.17533/ udea.redin.20190941
url https://hdl.handle.net/20.500.12494/15621
https://aprendeenlinea.udea.edu.co/revistas/index.php/ingenieria/article/view/338344
dc.relation.ispartofjournal.spa.fl_str_mv Revista Facultad de Ingeniería Universidad de Antioquia
dc.relation.references.spa.fl_str_mv Das AK, Krishnakumar S, Rajasekhar BN (2018) Experimental and computational VUV photoabsorption study of dimethyl carbonate: A green solvent. J Quant Spectrosc Radiat Transf 217:116–125. doi: 10.1016/j.jqsrt.2018.05.039 2. Parrish JP, Salvatore N, Woon K (2000) Perspectives on Alkyl Carbonates in Organic Synthesis. 56:8207–8237. 3. Ono Y (1997) Catalysis in the production and reactions of dimethyl carbonate, an environmentally benign building block. Appl Catal A Gen 155:133–166. doi: 10.1016/S0926-860X(96)00402-4 4. Yuan Y, Cao W, Weng W (2004) CuCl2immobilized on amino-functionalized MCM-41 and MCM-48 and their catalytic performance toward the vapor-phase oxy-carbonylation of methanol to dimethylcarbonate. J Catal 228:311–320. doi: 10.1016/j.jcat.2004.09.003 5. Naejus R, Coudert R, Willmann P, Lemordant D (1998) PII: sool3-468q~)ooo73-x Ion solvation in carbonate-based lithium battery electrolyte solutions. Ekctrochimica Acta 43:275–284. doi: 10.1016/S0013-4686(97)00073-X 6. Li D, Fang W, Xing Y, et al. (2009) Effects of dimethyl or diethyl carbonate as an additive on volatility and flash point of an aviation fuel. J Hazard Mater 161:1193–201. doi: 10.1016/j.jhazmat.2008.04.070 7. Tan HZ, Wang ZQ, Xu ZN, et al. (2018) Review on the synthesis of dimethyl carbonate. Catal Today 316:2–12. doi: 10.1016/j.cattod.2018.02.021 8. Hou Z, Luo L, Liu K, et al. (2014) High-yield synthesis of dimethyl carbonate from the direct alcoholysis of urea in supercritical methanol. Chem Eng J 236:415–418. doi: 10.1016/j.cej.2013.09.024 9. Zhang G, Yan J, Wang J, et al. (2018) Effect of carbon support on the catalytic performance of Cu-based nanoparticles for oxidative carbonylation of methanol. Appl Surf Sci 455:696–704. doi: 10.1016/j.apsusc.2018.05.114 10. Tamboli AH, Chaugule AA, Kim H (2017) Catalytic developments in the direct dimethyl carbonate synthesis from carbon dioxide and methanol. Chem Eng J 323:530–544. doi: 10.1016/j.cej.2017.04.112 11. Guo R, Qin Y, Qiao L, et al. (2017) Enhancement of the catalytic performance in Pd-Cu/NaY catalyst for carbonylation of methyl nitrite to dimethyl carbonate: Effects of copper doping. Catal Commun 88:94–98. doi: 10.1016/j.catcom.2016.10.007 12. Fujita S, Bhanage BM, Arai M, Ikushima Y (2001) Synthesis of dimethyl carbonate from carbon dioxide and methanol in the presence of methyl iodide and base catalysts under mild conditions: effect of reaction conditions and reaction mechanism. Green Chem 3:87–91. doi: 10.1039/b100363l 13. Fan B, Li H, Fan W, et al. (2010) Organotin compounds immobilized on mesoporous silicas as heterogeneous catalysts for direct synthesis of dimethyl carbonate from methanol and carbon dioxide. Appl Catal A Gen 372:94–102. doi: 10.1016/j.apcata.2009.10.022 14. Tomishige K, Sakaihori T, Ikeda Y, Fujimoto K (1999) A novel method of direct synthesis of dimethyl carbonate from methanol and carbon dioxide catalyzed by zirconia. 58:225–229. 15. Tomishige K, Furusawa Y, Ikeda Y, et al. (2001) CeO 2 – ZrO 2 solid solution catalyst for selective synthesis of dimethyl carbonate from methanol and carbon dioxide. 76:71–74. 16. Yoshida Y, Arai Y, Kado S, et al. (2006) Direct synthesis of organic carbonates from the reaction of CO2 with methanol and ethanol over CeO2 catalysts. Catal Today 115:95–101. doi: 10.1016/j.cattod.2006.02.027 17. Aresta M, Dibenedetto A, Pastore C, et al. (2010) Influence of Al2O3 on the performance of CeO2 used as catalyst in the direct carboxylation of methanol to dimethylcarbonate and the elucidation of the reaction mechanism. J Catal 269:44–52. doi: 10.1016/j.jcat.2009.10.014 18. Lee HJ, Park S, Song IK, Jung JC (2011) Direct Synthesis of Dimethyl Carbonate from Methanol and Carbon Dioxide over Ga2O3/Ce0.6Zr0.4O2 Catalysts: Effect of Acidity and Basicity of the Catalysts. Catal Letters 141:531–537. doi: 10.1007/s10562-010-0544-4 19. Zhong SH, Wang JW, Xiao XF, Li HS (2000) Dimethyl carbonate synthesis from carbon dioxide and methanol over Ni-Cu / MoSiO ( VSiO ) catalysts. 