Volatile fatty acids production from fermentation of waste activated sludge
The population growth has increased in the globe and, with it, the waste generation resulting in a severe problem. It is mandatory to assess production alternatives for the generation of bio-based products from residual sources. As is well known, plastic pollution is one of the main issues, one of t...
- Autores:
-
Acevedo Pabón, Paola Andrea
Gracia Rojas, Jeniffer
Montenegro, Carlos
Cabeza Rojas, Iván Orlando
Mosquera, Jhessica
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2020
- Institución:
- Universidad Cooperativa de Colombia
- Repositorio:
- Repositorio UCC
- Idioma:
- OAI Identifier:
- oai:repository.ucc.edu.co:20.500.12494/33307
- Acceso en línea:
- https://hdl.handle.net/20.500.12494/33307
- Palabra clave:
- Ácidos Volátiles
Digestión anaeróbica
Lodos de planta de tratamiento de aguas residuales
Parámetros de operación
Volatile Acids
Anaerobic digestion
Waste water treatment plant sludge
Operational parameters
- Rights
- openAccess
- License
- Atribución
id |
COOPER2_e259a461ad9036c925061693cf5836ef |
---|---|
oai_identifier_str |
oai:repository.ucc.edu.co:20.500.12494/33307 |
network_acronym_str |
COOPER2 |
network_name_str |
Repositorio UCC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Volatile fatty acids production from fermentation of waste activated sludge |
title |
Volatile fatty acids production from fermentation of waste activated sludge |
spellingShingle |
Volatile fatty acids production from fermentation of waste activated sludge Ácidos Volátiles Digestión anaeróbica Lodos de planta de tratamiento de aguas residuales Parámetros de operación Volatile Acids Anaerobic digestion Waste water treatment plant sludge Operational parameters |
title_short |
Volatile fatty acids production from fermentation of waste activated sludge |
title_full |
Volatile fatty acids production from fermentation of waste activated sludge |
title_fullStr |
Volatile fatty acids production from fermentation of waste activated sludge |
title_full_unstemmed |
Volatile fatty acids production from fermentation of waste activated sludge |
title_sort |
Volatile fatty acids production from fermentation of waste activated sludge |
dc.creator.fl_str_mv |
Acevedo Pabón, Paola Andrea Gracia Rojas, Jeniffer Montenegro, Carlos Cabeza Rojas, Iván Orlando Mosquera, Jhessica |
dc.contributor.author.none.fl_str_mv |
Acevedo Pabón, Paola Andrea Gracia Rojas, Jeniffer Montenegro, Carlos Cabeza Rojas, Iván Orlando Mosquera, Jhessica |
dc.subject.spa.fl_str_mv |
Ácidos Volátiles Digestión anaeróbica Lodos de planta de tratamiento de aguas residuales Parámetros de operación |
topic |
Ácidos Volátiles Digestión anaeróbica Lodos de planta de tratamiento de aguas residuales Parámetros de operación Volatile Acids Anaerobic digestion Waste water treatment plant sludge Operational parameters |
dc.subject.other.spa.fl_str_mv |
Volatile Acids Anaerobic digestion Waste water treatment plant sludge Operational parameters |
description |
The population growth has increased in the globe and, with it, the waste generation resulting in a severe problem. It is mandatory to assess production alternatives for the generation of bio-based products from residual sources. As is well known, plastic pollution is one of the main issues, one of the alternatives to overcome the unstoppable demand for this product are bioplastics derived from polymers of biological origin. One of the main steps for the synthesis of the biopolymers is the volatile fatty acids (VFA) production by anaerobic digestion of residual