Fabrication of polycaprolactone/calcium phosphates hybrid scaffolds impregnated with plant extracts using 3D printing for potential bone regeneration
The increase in critical bone diseases and defects in the world’s population increases the need for bone substitutes to restore form and function. Organic and inorganic scaffolds with antibacterial properties could provide advantages for bone regeneration. In this study, we obtained scaffolds of pol...
- Autores:
-
García, Claudia
Orozco, Yeison
Betancur, Alejandra
Moreno, Ana Isabel
Fuentes, Katherine
Lopera, Alex
Suarez, Oscar
Lobo, Tatiana
Ossa, Edgar Alexander
Peláez Vargas, Alejandro
Paucar, Carlos
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2023
- Institución:
- Universidad Cooperativa de Colombia
- Repositorio:
- Repositorio UCC
- Idioma:
- eng
- OAI Identifier:
- oai:repository.ucc.edu.co:20.500.12494/55129
- Acceso en línea:
- https://hdl.handle.net/20.500.12494/55129
https://doi.org/10.1016/j.heliyon.2023.e13176
- Palabra clave:
- 610 - Medicina y salud
Scaffold
3D- printing
Natural extracts
Polycaprolactone
Calcium phosphate
- Rights
- openAccess
- License
- http://creativecommons.org/publicdomain/zero/1.0/
id |
COOPER2_e26eeee9317f1819ee3b7b1e1b51bf09 |
---|---|
oai_identifier_str |
oai:repository.ucc.edu.co:20.500.12494/55129 |
network_acronym_str |
COOPER2 |
network_name_str |
Repositorio UCC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Fabrication of polycaprolactone/calcium phosphates hybrid scaffolds impregnated with plant extracts using 3D printing for potential bone regeneration |
title |
Fabrication of polycaprolactone/calcium phosphates hybrid scaffolds impregnated with plant extracts using 3D printing for potential bone regeneration |
spellingShingle |
Fabrication of polycaprolactone/calcium phosphates hybrid scaffolds impregnated with plant extracts using 3D printing for potential bone regeneration 610 - Medicina y salud Scaffold 3D- printing Natural extracts Polycaprolactone Calcium phosphate |
title_short |
Fabrication of polycaprolactone/calcium phosphates hybrid scaffolds impregnated with plant extracts using 3D printing for potential bone regeneration |
title_full |
Fabrication of polycaprolactone/calcium phosphates hybrid scaffolds impregnated with plant extracts using 3D printing for potential bone regeneration |
title_fullStr |
Fabrication of polycaprolactone/calcium phosphates hybrid scaffolds impregnated with plant extracts using 3D printing for potential bone regeneration |
title_full_unstemmed |
Fabrication of polycaprolactone/calcium phosphates hybrid scaffolds impregnated with plant extracts using 3D printing for potential bone regeneration |
title_sort |
Fabrication of polycaprolactone/calcium phosphates hybrid scaffolds impregnated with plant extracts using 3D printing for potential bone regeneration |
dc.creator.fl_str_mv |
García, Claudia Orozco, Yeison Betancur, Alejandra Moreno, Ana Isabel Fuentes, Katherine Lopera, Alex Suarez, Oscar Lobo, Tatiana Ossa, Edgar Alexander Peláez Vargas, Alejandro Paucar, Carlos |
dc.contributor.author.none.fl_str_mv |
García, Claudia Orozco, Yeison Betancur, Alejandra Moreno, Ana Isabel Fuentes, Katherine Lopera, Alex Suarez, Oscar Lobo, Tatiana Ossa, Edgar Alexander Peláez Vargas, Alejandro Paucar, Carlos |
dc.subject.ddc.none.fl_str_mv |
610 - Medicina y salud |
topic |
610 - Medicina y salud Scaffold 3D- printing Natural extracts Polycaprolactone Calcium phosphate |
dc.subject.proposal.none.fl_str_mv |
Scaffold 3D- printing Natural extracts Polycaprolactone Calcium phosphate |
description |
The increase in critical bone diseases and defects in the world’s population increases the need for bone substitutes to restore form and function. Organic and inorganic scaffolds with antibacterial properties could provide advantages for bone regeneration. In this study, we obtained scaffolds of polycaprolactone (PCL) charged with calcium phosphates nanoparticles and impregnated with extracts of Colombian plants as an alternative for potential bone regeneration. Calcium phosphate nanoparticles were obtained via auto-combustion synthesis. The nanoparticles were incorporated into the PCL with a chemical dissolution-disperse process. The composite obtained was used to produce a filament to print Triply Periodic Minimal Surface (TPMS) based scaffolds. Such geometry facilitates cellular growth thanks to its interconnected porosity. The scaffolds were impregnated with extracts of Justicia cf colorifera (Acanthaceae), and Billia rosea (Sapindaceae) due to their ancestral medical applications. A physical and biological characterization was conducted. The process to print scaffolds with an enhanced geometry to facilitate the flux of biological fluids was successful. The scaffolds loaded with B. rosea showed strong antibacterial behavior, suggesting the presence of reported terpenoids with antibacterial properties. The approach used in this study evidenced promising prospects for bone defect repair. |
publishDate |
2023 |
dc.date.issued.none.fl_str_mv |
2023-01-25 |
dc.date.accessioned.none.fl_str_mv |
2024-03-04T23:59:53Z |