1565–1570. 20. Li C-F, Zhong S-H (2003) Study on application of membrane reactor in direct synthesis DMC from CO2 and CH3OH over Cu–KF/MgSiO catalyst. Catal Today 82:83–90. doi: 10.1016/S0920-5861(03)00205-0 21. Bian J effective direct synthesis of D from C and C using novel C bimetallic composite catalysts, Xiao M, Wang SJ, et al. (2009) Highly effective direct synthesis of DMC from CH3OH and CO2 using novel Cu–Ni/C bimetallic composite catalysts. Chinese Chem Lett 20:352–355. doi: 10.1016/j.cclet.2008.11.034 22. Bian J, Xiao M, Wang S-J, et al. (2009) Carbon nanotubes supported Cu–Ni bimetallic catalysts and their properties for the direct synthesis of dimethyl carbonate from methanol and carbon dioxide. Appl Surf Sci 255:7188–7196. doi: 10.1016/j.apsusc.2009.03.057 23. Bian J, Xiao M, Wang S, et al. (2009) Highly effective synthesis of dimethyl carbonate from methanol and carbon dioxide using a novel copper–nickel/graphite bimetallic nanocomposite catalyst. Chem Eng J 147:287–296. doi: 10.1016/j.cej.2008.11.006 24. Aouissi A, Al-Deyab SS (2012) Comparative study between gas phase and liquid phase for the production of DMC from methanol and CO2. J Nat Gas Chem 21:189–193. doi: 10.1016/S1003-9953(11)60353-8 25. Bian J, Wei XW, Jin YR, et al. (2010) Direct synthesis of dimethyl carbonate over activated carbon supported Cu-based catalysts. Chem Eng J 165:686–692. doi: 10.1016/j.cej.2010.10.002 26. Chen Y, Xiao M, Wang S, et al. (2012) Porous Diatomite-Immobilized Cu–Ni Bimetallic Nanocatalysts for Direct Synthesis of Dimethyl Carbonate. J Nanomater 2012:1–8. doi: 10.1155/2012/610410 27. Chen H, Wang S, Xiao M, et al. (2012) Direct synthesis of dimethyl carbonate from CO2and CH3OH Using 0.4 nm molecular sieve supported Cu-Ni bimetal catalyst. Chinese J Chem Eng 20:906–913. doi: 10.1016/S1004-9541(12)60417-0 28. Bustamante F, Orrego AF, Villegas S, Villa AL (2012) Modeling of Chemical Equilibrium and Gas Phase Behavior for the Direct Synthesis of Dimethyl Carbonate from CO 2 and Methanol. Ind Eng Chem Res 51:8945–8956. doi: 10.1021/ie300017r 29. Santos B a. V, Pereira CSM, Silva VMTM, et al. (2013) Kinetic study for the direct synthesis of dimethyl carbonate from methanol and CO2 over CeO2 at high pressure conditions. Appl Catal A Gen 455:219–226. doi: 10.1016/j.apcata.2013.02.003 30. Marin CM, Li L, Bhalkikar A, et al. (2016) Kinetic and mechanistic investigations of the direct synthesis of dimethyl carbonate from carbon dioxide over ceria nanorod catalysts. J Catal 340:295–301. doi: 10.1016/j.jcat.2016.06.003 31. Arbeláez O, Orrego A, Bustamante F, Villa AL (2012) Direct Synthesis of Diethyl Carbonate from CO2 and CH3CH2OH Over Cu–Ni/AC Catalyst. Top Catal 55:668–672. doi: 10.1007/s11244-012-9849-4 32. Maeder M, Neuhold Y-M, Puxty G (2004) Application of a genetic algorithm: near optimal estimation of the rate and equilibrium constants of complex reaction mechanisms. Chemom Intell Lab Syst 70:193–203. doi: 10.1016/j.chemolab.2003.11.006 33. Katare S, Bhan A, Caruthers JM, et al. (2004) A hybrid genetic algorithm for efficient parameter estimation of large kinetic models. Comput Chem Eng 28:2569–2581. doi: 10.1016/j.compchemeng.2004.07.002 34. Lynggaard H, Andreasen a., Stegelmann C, Stoltze P (2004) Analysis of simple kinetic models in heterogeneous catalysis. Prog Surf Sci 77:71–137. doi: 10.1016/j.progsurf.2004.09.001 35. Jiang C, Guo Y, Wang C, et al. (2003) Synthesis of dimethyl carbonate