sources. Consequently, this work evaluates the production of VFA by anaerobic digestion of activated sludge from a municipal wastewater treatment plant. An experimental design was constructed to determine the conditions that favour the production of VFA. The design managed three independent variables: the organic load (6 gVS/L and 4 gVS/L), pH values of 9.0, 10.0 and 11.0, and a temperature of 25°C. The results of the study show that the activated sludge is suitable to produce VFA, due to the total concentration; also it may be used as carbon source for bio-polymers synthesis in future stages of the process. Alkaline conditions seem to boost the production of VFA, which was between 372 to 1600 mg COD/L. |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020-06-01 |
dc.date.accessioned.none.fl_str_mv |
2021-02-10T16:12:23Z |
dc.date.available.none.fl_str_mv |
2021-02-10T16:12:23Z |
dc.type.none.fl_str_mv |
Artículos Científicos |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
22839216 |
dc.identifier.uri.spa.fl_str_mv |
10.3303/CET2079037 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12494/33307 |
dc.identifier.bibliographicCitation.spa.fl_str_mv |
Gracia J., Mosquera J., Montenegro C., Acevedoa P., & Cabeza I. (2020). Volatile fatty acids production from fermentation of waste activated sludge. Chemical Engineering Transactions, 79. DOI: 10.3303/CET2079037 |
identifier_str_mv |
22839216 10.3303/CET2079037 Gracia J., Mosquera J., Montenegro C., Acevedoa P., & Cabeza I. (2020). Volatile fatty acids production from fermentation of waste activated sludge. Chemical Engineering Transactions, 79. DOI: 10.3303/CET2079037 |
url |
https://hdl.handle.net/20.500.12494/33307 |
dc.relation.isversionof.spa.fl_str_mv |
https://www.aidic.it/cet/20/79/037.pdf |
dc.relation.ispartofjournal.spa.fl_str_mv |
Chemical Engineering Transactions |
dc.relation.references.spa.fl_str_mv |
Angelidaki, I., Alves, D., Bolonzella, L., Borzacconi, J., Campos, A., Guwy, S., Van Lier, J., 2009. Defining the biochemical methane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays, Water Science and Technology. 59, 927-934 Atasoy, M., Eyice, Ö, Cetecioglu, Z., 2019. Volatile fatty acid production from semi-synthetic milk processing wastewater under alkali pH: the pearls and pitfalls of microbial culture, Bioresource Technology. 122415. Cendales Ladino, E.D., 2011. Producción de biogás mediante la codigestión anaeróbica de la mezcla de residuos cítricos y estiércol bovino para su utilización como fuente de energía renovable. Garcia-Aguirre, J., Aymerich, E., González-Mtnez. de Goñi, J., Esteban-Gutiérrez, M., 2017. Selective VFA production potential from organic waste streams: Assessing temperature and pH influence, Bioresource Technology. 244, 1081-1088. Hernández, M.A., González, A.J., Suárez, F., Ochoa, C., Candela, A.M., Cabeza, I., 2018. Assessment of the biohydrogen production potential of different organic residues in Colombia: Cocoa waste, pig manure and coffee mucilage, Chem. Eng. Trans. 65, 247-252. Huang, X., Mu, T., Shen, C., Lu, L., Liu, J., 2016. Alkaline fermentation of waste activated sludge stimulated by saponin: Volatile fatty acid production, mechanisms and pilot-scale application, Water Sci. Technol. 74, 2860-2869 Iglesias-Iglesias, R., Campanaro, S., Treu, L., Kennes, C., Veiga, M.C., 2019. Valorization of sewage sludge for volatile fatty acids production and role of microbiome on acidogenic fermentation, Bioresource Technology. 