dc.date.available.none.fl_str_mv |
2024-03-04T23:59:53Z |
dc.type.none.fl_str_mv |
Artículo |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Garcia C, Orozco Y, Betancur A, Moreno AI, Fuentes K, Lopera A, Suarez O, Lobo T, Ossa A, Peláez-Vargas A, Paucar C. Fabrication of polycaprolactone/calcium phosphates hybrid scaffolds impregnated with plant extracts using 3D printing for potential bone regeneration. Heliyon. 2023 Jan 25;9(2):e13176. doi: 10.1016/j.heliyon.2023.e13176. |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12494/55129 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1016/j.heliyon.2023.e13176 |
identifier_str_mv |
Garcia C, Orozco Y, Betancur A, Moreno AI, Fuentes K, Lopera A, Suarez O, Lobo T, Ossa A, Peláez-Vargas A, Paucar C. Fabrication of polycaprolactone/calcium phosphates hybrid scaffolds impregnated with plant extracts using 3D printing for potential bone regeneration. Heliyon. 2023 Jan 25;9(2):e13176. doi: 10.1016/j.heliyon.2023.e13176. |
url |
https://hdl.handle.net/20.500.12494/55129 https://doi.org/10.1016/j.heliyon.2023.e13176 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.none.fl_str_mv |
D.S. Larionov, M.A. Kuzina, P.V. Evdokimov, A.V. Garshev, N.K. Orlov, V.I. Putlyaev, Synthesis of calcium phosphate powders in nonaqueous media for stereolithography 3D printing, Russ. J. Inorg. Chem. 65 (2020) 312–322, https://doi.org/10.1134/S0036023620030079. J. Russias, E. Saiz, S. Deville, K. Gryn, G. Liu, R.K. Nalla, A.P. Tomsia, Fabrication and in vitro characterization of three-dimensional organic/inorganic scaffolds by robocasting, J. Biomed. Mater. Res. 83A (2007) 434–445, https://doi.org/10.1002/jbm.a.31237. M.-J. Chern, L.-Y. Yang, Y.-K. Shen, J.-H. Hung, 3D scaffold with PCL combined biomedical ceramic materials for bone tissue regeneration, Int. J. Precis. Eng. Manuf. 14 (2013) 2201–2207, https://doi.org/10.1007/s12541-013-0298-1. S. Liu, S. Qin, M. He, D. Zhou, Q. Qin, H. Wang, Current applications of poly(lactic acid) composites in tissue engineering and drug delivery, Compos. B Eng. 199 (2020), 108238, https://doi.org/10.1016/j.compositesb.2020.108238. P. Sheshadri, R.A. Shirwaiker, Characterization of material–process–structure interactions in the 3D bioplotting of polycaprolactone, 3D Print. Addit. Manuf. 2 (2015) 20–31, https://doi.org/10.1089/3dp.2014.0025. R. Roque, G.F. Barbosa, A.C. Guastaldi, Design and 3D bioprinting of interconnected porous scaffolds for bone regeneration. An additive manufacturing approach, J. Manuf. Process. 64 (2021) 655–663, https://doi.org/10.1016/j.jmapro.2021.01.057. Y. Zhang, N. Sun, M. Zhu, Q. Qiu, P. Zhao, C. Zheng, Q. Bai, Q. Zeng, T. Lu, The contribution of pore size and porosity of 3D printed porous titanium scaffolds to osteogenesis, Biomater. Adv. 133 (2022), 112651, https://doi.org/10.1016/j.msec.2022.112651. J.A. Ramírez, V. Ospina, A.A. Rozo, M.I. Viana, S. Ocampo, S. Restrepo, N.A. V´asquez, C. Paucar, C. García, Influence of geometry on cell proliferation of PLA and alumina scaffolds constructed by additive manufacturing, J. Mater. Res. 34 (2019) 3757–3765, https://doi.org/10.1557/jmr.2019.323. R.A. García-Le´on, J.A. G´omez-Camperos, H.Y. Jaramillo, Scientometric review of trends on the mechanical properties of additive manufacturing and 3D printing, J. Mater. Eng. Perform. 30 (2021) 4724–4734, https://doi.org/10.1007/s11665-021-05524-7. A. Sadeghianmaryan, S. Naghieh, Z. Yazdanpanah, H. Alizadeh Sardroud, N.K. Sharma, L.D. Wilson, X. Chen, Fabrication of chitosan/alginate/hydroxyapatite hybrid scaffolds using 3D printing and impregnating techniques for potential cartilage regeneration, Int. J. Biol. Macromol. 204 (2022) 62–75, https://doi.org/ 10.1016/j.ijbiomac.2022.01.201. P. Feng, K. Wang, Y. Shuai, S. Peng, Y. Hu, C. Shuai, Hydroxyapatite nanoparticles in situ grown on carbon nanotube as a reinforcement for poly (ε-caprolactone) bone scaffold, Mater. Today Adv. 15 (2022), 100272, https://doi.org/10.1016/j.mtadv.2022.100272 C. Shuai, W. Yang, P. Feng, S. Peng, H. Pan, Accelerated degradation of HAP/PLLA bone scaffold by PGA blending facilitates bioactivity and osteoconductivity, Bioact. Mater. 6 (2021) 490–502, https://doi.org/10.1016/j.bioactmat.2020.09.001. P. Feng, P. Wu, C. Gao, Y. Yang, W. Guo, W. Yang, C. Shuai, A multimaterial scaffold with tunable properties: toward bone tissue repair, Adv. Sci. 5 (2018), 1700817, https://doi.org/10.1002/advs.201700817. C. Shuai, B. Peng, P. Feng, L. Yu, R. Lai, A. Min, In situ synthesis of hydroxyapatite nanorods on graphene oxide nanosheets and their reinforcement in biopolymer scaffold, J. Adv. Res. 35 (2022) 13–24, https://doi.org/10.1016/j.jare.2021.03.009. X. Wang, B.Z. Molino, S. Pitk¨anen, M. Ojansivu, C. Xu, M. Hannula, J. Hyttinen, S. Miettinen, L. Hupa, G. Wallace, 3D scaffolds of polycaprolactone/copperdoped bioactive glass: architecture engineering with additive manufacturing and cellular assessments in a coculture of bone marrow stem cells and endothelial cells, ACS Biomater. Sci. Eng. 5 (2019) 