from methanol and carbon dioxide in the presence of polyoxometalates under mild conditions. Appl Catal A Gen 256:203–212. doi: 10.1016/S0926-860X(03)00400-9 36. Nougués JM, Grau MD, Puigjaner L (2002) Parameter estimation with genetic algorithm in control of fed-batch reactors. Chem Eng Process Process Intensif 41:303–309. doi: 10.1016/S0255-2701(01)00146-5 37. Harris S., Elliott L, Ingham D., et al. (2000) The optimisation of reaction rate parameters for chemical kinetic modelling of combustion using genetic algorithms. Comput Methods Appl Mech Eng 190:1065–1090. doi: 10.1016/S0045-7825(99)00466-1 38. Tomishige K, Ikeda Y, Sakaihori T, Fujimoto K (2000) Catalytic properties and structure of zirconia catalysts for direct synthesis of dimethyl carbonate from methanol and carbon dioxide. J Catal 192:355–362. doi: 10.1006/jcat.2000.2854 39. Pletincx S, Fockaert L-LI, Meeusen M, et al. (2018) In Situ Methanol Adsorption on Aluminum Oxide Monitored by a Combined ORP-EIS and ATR-FTIR Kretschmann Setup. J Phys Chem C 122:21963–21973. doi: 10.1021/acs.jpcc.8b06806 40. Felipe A, Romero O (2013) Following roads made by others may be easy , but not free . Making one ’ s own roads , in turn , may be free , but never easy . Aaro Hellaakosk. 41. Khromova S a., Smirnov A a., Bulavchenko O a., et al. (2014) Anisole hydrodeoxygenation over Ni–Cu bimetallic catalysts: The effect of Ni/Cu ratio on selectivity. Appl Catal A Gen 470:261–270. doi: 10.1016/j.apcata.2013.10.046 42. Zawadzki J, Azambre B, Heintz O, et al. (2000) IR study of the adsorption and decomposition of methanol on carbon surfaces and carbon-supported catalysts. Carbon N Y 38:509–515. doi: 10.1016/S0008-6223(99)00130-X 43. Bian J, Xiao M, Wang S, et al. (2009) Highly effective synthesis of dimethyl carbonate from methanol and carbon dioxide using a novel copper–nickel/graphite bimetallic nanocomposite catalyst. Chem Eng J 147:287–296. doi: 10.1016/j.cej.2008.11.006 44. Jung KT, Bell AT (2001) An in Situ Infrared Study of Dimethyl Carbonate Synthesis from Carbon Dioxide and Methanol over Zirconia. 347:339–347. doi: 10.1006/jcat.2001.3411 45. Ikeda Y, Asadullah M, Fujimoto K, Tomishige K (2001) Structure of the Active Sites on H 3 PO 4 /ZrO 2 Catalysts for Dimethyl Carbonate Synthesis from Methanol and Carbon Dioxide. J Phys Chem B 105:10653–10658. doi: 10.1021/jp0121522 46. (2000) 12th International Congress on Catalysis, Proceedings of the 12th ICC. 130:80423. doi: 10.1016/S0167-2991(00)80423-1 47. Pokrovski K, Jung KT, Bell AT (2001) Investigation of CO and CO 2 Adsorption on Tetragonal and Monoclinic Zirconia. Langmuir 17:4297–4303. doi: 10.1021/la001723z 48. Garrone E, Bonelli B, Lamberti C, et al. (2002) Coupling of framework modes and adsorbate vibrations for CO2molecularly adsorbed on alkali ZSM-5 zeolites: Mid- and far-infrared spectroscopy and ab initio modeling. J Chem Phys 117:10274–10282. doi: 10.1063/1.1519254 49. Bonelli B, Civalleri B, Fubini B, et al. (2000) Experimental and Quantum Chemical Studies on the Adsorption of Carbon Dioxide on Alkali-Metal-Exchanged ZSM-5 Zeolites. J Phys Chem B 104:10978–10988. doi: 10.1021/jp000555g 50. Chang ACC, Chuang SSC, Gray M, Soong Y (2003) In-Situ Infrared Study of CO 2 Adsorption on SBA-15 Grafted with γ-(Aminopropyl)triethoxysilane. Energy & Fuels 17:468–473. doi: 10.1021/ef020176h 51. Baltrusaitis J, Schuttlefield J, Zeitler E, Grassian VH (2011) Carbon dioxide adsorption on oxide nanoparticle surfaces. Chem Eng J 170:471–481. doi: 10.1016/j.cej.2010.12.041 52. Freund H, Chemistry P, Bochum R Surface chemistry of carbon dioxide. 53. Zro Y, Ko E, Kogler M, et al. (2013) In Situ FT-IR Spectroscopic Study of CO 2 and CO Adsorption on Y 2 O 3 ,. 