291. Jaramillo, M.A.P., 2016. Evaluacion Del Potencial Acidogenico Para Produccion de Acidos Grasos Volatiles (AGV) a Partir Del Aqua Residual Sintetica de La Industria Cervecera, Como Plataforma de Biorrefineria . Khan, M.A., Ngo, H.H., Guo, W.S., Liu, Y., Nghiem, L.D., Hai, F.I., Deng, L.J., Wang, J., Wu, Y., 2016. Optimization of process parameters for production of volatile fatty acid, biohydrogen and methane from anaerobic digestion, Bioresource Technololy 219, 738-748. Kumar, G., Ponnusamy, V.K., Bhosale, R.R., Shobana, S., Yoon, J.-., Bhatia, S.K., Rajesh Banu, J., Kim, S.-., 2019. A review on the conversion of volatile fatty acids to polyhydroxyalkanoates using dark fermentative effluents from hydrogen production, Bioresource Technology. 287. Li, N.,He, J.,Yan, H.,Chen, S.,Dai, X., 2017. Pathways in bacterial and archaeal communities dictated by ammonium stress in a high solid anaerobic digester with dewatered sludge, Bioresource Technology. 241. Liguori, R., Amore, A., Faraco, V., 2013. Waste valorization by biotechnological conversion into added value products, Appl. Microbiol. Biotechnol. 97, 6129-6147. Luo, K., Pang, Y., Yang, Q., Wang, D., Li, X., Lei, M., Huang, Q., 2019. A critical review of volatile fatty acids produced from waste activated sludge: enhanced strategies and its applications, Environ. Sci. Pollut. Res Owen, W.F., Stuckey, D.C., Healy Jr., J.B., Young, L.Y., McCarty, P.L., 1979. Bioassay for monitoring biochemical methane potential and anaerobic toxicity, Water Res. 13, 485-492. Strazzera, G., Battista, F., Garcia, N.H., Frison, N., Bolzonella, D., 2018. Volatile fatty acids production from food wastes for biorefinery platforms: A review, J. Environ. Manage. 226, 278-288. Yuan, Y., Hu, X., Chen, H., Zhou, Y., Zhou, Y., Wang, D., 2019. Advances in enhanced volatile fatty acid production from anaerobic fermentation of waste activated sludge, Sci. Total Environ. 694. Zeng, R.J., Yuan, Z., Keller, J., 2006. Effects of solids concentration, pH and carbon addition on the production rate and composition of volatile fatty acids in prefermenters using primary sewage sludge, Water Sci. Technol. 53. Zhou, A., Guo, Z., Yang, C., Kong, F., Liu, W., Wang, A., 2013. Volatile fatty acids productivity by anaerobic co-digesting waste activated sludge and corn straw: Effect of feedstock proportion, J. Biotechnol. 168, 234-239 |
dc.rights.license.none.fl_str_mv |
Atribución |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
217-222 p. |
dc.coverage.temporal.spa.fl_str_mv |
79 2020 |
dc.publisher.spa.fl_str_mv |
Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Industrial, Bogotá AIDIC |
dc.publisher.program.spa.fl_str_mv |
Ingeniería Industrial |
dc.publisher.place.spa.fl_str_mv |
Bogotá |
institution |
Universidad Cooperativa de Colombia |
bitstream.url.fl_str_mv |
https://repository.ucc.edu.co/bitstreams/b399bba9-c2c5-4d51-b428-8a4d6affa9ed/download https://repository.ucc.edu.co/bitstreams/58eb6a33-5582-4369-9dc4-b549d521cdf9/download https://repository.ucc.edu.co/bitstreams/89deca44-2515-4794-9c66-25584cc796f0/download https://repository.ucc.edu.co/bitstreams/061ff5e3-4d7d-49ee-a7b6-df897d06d837/download |
bitstream.checksum.fl_str_mv |
89ca1251882558f3b85344470f6dfbb8 3bce4f7ab09dfc588f126e1e36e98a45 94437ddbff18c5a9fdaec2c2337cf7a2 6f75b75098a1057180e5beb12fcb51f4 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Cooperativa de Colombia |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1811565101755400192 |
spelling |