4496–4510, https://doi.org/10.1021/acsbiomaterials.9b00105. P. Nevado, A. Lopera, V. Bezzon, M.R. Fulla, J. Palacio, M.A. Zaghete, G. Biasotto, A. Montoya, J. Rivera, S.M. Robledo, H. Estupi˜nan, C. Paucar, C. Garcia, Preparation and in vitro evaluation of PLA/biphasic calcium phosphate filaments used for fused deposition modelling of scaffolds, Mater. Sci. Eng. C 114 (2020), 111013, https://doi.org/10.1016/j.msec.2020.111013. A.A. Lopera, A. Montoya, I.D. V´elez, S.M. Robledo, C.P. Garcia, Synthesis of calcium phosphate nanostructures by combustion in solution as a potential encapsulant system of drugs with photodynamic properties for the treatment of cutaneous leishmaniasis, Photodiagnosis Photodyn. Ther. 21 (2018) 138–146, https://doi.org/10.1016/j.pdpdt.2017.11.017. M.B. Hajduga, R. Bobinski, ´ M. Dutka, I. Ulman-Włodarz, J. Bujok, C. Pająk, M. Cwiertnia, ´ A. Kurowska, M. Dziadek, I. Rajzer, Analysis of the antibacterial properties of polycaprolactone modified with graphene, bioglass and zinc-doped bioglass, Acta Bioeng. Biomech. 23 (2021), https://doi.org/10.37190/ABB01766-2020-03. Y. Zhuang, K. Lin, H. Yu, Advance of nano-composite electrospun fibers in periodontal regeneration, Front. Chem. (2019) 7. https://www.frontiersin.org/ articles/10.3389/fchem.2019.00495. M. Reise, R. Wyrwa, U. Müller, M. Zylinski, A. Volpel, ¨ M. Schnabelrauch, A. Berg, K.D. Jandt, D.C. Watts, B.W. Sigusch, Release of metronidazole from electrospun poly(l-lactide-co-d/l-lactide) fibers for local periodontitis treatment, Dent. Mater. 28 (2012) 179–188, https://doi.org/10.1016/j. dental.2011.12.006. M.A. Fanovich, J. Ivanovic, D. Misic, M.V. Alvarez, P. Jaeger, I. Zizovic, R. Eggers, Development of polycaprolactone scaffold with antibacterial activity by an integrated supercritical extraction and impregnation process, J. Supercrit. Fluids 78 (2013) 42–53, https://doi.org/10.1016/j.supflu.2013.03.017. S. Naderi, A. Esmaeili, Fabrication and characterization of 3D printing scaffold technology by extract oils from plant and its applications in the cardiovascular blood, Sci. Rep. 11 (2021), 24409, https://doi.org/10.1038/s41598-021-03951-z. B.R.N. Soumya, S. L, Antifungal efficacy of Capsicum frutescens L. extracts against some prevalent fungal strains associated with groundnut storage, J. Agric. Techn. 8 (2012) 739–750. G. Sharmila, C. Muthukumaran, S. Kirthika, S. Keerthana, N.M. Kumar, J. Jeyanthi, Fabrication and characterization of Spinacia oleracea extract incorporated alginate/carboxymethyl cellulose microporous scaffold for bone tissue engineering, Int. J. Biol. Macromol. 156 (2020) 430–437, https://doi.org/10.1016/j. ijbiomac.2020.04.059. E.A. Chavarriaga, A.A. Lopera, T. Bender Wermuth, S. Arcaro, V.D.N. Bezzon, C. García, J. Alarcon, ´ J. Gabriel Ramirez, R. Moreno, C. P´erez Bergmann, Influence of caffeine and citrulline on magnetic properties when used as new fuels in the synthesis of CoFe2O4 nanoparticles by gel combustion, J. Magn. Magn Mater. 560 (2022), 169632, https://doi.org/10.1016/j.jmmm.2022.169632. A.E. Jakus, A.L. Rutz, R.N. Shah, Advancing the field of 3D biomaterial printing, Biomed. Mater. 11 (2016), 014102, https://doi.org/10.1088/1748-6041/11/1/ 014102. P. Rahmani, A. Shojaei, Developing tough terpolymer hydrogel with outstanding swelling ability by hydrophobic association cross-linking, Polymer 254 (2022), 125037, https://doi.org/10.1016/j.polymer.2022.125037. A. Pelaez-Vargas, J.A. Dussan, L.F. Restrepo-Tamayo, C. Paucar, J.A. Ferreira, F.J. Monteiro, The effect of slurry preparation methods on biaxial flexural strength of dental porcelain, J. Prosthet. Dent 105 (2011) 308–314, https://doi.org/10.1016/S0022-3913(11)60058-9. J. Santos, T. Pires, B.P. Gouveia, A.P.G. Castro, P.R. Fernandes, On the permeability of TPMS scaffolds, J. Mech. Behav. Biomed. Mater. 110 (2020), 103932, https://doi.org/10.1016/j.jmbbm.2020.103932. T. Pires, J. Santos, R.B. Ruben, B.P. Gouveia, A.P.G. Castro, P.R. Fernandes, Numerical-experimental analysis of the permeability-porosity relationship in triply periodic minimal surfaces scaffolds, J. Biomech. 117 (2021), 110263, https://doi.org/10.1016/j.jbiomech.2021.110263. Y. Lv, B. Wang, G. Liu, Y. Tang, J. Liu, G. Wei, L. Wang, Design of bone-like continuous gradient porous scaffold based on triply periodic minimal surfaces, J. Mater. Res. Technol. 21 (2022) 3650–3665, https://doi.org/10.1016/j.jmrt.2022.10.160. S.K. Hedayati, A.H. Behravesh, S. Hasannia, O. Kordi, M. Pourghaumi, A.B. Saed, F. Gashtasbi, Additive manufacture of PCL/nHA scaffolds reinforced with biodegradable continuous Fibers: mechanical Properties, in-vitro degradation Profile, and cell study, Eur. Polym. J. 162 (2022), 110876, https://doi.org/ 10.1016/j.eurpolymj.2021.110876. T. Kokubo, H.