54. Chen L, Wang S, Zhou J, et al. (2014) Dimethyl carbonate synthesis from carbon dioxide and methanol over CeO 2 versus over ZrO 2 : comparison of mechanisms. RSC Adv 4:30968. doi: 10.1039/C4RA03081H 55. Hall P, Mark E, Fundamentals RJ (2003) Its main aim is the successful design and operation of chemical reactors . this activity. 56. Karakaya C, Otterstätter R, Maier L, Deutschmann O (2014) Kinetics of the water-gas shift reaction over Rh/Al2O3 catalysts. Appl Catal A Gen 470:31–44. doi: 10.1016/j.apcata.2013.10.030 57. Carotenuto G, Tesser R, Di Serio M, Santacesaria E (2013) Kinetic study of ethanol dehydrogenation to ethyl acetate promoted by a copper/copper-chromite based catalyst. Catal Today 203:202–210. doi: 10.1016/j.cattod.2012.02.054 58. Yin X, Moss JR (1999) Recent developments in the activation of carbon dioxide by metal complexes. Coord Chem Rev 181:27–59. doi: 10.1016/S0010-8545(98)00171-4 59. Zhao S-Y, Wang S-P, Zhao Y-J, Ma X-B (2016) An in situ infrared study of dimethyl carbonate synthesis from carbon dioxide and methanol over well-shaped CeO2. Chinese Chem Lett 6–10. doi: 10.1016/j.cclet.2016.06.003
dc.rights.license.none.fl_str_mv Atribución
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/closedAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_14cb
rights_invalid_str_mv Atribución
http://purl.org/coar/access_right/c_14cb
eu_rights_str_mv closedAccess
dc.format.extent.spa.fl_str_mv 88-99
dc.coverage.temporal.spa.fl_str_mv 95
dc.publisher.spa.fl_str_mv Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Civil, Medellín y Envigado
dc.publisher.program.spa.fl_str_mv Ingeniería Civil
dc.publisher.place.spa.fl_str_mv Medellín
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/41bf2321-395e-4a1e-99ab-8be77da8331c/download
https://repository.ucc.edu.co/bitstreams/efcd0f1e-b891-4d7f-af3f-2631dfecb0b9/download
https://repository.ucc.edu.co/bitstreams/d92a7c0f-c9e8-4f22-a919-b7f315ac059b/download
https://repository.ucc.edu.co/bitstreams/545f9996-19c4-4f1c-be64-331a4f2a684e/download
bitstream.checksum.fl_str_mv 1c2d3a12c69ecdbf5c137c230690b7f2
3bce4f7ab09dfc588f126e1e36e98a45
85b83a31fb4ebbd6d9984ab4b3ed1085
6a171af825b951abf21065d1bf7f303a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808789379413442560
spelling Arbeláez Pérez, Oscar FelipeDomínguez Cardozo, SaraOrrego Romero, Andrés FelipeVilla Holguín, Aida LuzBustamante Londoño, Felipe952019-12-13T16:13:54Z2019-12-13T16:13:54Z2020-042357-5328010.17533/ udea.redin.20190941https://hdl.handle.net/20.500.12494/15621https://aprendeenlinea.udea.edu.co/revistas/index.php/ingenieria/article/view/338344Se reporta la actividad catalítica en la formación de dimetil carbonato a partir de dióxido de carbono y metanol sobre catalizadores mono y bimetálicos de Cu-Ni soportado en carbón activado. Los catalizadores bimetálicos presentaron una mayor actividad catalítica que los monometálicos, siendo la muestra Cu:Ni-2:1 el mejor catalizador. La caracterización de los materiales mediante análisis de difracción de rayos X, microscopía electrónica de transmisión y dispersión metálica permitieron sugerir una explicación al porqué de su mejor desempeño. Se realizaron experimentos de FT-IR in situ para investigar el mecanismo de formación de carbonato de dimetilo a partir de metanol y dióxido de carbono sobre Cu-Ni:2-1. Se estudió la cinética de la síntesis directa de dimetil carbonato en fase gaseosa sobre Cu:Ni-2:1 soportado en carbón activado, a 12 bar y temperaturas entre 90 oC y 130 oC, como función de la presión parcial del dióxido de carbono y del metanol. Los datos experimentales fueron consistentes con un mecanismo Langmuir-Hinshelwood, el cual incluyó la adsorción de dióxido de carbono y metanol sobre los sitios activos del catalizador (Cu, Ni, y Cu-Ni), siendo la reacción del dióxido de carbono adsorbido con las especies metoxi como etapa limitante. La energía de activación aparente estimada de la reacción fue 94,2 kJ mol-1.The catalytic activity for dimethyl carbonate formation from carbon