Acevedo Pabón, Paola Andrea Gracia Rojas, JenifferMontenegro, CarlosCabeza Rojas, Iván OrlandoMosquera, Jhessica79 20202021-02-10T16:12:23Z2021-02-10T16:12:23Z2020-06-012283921610.3303/CET2079037https://hdl.handle.net/20.500.12494/33307Gracia J., Mosquera J., Montenegro C., Acevedoa P., & Cabeza I. (2020). Volatile fatty acids production from fermentation of waste activated sludge. Chemical Engineering Transactions, 79. DOI: 10.3303/CET2079037The population growth has increased in the globe and, with it, the waste generation resulting in a severe problem. It is mandatory to assess production alternatives for the generation of bio-based products from residual sources. As is well known, plastic pollution is one of the main issues, one of the alternatives to overcome the unstoppable demand for this product are bioplastics derived from polymers of biological origin. One of the main steps for the synthesis of the biopolymers is the volatile fatty acids (VFA) production by anaerobic digestion of residual sources. Consequently, this work evaluates the production of VFA by anaerobic digestion of activated sludge from a municipal wastewater treatment plant. An experimental design was constructed to determine the conditions that favour the production of VFA. The design managed three independent variables: the organic load (6 gVS/L and 4 gVS/L), pH values of 9.0, 10.0 and 11.0, and a temperature of 25°C. The results of the study show that the activated sludge is suitable to produce VFA, due to the total concentration; also it may be used as carbon source for bio-polymers synthesis in future stages of the process. Alkaline conditions seem to boost the production of VFA, which was between 372 to 1600 mg COD/L.https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001028111https://orcid.org/0000-0002-1549-3819https://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000002960paola.acevedop@campusucc.edu.cohttps://scholar.google.com/citations?user=uBreqmgAAAAJ&hl=es217-222 p.Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Industrial, BogotáAIDICIngeniería IndustrialBogotáhttps://www.aidic.it/cet/20/79/037.pdfChemical Engineering TransactionsAngelidaki, I., Alves, D., Bolonzella, L., Borzacconi, J., Campos, A., Guwy, S., Van Lier, J., 2009. Defining the biochemical methane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays, Water Science and Technology. 59, 927-934Atasoy, M., Eyice, Ö, Cetecioglu, Z., 2019. Volatile fatty acid production from semi-synthetic milk processing wastewater under alkali pH: the pearls and pitfalls of microbial culture, Bioresource Technology. 122415.Cendales Ladino, E.D., 2011. Producción de biogás mediante la codigestión anaeróbica de la mezcla de residuos cítricos y estiércol bovino para su utilización como fuente de energía renovable.Garcia-Aguirre, J., Aymerich, E., González-Mtnez. de Goñi, J., Esteban-Gutiérrez, M., 2017. Selective VFA production potential from organic waste streams: Assessing temperature and pH influence, Bioresource Technology. 244, 1081-1088.Hernández, M.A., González, A.J., Suárez, F., Ochoa, C., Candela, A.M., Cabeza, I., 2018. Assessment of the biohydrogen production potential of different organic residues in Colombia: Cocoa waste, pig manure and coffee mucilage, Chem. Eng. Trans. 65, 247-252.Huang, X., Mu, T., Shen, C., Lu, L., Liu, J., 2016. Alkaline fermentation of waste activated sludge stimulated by saponin: Volatile fatty acid production, mechanisms and pilot-scale application, Water Sci. Technol. 74, 2860-2869Iglesias-Iglesias, R., Campanaro, S., Treu, L., Kennes, C., Veiga, M.C., 2019. Valorization of sewage sludge for volatile fatty acids production and role of microbiome on acidogenic fermentation, Bioresource Technology. 