-M. Kim, M. Kawashita, Novel bioactive materials with different mechanical properties, Biomaterials 24 (2003) 2161–2175, https://doi.org/ 10.1016/S0142-9612(03)00044-9. V. Karageorgiou, D. Kaplan, Porosity of 3D biomaterial scaffolds and osteogenesis, Biomaterials 26 (2005) 5474–5491, https://doi.org/10.1016/j. biomaterials.2005.02.002. Semitela, A.F. Girao, ˜ C. Fernandes, G. Ramalho, I. Bdikin, A. Completo, P.A. Marques, Electrospinning of bioactive polycaprolactone-gelatin nanofibres with increased pore size for cartilage tissue engineering applications, J. Biomater. Appl. 35 (2020) 471–484, https://doi.org/10.1177/0885328220940194. R. Liu, L. Ma, H. Liu, B. Xu, C. Feng, R. He, Effects of pore size on the mechanical and biological properties of stereolithographic 3D printed HAp bioceramic scaffold, Ceram. Int. 47 (2021) 28924–28931, https://doi.org/10.1016/j.ceramint.2021.07.053. S. Cai, G.H. Xu, X.Z. Yu, W.J. Zhang, Z.Y. Xiao, K.D. Yao, Fabrication and biological characteristics of β-tricalcium phosphate porous ceramic scaffolds reinforced with calcium phosphate glass, J. Mater. Sci. Mater. Med. 20 (2009) 351–358, https://doi.org/10.1007/s10856-008-3591-2. J. Suwanprateeb, R. Sanngam, W. Suvannapruk, T. Panyathanmaporn, Mechanical and in vitro performance of apatite–wollastonite glass ceramic reinforced hydroxyapatite composite fabricated by 3D-printing, J. Mater. Sci. Mater. Med. 20 (2009) 1281–1289, https://doi.org/10.1007/s10856-009-3697-1. E.H. Backes, E.M. Fernandes, G.S. Diogo, C.F. Marques, T.H. Silva, L.C. Costa, F.R. Passador, R.L. Reis, L.A. Pessan, Engineering 3D printed bioactive composite scaffolds based on the combination of aliphatic polyester and calcium phosphates for bone tissue regeneration, Mater. Sci. Eng. C 122 (2021), 111928, https:// doi.org/10.1016/j.msec.2021.111928. A.C. Correa, V.B. Carmona, J.A. Sim˜ ao, L.H. Capparelli Mattoso, J.M. Marconcini, Biodegradable blends of urea plasticized thermoplastic starch (UTPS) and poly (ε-caprolactone) (PCL): morphological, rheological, thermal and mechanical properties, Carbohydr. Polym. 167 (2017) 177–184, https://doi.org/10.1016/j. carbpol.2017.03.051. S. Jana, M. Leung, J. Chang, M. Zhang, Effect of nano- and micro-scale topological features on alignment of muscle cells and commitment of myogenic differentiation, Biofabrication 6 (2014), 035012, https://doi.org/10.1088/1758-5082/6/3/035012. C.B.B. Luna, D.D. Siqueira, E. da S.B. Ferreira, E.M. Araújo, R.M.R. Wellen, Effect of injection parameters on the thermal, mechanical and thermomechanical properties of polycaprolactone (PCL), J. Elastomers Plastics 53 (2021) 1045–1062, https://doi.org/10.1177/00952443211015345. ] D. Rosa, C. Guedes, M. Bardi, Evaluation of thermal, mechanical and morphological properties of PCL/CA and PCL/CA/PE-g-GMA blends, Polym. Test. 26 (2007) 209–215. K. Cech ˇ Barabaszov´ a, S. Holeˇsova, ´ M. Hund´ akov´ a, V. Mohyla, Mechanically treated vermiculite particles in PCL/vermiculite thin films, Mater. Today Proc. 52 (2022) 239–247, https://doi.org/10.1016/j.matpr.2022.02.195. X. Wang, M. Jiang, Z. Zhou, J. Gou, D. Hui, 3D printing of polymer matrix composites: a review and prospective, Compos. B Eng. 110 (2017) 442–458, https:// doi.org/10.1016/j.compositesb.2016.11.034. J. Jordan, K.I. Jacob, R. Tannenbaum, M.A. Sharaf, I. Jasiuk, Experimental trends in polymer nanocomposites—a review, Mater. Sci. Eng. 393 (2005) 1–11, https://doi.org/10.1016/j.msea.2004.09.044. K. Taleb, I. Pillin, Y. Grohens, S. Saidi-Besbes, Polylactic acid/Gemini surfactant modified clay bio-nanocomposites: morphological, thermal, mechanical and barrier properties, Int. J. Biol. Macromol. 177 (2021) 505–516, https://doi.org/10.1016/j.ijbiomac.2021.02.135. L. Lu, Q. Zhang, D.M. Wootton, R. Chiou, D. Li, B. Lu, P.I. Lelkes, J. Zhou, Mechanical study of polycaprolactone-hydroxyapatite porous scaffolds created by porogen-based solid freeform fabrication method, J. Appl. Biomater. Funct. Mater. 12 (2014) 145–154, https://doi.org/10.5301/jabfm.5000163. P.M. Dewick, Medicinal Natural Products, John Wiley & Sons, Ltd, Chichester, UK, 2009, https://doi.org/10.1002/9780470742761. X.-F. Shang, S.L. Morris-Natschke, Y.-Q. Liu, X. Guo, X.-S. Xu, M. Goto, J.-C. Li, G.-Z. Yang, K.-H. Lee, Biologically active quinoline and quinazoline alkaloids part I, Med. Res. Rev. 38 (2018) 775–828, https://doi.org/10.1002/med.21466. G.M. Corrˆea, A.F. Alcˆantara, Chemical constituents and biological activities of species of Justicia: a review, Revista Brasileira de Farmacognosia 22 (2012) 220–238. L.A. Mitscher, Bacterial topoisomerase inhibitors: quinolone and pyridone antibacterial agents, Chem. Rev. 105 (2005) 559–592, https://doi.org/10.1021/ cr030101q. T.P.T. Cushnie, B. Cushnie, A.J. Lamb, Alkaloids: an overview of their antibacterial, antibiotic-enhancing and antivirulence activities, Int. J. Antimicrob. Agents 44 (2014) 377–386, https://doi.org/10.1016/j.ijantimicag.2014.06.001. A.E.M. Biang, E.L.D. Kamto, L.M. Simo, C. Antheaume, P. Lavedan, M. Vedrenne, O.P. Not´e, D.E. Pegnyemb, J.N. Mbing, M. Haddad, Triterpenoid saponins from the stem barks of Chytranthus klaineanus, Radlk. ex Engl, Phytochemistry Letters 37 (2020) 37–41, https://doi.org/10.1016/j.phytol.2020.04.006. N. Asati, R.N. Yadava, Antibacterial activity of a triterpenoid saponin from the stems of Caesalpinia pulcherrima Linn, Nat. Prod. Res. 32 (2018) 499–507. |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.none.fl_str_mv |
CC0 1.0 Universal |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ CC0 1.0 Universal http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