dioxide and methanol over mono and bimetallic Cu:Ni supported on activated carbon is presented. Bimetallic catalysts exhibit higher catalytic activity than the monometallic samples, being Cu:Ni-2:1 (molar ratio) the best catalyst; X-Ray diffraction, transmission electron microscopy, and metal dispersion analysis provided insight into the improved activity. In situ FT-IR experiments were conducted to investigate the mechanism of formation of dimethyl carbonate from methanol and carbon dioxide over Cu-Ni:2-1. The kinetics of the direct synthesis of dimethyl carbonate in gas phase over Cu:Ni-2:1 supported on activated carbon catalyst was experimentally investigated at 12 bar and temperaturesbetween 90o C and 130o C, varying the partial pressures of CO2 and methanol. Experimental kinetic data were consistent with a Langmuir–Hinshelwood model that included carbon dioxide and methanol adsorption on catalyst actives sites (Cu, Ni and Cu-Ni), and the reaction of adsorbed CO2 with methoxi species as the rate determining step. The estimated apparent activation energy was 94.2 kJ mol-1https://scienti.colciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001125974http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001466541http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000526169http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000087785http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=00000886410000-0001-8592-53330000-0001-8916-27830000-0003-2819-81620000-0002-3770-32230000-0001-5515-8460https://scienti.colciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000005961oscar.arbelaez@campusucc.edu.cosarisdc787@hotmail.comche.andresorrego@gmail.comaida.villa@udea.edu.cofelipe.bustamante@udea.edu.cohttps://www.researchgate.net/profile/Oscar_Arbelaez_Perez88-99Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Civil, Medellín y EnvigadoIngeniería CivilMedellínMetanolcatalizadoresmecanismo de reacciónvelocidad de reacciónanálisis FT-IR in situcatalystsreaction mechanismreaction ratein situ FT-IR analysisGas phase synthesis of dimethyl carbonate from CO2 and CH3OH over Cu-Ni/AC. A kinetic studyArtículohttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribucióninfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbRevista Facultad de Ingeniería Universidad de AntioquiaDas AK, Krishnakumar S, Rajasekhar BN (2018) Experimental and computational VUV photoabsorption study of dimethyl carbonate: A green solvent. J Quant Spectrosc Radiat Transf 217:116–125. doi: 10.1016/j.jqsrt.2018.05.039 2. Parrish JP, Salvatore N, Woon K (2000) Perspectives on Alkyl Carbonates in Organic Synthesis. 56:8207–8237. 3. Ono Y (1997) Catalysis in the production and reactions of dimethyl carbonate, an environmentally benign building block. Appl Catal A Gen 155:133–166. doi: 10.1016/S0926-860X(96)00402-4 4. Yuan Y, Cao W, Weng W (2004) CuCl2immobilized on amino-functionalized MCM-41 and MCM-48 and their catalytic performance toward the vapor-phase oxy-carbonylation of methanol to dimethylcarbonate. J Catal 228:311–320. doi: 10.1016/j.jcat.2004.09.003 5. Naejus R, Coudert R, Willmann P, Lemordant D (1998) PII: sool3-468q~)ooo73-x Ion solvation in carbonate-based lithium battery electrolyte solutions. Ekctrochimica Acta 43:275–284. doi: 10.1016/S0013-4686(97)00073-X 6. Li D, Fang W, Xing Y, et al. (2009) Effects of dimethyl or diethyl carbonate as an additive on volatility and flash point of an aviation fuel. J Hazard Mater 161:1193–201. doi: 10.1016/j.jhazmat.2008.04.070 7. Tan HZ, Wang ZQ, Xu ZN, et al. (2018) Review on the synthesis of dimethyl carbonate. Catal Today 316:2–12. doi: 10.1016/j.cattod.2018.02.021 8. Hou Z, Luo L, Liu K, et al. (2014) High-yield synthesis of dimethyl carbonate from the direct alcoholysis of urea in supercritical methanol. Chem Eng J 236:415–418. doi: 10.1016/j.cej.2013.09.024 9. Zhang