291.Jaramillo, M.A.P., 2016. Evaluacion Del Potencial Acidogenico Para Produccion de Acidos Grasos Volatiles (AGV) a Partir Del Aqua Residual Sintetica de La Industria Cervecera, Como Plataforma de Biorrefineria .Khan, M.A., Ngo, H.H., Guo, W.S., Liu, Y., Nghiem, L.D., Hai, F.I., Deng, L.J., Wang, J., Wu, Y., 2016. Optimization of process parameters for production of volatile fatty acid, biohydrogen and methane from anaerobic digestion, Bioresource Technololy 219, 738-748.Kumar, G., Ponnusamy, V.K., Bhosale, R.R., Shobana, S., Yoon, J.-., Bhatia, S.K., Rajesh Banu, J., Kim, S.-., 2019. A review on the conversion of volatile fatty acids to polyhydroxyalkanoates using dark fermentative effluents from hydrogen production, Bioresource Technology. 287.Li, N.,He, J.,Yan, H.,Chen, S.,Dai, X., 2017. Pathways in bacterial and archaeal communities dictated by ammonium stress in a high solid anaerobic digester with dewatered sludge, Bioresource Technology. 241.Liguori, R., Amore, A., Faraco, V., 2013. Waste valorization by biotechnological conversion into added value products, Appl. Microbiol. Biotechnol. 97, 6129-6147.Luo, K., Pang, Y., Yang, Q., Wang, D., Li, X., Lei, M., Huang, Q., 2019. A critical review of volatile fatty acids produced from waste activated sludge: enhanced strategies and its applications, Environ. Sci. Pollut. ResOwen, W.F., Stuckey, D.C., Healy Jr., J.B., Young, L.Y., McCarty, P.L., 1979. Bioassay for monitoring biochemical methane potential and anaerobic toxicity, Water Res. 13, 485-492.Strazzera, G., Battista, F., Garcia, N.H., Frison, N., Bolzonella, D., 2018. Volatile fatty acids production from food wastes for biorefinery platforms: A review, J. Environ. Manage. 226, 278-288.Yuan, Y., Hu, X., Chen, H., Zhou, Y., Zhou, Y., Wang, D., 2019. Advances in enhanced volatile fatty acid production from anaerobic fermentation of waste activated sludge, Sci. Total Environ. 694.Zeng, R.J., Yuan, Z., Keller, J., 2006. Effects of solids concentration, pH and carbon addition on the production rate and composition of volatile fatty acids in prefermenters using primary sewage sludge, Water Sci. Technol. 53.Zhou, A., Guo, Z., Yang, C., Kong, F., Liu, W., Wang, A., 2013. Volatile fatty acids productivity by anaerobic co-digesting waste activated sludge and corn straw: Effect of feedstock proportion, J. Biotechnol. 168, 234-239Ácidos VolátilesDigestión anaeróbicaLodos de planta de tratamiento de aguas residualesParámetros de operaciónVolatile AcidsAnaerobic digestionWaste water treatment plant sludgeOperational parametersVolatile fatty acids production from fermentation of waste activated sludgeArtículos Científicoshttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribucióninfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationORIGINAL2020_Volatile_Fatty_Acids.pdf2020_Volatile_Fatty_Acids.pdfArticuloapplication/pdf681816https://repository.ucc.edu.co/bitstreams/b399bba9-c2c5-4d51-b428-8a4d6affa9ed/download89ca1251882558f3b85344470f6dfbb8MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/58eb6a33-5582-4369-9dc4-b549d521cdf9/download3bce4f7ab09dfc588f126e1e36e98a45MD52THUMBNAIL2020_Volatile_Fatty_Acids.pdf.jpg2020_Volatile_Fatty_Acids.pdf.jpgGenerated Thumbnailimage/jpeg5885https://repository.ucc.edu.co/bitstreams/89deca44-2515-4794-9c66-25584cc796f0/download94437ddbff18c5a9fdaec2c2337cf7a2MD53TEXT2020_Volatile_Fatty_Acids.pdf.txt2020_Volatile_Fatty_Acids.pdf.txtExtracted texttext/plain20739https://repository.ucc.edu.co/bitstreams/061ff5e3-4d7d-49ee-a7b6-df897d06d837/download6f75b75098a1057180e5beb12fcb51f4MD5420.500.12494/33307oai:repository.ucc.edu.co:20.500.12494/333072024-08-10 21:03:05.333restrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo= |