14 p. |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Odontología, Medellín y Envigado |
dc.publisher.place.none.fl_str_mv |
Medellín |
publisher.none.fl_str_mv |
Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Odontología, Medellín y Envigado |
dc.source.none.fl_str_mv |
https://www-sciencedirect-com.bbibliograficas.ucc.edu.co/science/article/pii/S2405844023003833 |
institution |
Universidad Cooperativa de Colombia |
bitstream.url.fl_str_mv |
https://repository.ucc.edu.co/bitstreams/729625eb-5074-4ab2-bb7a-1a9a82ed6b0a/download https://repository.ucc.edu.co/bitstreams/7e24565b-6488-48cb-8548-484bf581d631/download https://repository.ucc.edu.co/bitstreams/13cc16cd-e3ee-4d20-8bd6-01416a58812b/download https://repository.ucc.edu.co/bitstreams/1f2b5342-d4ee-4003-83c1-d73e811e4844/download https://repository.ucc.edu.co/bitstreams/3b99ed14-7c2b-4bd8-998a-e7d9f8bff81d/download https://repository.ucc.edu.co/bitstreams/d3ca9529-a01f-4e1d-8629-a4a0e93b3d7f/download https://repository.ucc.edu.co/bitstreams/f8cc2245-5944-42c0-bd49-a7555d7a5edc/download https://repository.ucc.edu.co/bitstreams/52e45176-b581-425c-807a-3837e6ecbe43/download |
bitstream.checksum.fl_str_mv |
42fd4ad1e89814f5e4a476b409eb708c 3bce4f7ab09dfc588f126e1e36e98a45 ca27d708d5bd99aabe69f65a6fdac82d 9fdd5160a949b18c4241c5e1f431e23f 38551718b34ee809f34f45b13706967a 274a51eb40cfbf21e249cf0edcb11d0c c1236ec8a50a02a5e7670e5ff380866a 1bf76a36b9636ddb0d39de125cbc01aa |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Cooperativa de Colombia |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1814247213596934144 |
spelling |
García, ClaudiaOrozco, YeisonBetancur, AlejandraMoreno, Ana IsabelFuentes, KatherineLopera, AlexSuarez, OscarLobo, TatianaOssa, Edgar Alexander Peláez Vargas, AlejandroPaucar, Carlos2024-03-04T23:59:53Z2024-03-04T23:59:53Z2023-01-25Garcia C, Orozco Y, Betancur A, Moreno AI, Fuentes K, Lopera A, Suarez O, Lobo T, Ossa A, Peláez-Vargas A, Paucar C. Fabrication of polycaprolactone/calcium phosphates hybrid scaffolds impregnated with plant extracts using 3D printing for potential bone regeneration. Heliyon. 2023 Jan 25;9(2):e13176. doi: 10.1016/j.heliyon.2023.e13176.https://hdl.handle.net/20.500.12494/55129https://doi.org/10.1016/j.heliyon.2023.e13176The increase in critical bone diseases and defects in the world’s population increases the need for bone substitutes to restore form and function. Organic and inorganic scaffolds with antibacterial properties could provide advantages for bone regeneration. In this study, we obtained scaffolds of polycaprolactone (PCL) charged with calcium phosphates nanoparticles and impregnated with extracts of Colombian plants as an alternative for potential bone regeneration. Calcium phosphate nanoparticles were obtained via auto-combustion synthesis. The nanoparticles were incorporated into the PCL with a chemical dissolution-disperse process. The composite obtained was used to produce a filament to print Triply Periodic Minimal Surface (TPMS) based scaffolds. Such geometry facilitates cellular growth thanks to its interconnected porosity. The scaffolds were impregnated with extracts of Justicia cf colorifera (Acanthaceae), and Billia rosea (Sapindaceae) due to their ancestral medical applications. A physical and biological characterization was conducted. The process to print scaffolds with an enhanced geometry to facilitate the flux of biological fluids was successful. The scaffolds loaded with B. rosea showed strong antibacterial behavior, suggesting the presence of reported terpenoids with antibacterial properties. The approach used in this study evidenced promising prospects for bone defect repair.14 p.application/pdfengUniversidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Odontología, Medellín y EnvigadoMedellínhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccessCC0 1.0 Universalhttp://purl.org/coar/access_right/c_abf2https://www-sciencedirect-com.bbibliograficas.ucc.edu.co/science/article/pii/S2405844023003833610 - Medicina y saludScaffold3D- printingNatural extractsPolycaprolactoneCalcium phosphateFabrication of polycaprolactone/calcium phosphates hybrid scaffolds impregnated with plant extracts using 3D printing for potential bone regenerationArtículohttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionD.S. Larionov, M.A. Kuzina, P.V. Evdokimov, A.V. Garshev, N.K. Orlov, V.I. Putlyaev, Synthesis of calcium phosphate powders in nonaqueous media for stereolithography 3D printing, Russ. J. Inorg. Chem. 65 (2020) 312–322, https://doi.org/10.1134/S0036023620030079.J. Russias, E. Saiz, S. Deville, K. Gryn, G. Liu, R.K. Nalla, A.P. Tomsia, Fabrication and in vitro characterization of three-dimensional organic/inorganic scaffolds by robocasting, J. Biomed. Mater. Res. 83A (2007) 434–445, https://doi.org/10.1002/jbm.a.31237.M.-J. Chern, L.-Y. Yang, Y.-K. Shen, J.-H. Hung, 3D scaffold with PCL combined biomedical ceramic materials for bone tissue regeneration, Int. J. Precis. Eng. Manuf. 14 (2013) 2201–2207, https://doi.org/10.1007/s12541-013-0298-1.S. Liu, S. Qin, M. He, D. Zhou, Q. Qin, H. Wang, Current applications of poly(lactic acid) composites in tissue engineering and drug delivery, Compos. B Eng. 199 (2020), 108238, https://doi.org/10.1016/j.compositesb.2020.108238.P. Sheshadri, R.A. Shirwaiker, Characterization of material–process–structure interactions in the 3D bioplotting of polycaprolactone, 3D Print. Addit. Manuf. 2 (2015) 20–31, https://doi.org/10.1089/3dp.2014.0025.R. Roque, G.F. Barbosa, A.C. Guastaldi, Design and 3D bioprinting of interconnected porous scaffolds for bone regeneration. An additive manufacturing approach, J. Manuf. Process. 64 (2021) 655–663, https://doi.org/10.1016/j.jmapro.2021.01.057.Y. Zhang, N. Sun, M. Zhu, Q. Qiu, P. Zhao, C. Zheng, Q. Bai, Q. Zeng, T. Lu, The contribution of pore size and porosity of 3D printed porous titanium scaffolds to osteogenesis, Biomater. Adv. 133 (2022), 112651, https://doi.org/10.1016/j.msec.2022.112651.J.A. Ramírez, V. Ospina, A.A. Rozo, M.I. Viana, S. Ocampo, S. Restrepo, N.A. V´asquez, C. Paucar, C. García, Influence of geometry on cell proliferation of PLA and alumina scaffolds constructed by additive manufacturing, J. Mater. Res. 34 (2019) 3757–3765, https://doi.org/10.1557/jmr.2019.323.R.A. García-Le´on, J.A. G´omez-Camperos, H.Y. Jaramillo, Scientometric review of trends on the mechanical properties of additive manufacturing and 3D printing, J. Mater. Eng. Perform. 30 (2021) 4724–4734, https://doi.org/10.1007/s11665-021-05524-7.A. Sadeghianmaryan, S. Naghieh, Z. Yazdanpanah, H. Alizadeh Sardroud, N.K. Sharma, L.D. Wilson, X. Chen, Fabrication of chitosan/alginate/hydroxyapatite hybrid scaffolds using 3D printing and impregnating techniques for potential cartilage regeneration, Int. J. Biol. Macromol. 204 (2022) 62–75, https://doi.org/ 10.1016/j.ijbiomac.2022.01.201.P. Feng, K. Wang, Y. Shuai, S. Peng, Y. Hu, C. Shuai, Hydroxyapatite nanoparticles in situ grown on carbon nanotube as a reinforcement for poly (ε-caprolactone) bone scaffold, Mater. Today Adv. 15 (2022), 100272, https://doi.org/10.1016/j.mtadv.2022.100272C. Shuai, W. Yang, P. Feng, S. Peng, H. Pan, Accelerated degradation of HAP/PLLA bone scaffold by PGA blending facilitates bioactivity and osteoconductivity, Bioact. Mater. 6 (2021) 490–502, https://doi.org/10.1016/j.bioactmat.2020.09.001.P. Feng, P. Wu, C. Gao, Y. Yang, W. Guo, W. Yang, C. Shuai, A multimaterial scaffold with tunable properties: toward bone tissue repair, Adv. Sci. 5 (2018), 1700817, https://doi.org/10.1002/advs.201700817.C. Shuai, B. Peng, P. Feng, L. Yu, R. Lai, A. Min, In situ synthesis of hydroxyapatite nanorods on graphene oxide nanosheets and their reinforcement in biopolymer scaffold, J. Adv. Res. 35 (2022) 13–24, https://doi.org/10.1016/j.jare.2021.03.009.X. Wang, B.Z. Molino, S. Pitk¨anen, M. Ojansivu, C. Xu, M. Hannula, J. Hyttinen, S. Miettinen, L. Hupa, G. Wallace, 3D scaffolds of polycaprolactone/copperdoped bioactive glass: architecture engineering with additive manufacturing and cellular assessments in a coculture of bone marrow stem cells and endothelial cells, ACS Biomater. Sci. Eng. 5 (2019) 4496–4510, https://doi.org/10.1021/acsbiomaterials.9b00105.P. Nevado, A. Lopera, V. Bezzon, M.R. Fulla, J. Palacio, M.A. Zaghete, G. Biasotto, A. Montoya, J. Rivera, S.M. Robledo, H. Estupi˜nan, C. Paucar, C. Garcia, Preparation and in vitro evaluation of PLA/biphasic calcium phosphate filaments used for fused deposition modelling of scaffolds, Mater. Sci. Eng. C 114 (2020), 111013, https://doi.org/10.1016/j.msec.2020.111013.A.A. Lopera, A. Montoya, I.D. V´elez, S.M. Robledo, C.P. Garcia, Synthesis of calcium phosphate nanostructures by combustion in solution as a potential encapsulant system of drugs with photodynamic properties for the treatment of cutaneous leishmaniasis, Photodiagnosis Photodyn. Ther. 21 (2018) 138–146, https://doi.org/10.1016/j.pdpdt.2017.11.017.M.B. Hajduga, R. Bobinski, ´ M. Dutka, I. Ulman-Włodarz, J. Bujok, C. Pająk, M. Cwiertnia, ´ A. Kurowska, M. Dziadek, I. Rajzer, Analysis of the antibacterial properties of polycaprolactone modified with graphene, bioglass and zinc-doped bioglass, Acta Bioeng. Biomech. 23 (2021), https://doi.org/10.37190/ABB01766-2020-03.Y. Zhuang, K. Lin, H. Yu, Advance of nano-composite electrospun fibers in periodontal regeneration, Front. Chem. (2019) 7. https://www.frontiersin.org/ articles/10.3389/fchem.2019.00495.M. Reise, R. Wyrwa, U. Müller, M. Zylinski, A. Volpel, ¨ M. Schnabelrauch, A. Berg, K.D. Jandt, D.C. Watts, B.W. Sigusch, Release of metronidazole from electrospun poly(l-lactide-co-d/l-lactide) fibers for local periodontitis treatment, Dent. Mater. 28 (2012) 179–188, https://doi.org/10.1016/j. dental.2011.12.006.M.A. Fanovich, J. Ivanovic, D. Misic, M.V. Alvarez, P. Jaeger, I. Zizovic, R. Eggers, Development of polycaprolactone scaffold with antibacterial activity by an integrated supercritical extraction and impregnation process, J. Supercrit. Fluids 78 (2013) 42–53, https://doi.org/10.1016/j.supflu.2013.03.017.S. Naderi, A. Esmaeili, Fabrication and characterization of 3D printing scaffold technology by extract oils from plant and its applications in the cardiovascular blood, Sci. Rep. 11 (2021), 24409, https://doi.org/10.1038/s41598-021-03951-z.B.R.N. Soumya, S. L, Antifungal efficacy of Capsicum frutescens L. extracts against some prevalent fungal strains associated with groundnut storage, J. Agric. Techn. 8 (2012) 739–750.G. Sharmila, C. Muthukumaran, S. Kirthika, S. Keerthana, N.M. Kumar, J. Jeyanthi, Fabrication and characterization of Spinacia oleracea extract incorporated alginate/carboxymethyl cellulose microporous scaffold for bone tissue engineering, Int. J. Biol. Macromol. 156 (2020) 430–437, https://doi.org/10.1016/j. ijbiomac.2020.04.059.E.A. Chavarriaga, A.A. Lopera, T. Bender Wermuth, S. Arcaro, V.D.N. Bezzon, C. García, J. Alarcon, ´ J. Gabriel Ramirez, R. Moreno, C. P´erez Bergmann, Influence of caffeine and citrulline on magnetic properties when used as new fuels in the synthesis of CoFe2O4 nanoparticles by gel combustion, J. Magn. Magn Mater. 560 (2022), 169632, https://doi.org/10.1016/j.jmmm.2022.169632.A.E. Jakus, A.L. Rutz, R.N. Shah, Advancing the field of 3D biomaterial printing, Biomed. Mater. 11 (2016), 014102, https://doi.org/10.1088/1748-6041/11/1/ 014102.P. Rahmani, A. Shojaei, Developing tough terpolymer hydrogel with outstanding swelling ability by hydrophobic association cross-linking, Polymer 254 (2022), 125037, https://doi.org/10.1016/j.polymer.2022.125037.A. Pelaez-Vargas, J.A. Dussan, L.F. Restrepo-Tamayo, C. Paucar, J.A. Ferreira, F.J. Monteiro, The effect of slurry preparation methods on biaxial flexural strength of dental porcelain, J. Prosthet. Dent 105 (2011) 308–314, https://doi.org/10.1016/S0022-3913(11)60058-9.J. Santos, T. Pires, B.P. Gouveia, A.P.G. Castro, P.R. Fernandes, On the permeability of TPMS scaffolds, J. Mech. Behav. Biomed. Mater. 110 (2020), 103932, https://doi.org/10.1016/j.jmbbm.2020.103932.T. Pires, J. Santos, R.B. Ruben, B.P. Gouveia, A.P.G. Castro, P.R. Fernandes, Numerical-experimental analysis of the permeability-porosity relationship in triply periodic minimal surfaces scaffolds, J. Biomech. 117 (2021), 110263, https://doi.org/10.1016/j.jbiomech.2021.110263.Y. Lv, B. Wang, G. Liu, Y. Tang, J. Liu, G. Wei, L. Wang, Design of bone-like continuous gradient porous scaffold based on triply periodic minimal surfaces, J. Mater. Res. Technol. 21 (2022) 3650–3665, https://doi.org/10.1016/j.jmrt.2022.10.160.S.K. Hedayati, A.H. Behravesh, S. Hasannia, O. Kordi, M. Pourghaumi, A.B. Saed, F. Gashtasbi, Additive manufacture of PCL/nHA scaffolds reinforced with biodegradable continuous Fibers: mechanical Properties, in-vitro degradation Profile, and cell study, Eur. Polym. J. 162 (2022), 110876, https://doi.org/ 10.1016/j.eurpolymj.2021.110876.T. Kokubo, H.-M. Kim, M. Kawashita, Novel bioactive materials with different mechanical properties, Biomaterials 24 (2003) 2161–2175, https://doi.org/ 10.1016/S0142-9612(03)00044-9.V. Karageorgiou, D. Kaplan, Porosity of 3D biomaterial scaffolds and osteogenesis, Biomaterials 26 (2005) 5474–5491, https://doi.org/10.1016/j. biomaterials.2005.02.002.Semitela, A.F. Girao, ˜ C. Fernandes, G. Ramalho, I. Bdikin, A. Completo, P.A. Marques, Electrospinning of bioactive polycaprolactone-gelatin nanofibres with increased pore size for cartilage tissue engineering applications, J. Biomater. Appl. 35 (2020) 471–484, https://doi.org/10.1177/0885328220940194.R. Liu, L. Ma, H. Liu, B. Xu, C. Feng, R. He, Effects of pore size on the mechanical and biological properties of stereolithographic 3D printed HAp bioceramic scaffold, Ceram. Int. 47 (2021) 28924–28931, https://doi.org/10.1016/j.ceramint.2021.07.053.S. Cai, G.H. Xu, X.Z. Yu, W.J. Zhang, Z.Y. Xiao, K.D. Yao, Fabrication and biological characteristics of β-tricalcium phosphate porous ceramic scaffolds reinforced with calcium phosphate glass, J. Mater. Sci. Mater. Med. 20 (2009) 351–358, https://doi.org/10.1007/s10856-008-3591-2.J. Suwanprateeb, R. Sanngam, W. Suvannapruk, T. Panyathanmaporn, Mechanical and in vitro performance of apatite–wollastonite glass ceramic reinforced hydroxyapatite composite fabricated by 3D-printing, J. Mater. Sci. Mater. Med. 20 (2009) 1281–1289, https://doi.org/10.1007/s10856-009-3697-1.E.H. Backes, E.M. Fernandes, G.S. Diogo, C.F. Marques, T.H. Silva, L.C. Costa, F.R. Passador, R.L. Reis, L.A. Pessan, Engineering 3D printed bioactive composite scaffolds based on the combination of aliphatic polyester and calcium phosphates for bone tissue regeneration, Mater. Sci. Eng. C 122 (2021), 111928, https:// doi.org/10.1016/j.msec.2021.111928.A.C. Correa, V.B. Carmona, J.A. Sim˜ ao, L.H. Capparelli Mattoso, J.M. Marconcini, Biodegradable blends of urea plasticized thermoplastic starch (UTPS) and poly (ε-caprolactone) (PCL): morphological, rheological, thermal and mechanical properties, Carbohydr. Polym. 167 (2017) 177–184, https://doi.org/10.1016/j. carbpol.2017.03.051.S. Jana, M. Leung, J. Chang, M. Zhang, Effect of nano- and micro-scale topological features on alignment of muscle cells and commitment of myogenic differentiation, Biofabrication 6 (2014), 035012, https://doi.org/10.1088/1758-5082/6/3/035012.C.B.B. Luna, D.D. Siqueira, E. da S.B. Ferreira, E.M. Araújo, R.M.R. Wellen, Effect of injection parameters on the thermal, mechanical and thermomechanical properties of polycaprolactone (PCL), J. Elastomers Plastics 53 (2021) 1045–1062, https://doi.org/10.1177/00952443211015345.] D. Rosa, C. Guedes, M. Bardi, Evaluation of thermal, mechanical and morphological properties of PCL/CA and PCL/CA/PE-g-GMA blends, Polym. Test. 26 (2007) 209–215.K. Cech ˇ Barabaszov´ a, S. Holeˇsova, ´ M. Hund´ akov´ a, V. Mohyla, Mechanically treated vermiculite particles in PCL/vermiculite thin films, Mater. Today Proc. 52 (2022) 239–247, https://doi.org/10.1016/j.matpr.2022.02.195.X. Wang, M. Jiang, Z. Zhou, J. Gou, D. Hui, 3D printing of polymer matrix composites: a review and prospective, Compos. B Eng. 110 (2017) 442–458, https:// doi.org/10.1016/j.compositesb.2016.11.034.J. Jordan, K.I. Jacob, R. Tannenbaum, M.A. Sharaf, I. Jasiuk, Experimental trends in polymer nanocomposites—a review, Mater. Sci. Eng. 393 (2005) 1–11, https://doi.org/10.1016/j.msea.2004.09.044.K. Taleb, I. Pillin, Y. Grohens, S. Saidi-Besbes, Polylactic acid/Gemini surfactant modified clay bio-nanocomposites: morphological, thermal, mechanical and barrier properties, Int. J. Biol. Macromol. 177 (2021) 505–516, https://doi.org/10.1016/j.ijbiomac.2021.02.135.L. Lu, Q. Zhang, D.M. Wootton, R. Chiou, D. Li, B. Lu, P.I. Lelkes, J. Zhou, Mechanical study of polycaprolactone-hydroxyapatite porous scaffolds created by porogen-based solid freeform fabrication method, J. Appl. Biomater. Funct. Mater. 12 (2014) 145–154, https://doi.org/10.5301/jabfm.5000163.P.M. Dewick, Medicinal Natural Products, John Wiley & Sons, Ltd, Chichester, UK, 2009, https://doi.org/10.1002/9780470742761.X.-F. Shang, S.L. Morris-Natschke, Y.-Q. Liu, X. Guo, X.-S. Xu, M. Goto, J.-C. Li, G.-Z. Yang, K.-H. Lee, Biologically active quinoline and quinazoline alkaloids part I, Med. Res. Rev. 38 (2018) 775–828, https://doi.org/10.1002/med.21466.G.M. Corrˆea, A.F. Alcˆantara, Chemical constituents and biological activities of species of Justicia: a review, Revista Brasileira de Farmacognosia 22 (2012) 220–238.L.A. Mitscher, Bacterial topoisomerase inhibitors: quinolone and pyridone antibacterial agents, Chem. Rev. 105 (2005) 559–592, https://doi.org/10.1021/ cr030101q.T.P.T. Cushnie, B. Cushnie, A.J. Lamb, Alkaloids: an overview of their antibacterial, antibiotic-enhancing and antivirulence activities, Int. J. Antimicrob. Agents 44 (2014) 377–386, https://doi.org/10.1016/j.ijantimicag.2014.06.001.A.E.M. Biang, E.L.D. Kamto, L.M. Simo, C. Antheaume, P. Lavedan, M. Vedrenne, O.P. Not´e, D.E. Pegnyemb, J.N. Mbing, M. Haddad, Triterpenoid saponins from the stem barks of Chytranthus klaineanus, Radlk. ex Engl, Phytochemistry Letters 37 (2020) 37–41, https://doi.org/10.1016/j.phytol.2020.04.006.N. Asati, R.N. Yadava, Antibacterial activity of a triterpenoid saponin from the stems of Caesalpinia pulcherrima Linn, Nat. Prod. Res. 32 (2018) 499–507.PublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repository.ucc.edu.co/bitstreams/729625eb-5074-4ab2-bb7a-1a9a82ed6b0a/download42fd4ad1e89814f5e4a476b409eb708cMD55LICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/7e24565b-6488-48cb-8548-484bf581d631/download3bce4f7ab09dfc588f126e1e36e98a45MD52ORIGINAL2023_OthersandPelaezVargas_ PCL_calcium_Heliyon.pdf2023_OthersandPelaezVargas_ PCL_calcium_Heliyon.pdfapplication/pdf6627055https://repository.ucc.edu.co/bitstreams/13cc16cd-e3ee-4d20-8bd6-01416a58812b/downloadca27d708d5bd99aabe69f65a6fdac82dMD532023_OthersandPelaezVargas_ PCL_calcium_Heliyon_licencia.pdf2023_OthersandPelaezVargas_ PCL_calcium_Heliyon_licencia.pdfapplication/pdf190275https://repository.ucc.edu.co/bitstreams/1f2b5342-d4ee-4003-83c1-d73e811e4844/download9fdd5160a949b18c4241c5e1f431e23fMD54TEXT2023_OthersandPelaezVargas_ PCL_calcium_Heliyon.pdf.txt2023_OthersandPelaezVargas_ PCL_calcium_Heliyon.pdf.txtExtracted texttext/plain70997https://repository.ucc.edu.co/bitstreams/3b99ed14-7c2b-4bd8-998a-e7d9f8bff81d/download38551718b34ee809f34f45b13706967aMD562023_OthersandPelaezVargas_ PCL_calcium_Heliyon_licencia.pdf.txt2023_OthersandPelaezVargas_ PCL_calcium_Heliyon_licencia.pdf.txtExtracted texttext/plain5777https://repository.ucc.edu.co/bitstreams/d3ca9529-a01f-4e1d-8629-a4a0e93b3d7f/download274a51eb40cfbf21e249cf0edcb11d0cMD58THUMBNAIL2023_OthersandPelaezVargas_ PCL_calcium_Heliyon.pdf.jpg2023_OthersandPelaezVargas_ PCL_calcium_Heliyon.pdf.jpgGenerated Thumbnailimage/jpeg13437https://repository.ucc.edu.co/bitstreams/f8cc2245-5944-42c0-bd49-a7555d7a5edc/downloadc1236ec8a50a02a5e7670e5ff380866aMD572023_OthersandPelaezVargas_ PCL_calcium_Heliyon_licencia.pdf.jpg2023_OthersandPelaezVargas_ PCL_calcium_Heliyon_licencia.pdf.jpgGenerated Thumbnailimage/jpeg12841https://repository.ucc.edu.co/bitstreams/52e45176-b581-425c-807a-3837e6ecbe43/download1bf76a36b9636ddb0d39de125cbc01aaMD5920.500.12494/55129oai:repository.ucc.edu.co:20.500.12494/551292024-08-10 22:47:08.316http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalrestrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo= |