G, Yan J, Wang J, et al. (2018) Effect of carbon support on the catalytic performance of Cu-based nanoparticles for oxidative carbonylation of methanol. Appl Surf Sci 455:696–704. doi: 10.1016/j.apsusc.2018.05.114 10. Tamboli AH, Chaugule AA, Kim H (2017) Catalytic developments in the direct dimethyl carbonate synthesis from carbon dioxide and methanol. Chem Eng J 323:530–544. doi: 10.1016/j.cej.2017.04.112 11. Guo R, Qin Y, Qiao L, et al. (2017) Enhancement of the catalytic performance in Pd-Cu/NaY catalyst for carbonylation of methyl nitrite to dimethyl carbonate: Effects of copper doping. Catal Commun 88:94–98. doi: 10.1016/j.catcom.2016.10.007 12. Fujita S, Bhanage BM, Arai M, Ikushima Y (2001) Synthesis of dimethyl carbonate from carbon dioxide and methanol in the presence of methyl iodide and base catalysts under mild conditions: effect of reaction conditions and reaction mechanism. Green Chem 3:87–91. doi: 10.1039/b100363l 13. Fan B, Li H, Fan W, et al. (2010) Organotin compounds immobilized on mesoporous silicas as heterogeneous catalysts for direct synthesis of dimethyl carbonate from methanol and carbon dioxide. Appl Catal A Gen 372:94–102. doi: 10.1016/j.apcata.2009.10.022 14. Tomishige K, Sakaihori T, Ikeda Y, Fujimoto K (1999) A novel method of direct synthesis of dimethyl carbonate from methanol and carbon dioxide catalyzed by zirconia. 58:225–229. 15. Tomishige K, Furusawa Y, Ikeda Y, et al. (2001) CeO 2 – ZrO 2 solid solution catalyst for selective synthesis of dimethyl carbonate from methanol and carbon dioxide. 76:71–74. 16. Yoshida Y, Arai Y, Kado S, et al. (2006) Direct synthesis of organic carbonates from the reaction of CO2 with methanol and ethanol over CeO2 catalysts. Catal Today 115:95–101. doi: 10.1016/j.cattod.2006.02.027 17. Aresta M, Dibenedetto A, Pastore C, et al. (2010) Influence of Al2O3 on the performance of CeO2 used as catalyst in the direct carboxylation of methanol to dimethylcarbonate and the elucidation of the reaction mechanism. J Catal 269:44–52. doi: 10.1016/j.jcat.2009.10.014 18. Lee HJ, Park S, Song IK, Jung JC (2011) Direct Synthesis of Dimethyl Carbonate from Methanol and Carbon Dioxide over Ga2O3/Ce0.6Zr0.4O2 Catalysts: Effect of Acidity and Basicity of the Catalysts. Catal Letters 141:531–537. doi: 10.1007/s10562-010-0544-4 19. Zhong SH, Wang JW, Xiao XF, Li HS (2000) Dimethyl carbonate synthesis from carbon dioxide and methanol over Ni-Cu / MoSiO ( VSiO ) catalysts. 1565–1570. 20. Li C-F, Zhong S-H (2003) Study on application of membrane reactor in direct synthesis DMC from CO2 and CH3OH over Cu–KF/MgSiO catalyst. Catal Today 82:83–90. doi: 10.1016/S0920-5861(03)00205-0 21. Bian J effective direct synthesis of D from C and C using novel C bimetallic composite catalysts, Xiao M, Wang SJ, et al. (2009) Highly effective direct synthesis of DMC from CH3OH and CO2 using novel Cu–Ni/C bimetallic composite catalysts. Chinese Chem Lett 20:352–355. doi: 10.1016/j.cclet.2008.11.034 22. Bian J, Xiao M, Wang S-J, et al. (2009) Carbon nanotubes supported Cu–Ni bimetallic catalysts and their properties for the direct synthesis of dimethyl carbonate from methanol and carbon dioxide. Appl Surf Sci 255:7188–7196. doi: 10.1016/j.apsusc.2009.03.057 23. Bian J, Xiao M, Wang S, et al. (2009) Highly effective synthesis of dimethyl carbonate from methanol and carbon dioxide using a novel copper–nickel/graphite bimetallic nanocomposite catalyst. Chem Eng J 147:287–296. doi: 10.1016/j.cej.2008.11.006 24. Aouissi A, Al-Deyab SS (2012) Comparative study between gas phase and liquid phase for the production of DMC from methanol and CO2. J Nat Gas Chem 21:189–193. doi: 10.1016/S1003-9953(11)60353-8 25. Bian J, Wei XW, Jin YR, et al. (2010) Direct synthesis of dimethyl carbonate over activated carbon supported Cu-based catalysts. Chem Eng J 165:686–692. doi: 10.1016/j.cej.2010.10.002 26. Chen Y, Xiao M, Wang S, et al. (2012) Porous Diatomite-Immobilized Cu–Ni Bimetallic Nanocatalysts for Direct Synthesis of Dimethyl Carbonate. J Nanomater 2012:1–8. doi: 10.1155/2012/610410 27. Chen H, Wang S, Xiao M, et al. (2012) Direct synthesis of dimethyl carbonate from CO2and CH3OH Using 0.4 nm molecular sieve supported Cu-Ni bimetal catalyst. Chinese J Chem Eng 20:906–913. doi: 10.1016/S1004-9541(12)60417-0 28. Bustamante F, Orrego AF, Villegas S, Villa AL (2012) Modeling of Chemical Equilibrium and Gas Phase Behavior for the Direct Synthesis of Dimethyl Carbonate from CO 2 and Methanol. Ind Eng Chem Res 51:8945–8956. doi: 10.1021/ie300017r 29. Santos B a. V, Pereira CSM, Silva VMTM, et al. (2013) Kinetic study for the direct synthesis of dimethyl carbonate from methanol and CO2 over CeO2 at high pressure conditions. Appl Catal A Gen 455:219–226. doi: 10.1016/j.apcata.2013.02.003 30. Marin CM, Li L, Bhalkikar A, et al. (2016) Kinetic and mechanistic investigations of the direct synthesis of dimethyl carbonate from carbon dioxide over ceria nanorod catalysts. J Catal 340:295–301. doi: 10.1016/j.jcat.2016.06.003 31. Arbeláez O, Orrego A, Bustamante F, Villa AL (2012) Direct Synthesis of Diethyl Carbonate from CO2 and CH3CH2OH Over Cu–Ni/AC Catalyst. Top Catal 55:668–672. doi: 10.1007/s11244-012-9849-4 32. Maeder M, Neuhold Y-M, Puxty G (2004) Application of a genetic algorithm: near optimal estimation of the rate and equilibrium constants of complex reaction mechanisms. Chemom Intell Lab Syst 70:193–203. doi: 10.1016/j.chemolab.2003.11.006 33. Katare S, Bhan A, Caruthers JM, et al. (2004) A hybrid genetic algorithm for efficient parameter estimation of large kinetic models. Comput Chem Eng 28:2569–2581. doi: 10.1016/j.compchemeng.2004.07.002 34. Lynggaard H, Andreasen a., Stegelmann C, Stoltze P (2004) Analysis of simple kinetic models in heterogeneous catalysis. Prog Surf Sci 77:71–137. doi: 10.1016/j.progsurf.2004.09.001 35. Jiang C, Guo Y, Wang C, et al. (2003) Synthesis of dimethyl carbonate from methanol and carbon dioxide in the presence of polyoxometalates under mild conditions. Appl Catal A Gen 256:203–212. doi: 10.1016/S0926-860X(03)00400-9 36. Nougués JM, Grau MD, Puigjaner L (2002) Parameter estimation with genetic algorithm in control of fed-batch reactors. Chem Eng Process Process Intensif 41:303–309. doi: 10.1016/S0255-2701(01)00146-5 37. Harris S., Elliott L, Ingham D., et al. (2000) The optimisation of reaction rate parameters for chemical kinetic modelling of combustion using genetic algorithms. Comput Methods Appl Mech Eng 190:1065–1090. doi: 10.1016/S0045-7825(99)00466-1 38. Tomishige K, Ikeda Y, Sakaihori T, Fujimoto K (2000) Catalytic properties and structure of zirconia catalysts for direct synthesis of dimethyl carbonate from methanol and carbon dioxide. J Catal 192:355–362. doi: 10.1006/jcat.2000.2854 39. Pletincx S, Fockaert L-LI, Meeusen M, et al. (2018) In Situ Methanol Adsorption on Aluminum Oxide Monitored by a Combined ORP-EIS and ATR-FTIR Kretschmann Setup. J Phys Chem C 122:21963–21973. doi: 10.1021/acs.jpcc.8b06806 40. Felipe A, Romero O (2013) Following roads made by others may be easy , but not free . Making one ’ s own roads , in turn , may be free , but never easy . Aaro Hellaakosk. 41. Khromova S a., Smirnov A a., Bulavchenko O a., et al. (2014) Anisole hydrodeoxygenation over Ni–Cu bimetallic catalysts: The effect of Ni/Cu ratio on selectivity. Appl Catal A Gen 470:261–270. doi: 10.1016/j.apcata.2013.10.046 42. Zawadzki J, Azambre B, Heintz O, et al. (2000) IR study of the adsorption and decomposition of methanol on carbon surfaces and carbon-supported catalysts. Carbon N Y 38:509–515. doi: 10.1016/S0008-6223(99)00130-X 43. Bian J, Xiao M, Wang S, et al. (2009) Highly effective synthesis of dimethyl carbonate from methanol and carbon dioxide using a novel copper–nickel/graphite bimetallic nanocomposite catalyst. Chem Eng J 147:287–296. doi: 10.1016/j.cej.2008.11.006 44. Jung KT, Bell AT (2001) An in Situ Infrared Study of Dimethyl Carbonate Synthesis from Carbon Dioxide and Methanol over Zirconia. 347:339–347. doi: 10.1006/jcat.2001.3411 45. Ikeda Y, Asadullah M, Fujimoto K, Tomishige K (2001) Structure of the Active Sites on H 3 PO 4 /ZrO 2 Catalysts for Dimethyl Carbonate Synthesis from Methanol and Carbon Dioxide. J Phys Chem B 105:10653–10658. doi: 10.1021/jp0121522 46. (2000) 12th International Congress on Catalysis, Proceedings of the 12th ICC. 130:80423. doi: 10.1016/S0167-2991(00)80423-1 47. Pokrovski K, Jung KT, Bell AT (2001) Investigation of CO and CO 2 Adsorption on Tetragonal and Monoclinic Zirconia. Langmuir 17:4297–4303. doi: 10.1021/la001723z 48. Garrone E, Bonelli B, Lamberti C, et al. (2002) Coupling of framework modes and adsorbate vibrations for CO2molecularly adsorbed on alkali ZSM-5 zeolites: Mid- and far-infrared spectroscopy and ab initio modeling. J Chem Phys 117:10274–10282. doi: 10.1063/1.1519254 49. Bonelli B, Civalleri B, Fubini B, et al. (2000) Experimental and Quantum Chemical Studies on the Adsorption of Carbon Dioxide on Alkali-Metal-Exchanged ZSM-5 Zeolites. J Phys Chem B 104:10978–10988. doi: 10.1021/jp000555g 50. Chang ACC, Chuang SSC, Gray M, Soong Y (2003) In-Situ Infrared Study of CO 2 Adsorption on SBA-15 Grafted with γ-(Aminopropyl)triethoxysilane. Energy & Fuels 17:468–473. doi: 10.1021/ef020176h 51. Baltrusaitis J, Schuttlefield J, Zeitler E, Grassian VH (2011) Carbon dioxide adsorption on oxide nanoparticle surfaces. Chem Eng J 170:471–481. doi: 10.1016/j.cej.2010.12.041 52. Freund H, Chemistry P, Bochum R Surface chemistry of carbon dioxide. 53. Zro Y, Ko E, Kogler M, et al. (2013) In Situ FT-IR Spectroscopic Study of CO 2 and CO Adsorption on Y 2 O 3 ,. 54. Chen L, Wang S, Zhou J, et al. (2014) Dimethyl carbonate synthesis from carbon dioxide and methanol over CeO 2 versus over ZrO 2 : comparison of mechanisms. RSC Adv 4:30968. doi: 10.1039/C4RA03081H 55. Hall P, Mark E, Fundamentals RJ (2003) Its main aim is the successful design and operation of chemical reactors . this activity. 56. Karakaya C, Otterstätter R, Maier L, Deutschmann O (2014) Kinetics of the water-gas shift reaction over Rh/Al2O3 catalysts. Appl Catal A Gen 470:31–44. doi: 10.1016/j.apcata.2013.10.030 57. Carotenuto G, Tesser R, Di Serio M, Santacesaria E (2013) Kinetic study of ethanol dehydrogenation to ethyl acetate promoted by a copper/copper-chromite based catalyst. Catal Today 203:202–210. doi: 10.1016/j.cattod.2012.02.054 58. Yin X, Moss JR (1999) Recent developments in the activation of carbon dioxide by metal complexes. Coord Chem Rev 181:27–59. doi: 10.1016/S0010-8545(98)00171-4 59. Zhao S-Y, Wang S-P, Zhao Y-J, Ma X-B (2016) An in situ infrared study of dimethyl carbonate synthesis from carbon dioxide and methanol over well-shaped CeO2. Chinese Chem Lett 6–10. doi: 10.1016/j.cclet.2016.06.003PublicationORIGINALmanuscript.pdfmanuscript.pdfArticuloapplication/pdf1195128https://repository.ucc.edu.co/bitstreams/41bf2321-395e-4a1e-99ab-8be77da8331c/download1c2d3a12c69ecdbf5c137c230690b7f2MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/efcd0f1e-b891-4d7f-af3f-2631dfecb0b9/download3bce4f7ab09dfc588f126e1e36e98a45MD52TEXTmanuscript.pdf.txtmanuscript.pdf.txtExtracted texttext/plain55989https://repository.ucc.edu.co/bitstreams/d92a7c0f-c9e8-4f22-a919-b7f315ac059b/download85b83a31fb4ebbd6d9984ab4b3ed1085MD53THUMBNAILmanuscript.pdf.jpgmanuscript.pdf.jpgGenerated Thumbnailimage/jpeg2908https://repository.ucc.edu.co/bitstreams/545f9996-19c4-4f1c-be64-331a4f2a684e/download6a171af825b951abf21065d1bf7f303aMD5420.500.12494/15621oai:repository.ucc.edu.co:20.500.12494/156212024-08-10 20:59:34.374restrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo=