Volatile fatty acids production from fermentation of waste activated sludge

The population growth has increased in the globe and, with it, the waste generation resulting in a severe problem. It is mandatory to assess production alternatives for the generation of bio-based products from residual sources. As is well known, plastic pollution is one of the main issues, one of t...

Full description

Autores:
Acevedo Pabón, Paola Andrea
Gracia Rojas, Jeniffer
Montenegro, Carlos
Cabeza Rojas, Iván Orlando
Mosquera, Jhessica
Tipo de recurso:
Article of investigation
Fecha de publicación:
2020
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/33307
Acceso en línea:
https://hdl.handle.net/20.500.12494/33307
Palabra clave:
Ácidos Volátiles
Digestión anaeróbica
Lodos de planta de tratamiento de aguas residuales
Parámetros de operación
Volatile Acids
Anaerobic digestion
Waste water treatment plant sludge
Operational parameters
Rights
openAccess
License
Atribución
id COOPER2_e259a461ad9036c925061693cf5836ef
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/33307
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.spa.fl_str_mv Volatile fatty acids production from fermentation of waste activated sludge
title Volatile fatty acids production from fermentation of waste activated sludge
spellingShingle Volatile fatty acids production from fermentation of waste activated sludge
Ácidos Volátiles
Digestión anaeróbica
Lodos de planta de tratamiento de aguas residuales
Parámetros de operación
Volatile Acids
Anaerobic digestion
Waste water treatment plant sludge
Operational parameters
title_short Volatile fatty acids production from fermentation of waste activated sludge
title_full Volatile fatty acids production from fermentation of waste activated sludge
title_fullStr Volatile fatty acids production from fermentation of waste activated sludge
title_full_unstemmed Volatile fatty acids production from fermentation of waste activated sludge
title_sort Volatile fatty acids production from fermentation of waste activated sludge
dc.creator.fl_str_mv Acevedo Pabón, Paola Andrea
Gracia Rojas, Jeniffer
Montenegro, Carlos
Cabeza Rojas, Iván Orlando
Mosquera, Jhessica
dc.contributor.author.none.fl_str_mv Acevedo Pabón, Paola Andrea
Gracia Rojas, Jeniffer
Montenegro, Carlos
Cabeza Rojas, Iván Orlando
Mosquera, Jhessica
dc.subject.spa.fl_str_mv Ácidos Volátiles
Digestión anaeróbica
Lodos de planta de tratamiento de aguas residuales
Parámetros de operación
topic Ácidos Volátiles
Digestión anaeróbica
Lodos de planta de tratamiento de aguas residuales
Parámetros de operación
Volatile Acids
Anaerobic digestion
Waste water treatment plant sludge
Operational parameters
dc.subject.other.spa.fl_str_mv Volatile Acids
Anaerobic digestion
Waste water treatment plant sludge
Operational parameters
description The population growth has increased in the globe and, with it, the waste generation resulting in a severe problem. It is mandatory to assess production alternatives for the generation of bio-based products from residual sources. As is well known, plastic pollution is one of the main issues, one of the alternatives to overcome the unstoppable demand for this product are bioplastics derived from polymers of biological origin. One of the main steps for the synthesis of the biopolymers is the volatile fatty acids (VFA) production by anaerobic digestion of residual sources. Consequently, this work evaluates the production of VFA by anaerobic digestion of activated sludge from a municipal wastewater treatment plant. An experimental design was constructed to determine the conditions that favour the production of VFA. The design managed three independent variables: the organic load (6 gVS/L and 4 gVS/L), pH values of 9.0, 10.0 and 11.0, and a temperature of 25°C. The results of the study show that the activated sludge is suitable to produce VFA, due to the total concentration; also it may be used as carbon source for bio-polymers synthesis in future stages of the process. Alkaline conditions seem to boost the production of VFA, which was between 372 to 1600 mg COD/L.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020-06-01
dc.date.accessioned.none.fl_str_mv 2021-02-10T16:12:23Z
dc.date.available.none.fl_str_mv 2021-02-10T16:12:23Z
dc.type.none.fl_str_mv Artículos Científicos
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 22839216
dc.identifier.uri.spa.fl_str_mv 10.3303/CET2079037
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12494/33307
dc.identifier.bibliographicCitation.spa.fl_str_mv Gracia J., Mosquera J., Montenegro C., Acevedoa P., & Cabeza I. (2020). Volatile fatty acids production from fermentation of waste activated sludge. Chemical Engineering Transactions, 79. DOI: 10.3303/CET2079037
identifier_str_mv 22839216
10.3303/CET2079037
Gracia J., Mosquera J., Montenegro C., Acevedoa P., & Cabeza I. (2020). Volatile fatty acids production from fermentation of waste activated sludge. Chemical Engineering Transactions, 79. DOI: 10.3303/CET2079037
url https://hdl.handle.net/20.500.12494/33307
dc.relation.isversionof.spa.fl_str_mv https://www.aidic.it/cet/20/79/037.pdf
dc.relation.ispartofjournal.spa.fl_str_mv Chemical Engineering Transactions
dc.relation.references.spa.fl_str_mv Angelidaki, I., Alves, D., Bolonzella, L., Borzacconi, J., Campos, A., Guwy, S., Van Lier, J., 2009. Defining the biochemical methane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays, Water Science and Technology. 59, 927-934
Atasoy, M., Eyice, Ö, Cetecioglu, Z., 2019. Volatile fatty acid production from semi-synthetic milk processing wastewater under alkali pH: the pearls and pitfalls of microbial culture, Bioresource Technology. 122415.
Cendales Ladino, E.D., 2011. Producción de biogás mediante la codigestión anaeróbica de la mezcla de residuos cítricos y estiércol bovino para su utilización como fuente de energía renovable.
Garcia-Aguirre, J., Aymerich, E., González-Mtnez. de Goñi, J., Esteban-Gutiérrez, M., 2017. Selective VFA production potential from organic waste streams: Assessing temperature and pH influence, Bioresource Technology. 244, 1081-1088.
Hernández, M.A., González, A.J., Suárez, F., Ochoa, C., Candela, A.M., Cabeza, I., 2018. Assessment of the biohydrogen production potential of different organic residues in Colombia: Cocoa waste, pig manure and coffee mucilage, Chem. Eng. Trans. 65, 247-252.
Huang, X., Mu, T., Shen, C., Lu, L., Liu, J., 2016. Alkaline fermentation of waste activated sludge stimulated by saponin: Volatile fatty acid production, mechanisms and pilot-scale application, Water Sci. Technol. 74, 2860-2869
Iglesias-Iglesias, R., Campanaro, S., Treu, L., Kennes, C., Veiga, M.C., 2019. Valorization of sewage sludge for volatile fatty acids production and role of microbiome on acidogenic fermentation, Bioresource Technology. 291.
Jaramillo, M.A.P., 2016. Evaluacion Del Potencial Acidogenico Para Produccion de Acidos Grasos Volatiles (AGV) a Partir Del Aqua Residual Sintetica de La Industria Cervecera, Como Plataforma de Biorrefineria .
Khan, M.A., Ngo, H.H., Guo, W.S., Liu, Y., Nghiem, L.D., Hai, F.I., Deng, L.J., Wang, J., Wu, Y., 2016. Optimization of process parameters for production of volatile fatty acid, biohydrogen and methane from anaerobic digestion, Bioresource Technololy 219, 738-748.
Kumar, G., Ponnusamy, V.K., Bhosale, R.R., Shobana, S., Yoon, J.-., Bhatia, S.K., Rajesh Banu, J., Kim, S.-., 2019. A review on the conversion of volatile fatty acids to polyhydroxyalkanoates using dark fermentative effluents from hydrogen production, Bioresource Technology. 287.
Li, N.,He, J.,Yan, H.,Chen, S.,Dai, X., 2017. Pathways in bacterial and archaeal communities dictated by ammonium stress in a high solid anaerobic digester with dewatered sludge, Bioresource Technology. 241.
Liguori, R., Amore, A., Faraco, V., 2013. Waste valorization by biotechnological conversion into added value products, Appl. Microbiol. Biotechnol. 97, 6129-6147.
Luo, K., Pang, Y., Yang, Q., Wang, D., Li, X., Lei, M., Huang, Q., 2019. A critical review of volatile fatty acids produced from waste activated sludge: enhanced strategies and its applications, Environ. Sci. Pollut. Res
Owen, W.F., Stuckey, D.C., Healy Jr., J.B., Young, L.Y., McCarty, P.L., 1979. Bioassay for monitoring biochemical methane potential and anaerobic toxicity, Water Res. 13, 485-492.
Strazzera, G., Battista, F., Garcia, N.H., Frison, N., Bolzonella, D., 2018. Volatile fatty acids production from food wastes for biorefinery platforms: A review, J. Environ. Manage. 226, 278-288.
Yuan, Y., Hu, X., Chen, H., Zhou, Y., Zhou, Y., Wang, D., 2019. Advances in enhanced volatile fatty acid production from anaerobic fermentation of waste activated sludge, Sci. Total Environ. 694.
Zeng, R.J., Yuan, Z., Keller, J., 2006. Effects of solids concentration, pH and carbon addition on the production rate and composition of volatile fatty acids in prefermenters using primary sewage sludge, Water Sci. Technol. 53.
Zhou, A., Guo, Z., Yang, C., Kong, F., Liu, W., Wang, A., 2013. Volatile fatty acids productivity by anaerobic co-digesting waste activated sludge and corn straw: Effect of feedstock proportion, J. Biotechnol. 168, 234-239
dc.rights.license.none.fl_str_mv Atribución
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 217-222 p.
dc.coverage.temporal.spa.fl_str_mv 79 2020
dc.publisher.spa.fl_str_mv Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Industrial, Bogotá
AIDIC
dc.publisher.program.spa.fl_str_mv Ingeniería Industrial
dc.publisher.place.spa.fl_str_mv Bogotá
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/b399bba9-c2c5-4d51-b428-8a4d6affa9ed/download
https://repository.ucc.edu.co/bitstreams/58eb6a33-5582-4369-9dc4-b549d521cdf9/download
https://repository.ucc.edu.co/bitstreams/89deca44-2515-4794-9c66-25584cc796f0/download
https://repository.ucc.edu.co/bitstreams/061ff5e3-4d7d-49ee-a7b6-df897d06d837/download
bitstream.checksum.fl_str_mv 89ca1251882558f3b85344470f6dfbb8
3bce4f7ab09dfc588f126e1e36e98a45
94437ddbff18c5a9fdaec2c2337cf7a2
6f75b75098a1057180e5beb12fcb51f4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1811565101755400192
spelling Acevedo Pabón, Paola Andrea Gracia Rojas, JenifferMontenegro, CarlosCabeza Rojas, Iván OrlandoMosquera, Jhessica79 20202021-02-10T16:12:23Z2021-02-10T16:12:23Z2020-06-012283921610.3303/CET2079037https://hdl.handle.net/20.500.12494/33307Gracia J., Mosquera J., Montenegro C., Acevedoa P., & Cabeza I. (2020). Volatile fatty acids production from fermentation of waste activated sludge. Chemical Engineering Transactions, 79. DOI: 10.3303/CET2079037The population growth has increased in the globe and, with it, the waste generation resulting in a severe problem. It is mandatory to assess production alternatives for the generation of bio-based products from residual sources. As is well known, plastic pollution is one of the main issues, one of the alternatives to overcome the unstoppable demand for this product are bioplastics derived from polymers of biological origin. One of the main steps for the synthesis of the biopolymers is the volatile fatty acids (VFA) production by anaerobic digestion of residual sources. Consequently, this work evaluates the production of VFA by anaerobic digestion of activated sludge from a municipal wastewater treatment plant. An experimental design was constructed to determine the conditions that favour the production of VFA. The design managed three independent variables: the organic load (6 gVS/L and 4 gVS/L), pH values of 9.0, 10.0 and 11.0, and a temperature of 25°C. The results of the study show that the activated sludge is suitable to produce VFA, due to the total concentration; also it may be used as carbon source for bio-polymers synthesis in future stages of the process. Alkaline conditions seem to boost the production of VFA, which was between 372 to 1600 mg COD/L.https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001028111https://orcid.org/0000-0002-1549-3819https://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000002960paola.acevedop@campusucc.edu.cohttps://scholar.google.com/citations?user=uBreqmgAAAAJ&hl=es217-222 p.Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Industrial, BogotáAIDICIngeniería IndustrialBogotáhttps://www.aidic.it/cet/20/79/037.pdfChemical Engineering TransactionsAngelidaki, I., Alves, D., Bolonzella, L., Borzacconi, J., Campos, A., Guwy, S., Van Lier, J., 2009. Defining the biochemical methane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays, Water Science and Technology. 59, 927-934Atasoy, M., Eyice, Ö, Cetecioglu, Z., 2019. Volatile fatty acid production from semi-synthetic milk processing wastewater under alkali pH: the pearls and pitfalls of microbial culture, Bioresource Technology. 122415.Cendales Ladino, E.D., 2011. Producción de biogás mediante la codigestión anaeróbica de la mezcla de residuos cítricos y estiércol bovino para su utilización como fuente de energía renovable.Garcia-Aguirre, J., Aymerich, E., González-Mtnez. de Goñi, J., Esteban-Gutiérrez, M., 2017. Selective VFA production potential from organic waste streams: Assessing temperature and pH influence, Bioresource Technology. 244, 1081-1088.Hernández, M.A., González, A.J., Suárez, F., Ochoa, C., Candela, A.M., Cabeza, I., 2018. Assessment of the biohydrogen production potential of different organic residues in Colombia: Cocoa waste, pig manure and coffee mucilage, Chem. Eng. Trans. 65, 247-252.Huang, X., Mu, T., Shen, C., Lu, L., Liu, J., 2016. Alkaline fermentation of waste activated sludge stimulated by saponin: Volatile fatty acid production, mechanisms and pilot-scale application, Water Sci. Technol. 74, 2860-2869Iglesias-Iglesias, R., Campanaro, S., Treu, L., Kennes, C., Veiga, M.C., 2019. Valorization of sewage sludge for volatile fatty acids production and role of microbiome on acidogenic fermentation, Bioresource Technology. 291.Jaramillo, M.A.P., 2016. Evaluacion Del Potencial Acidogenico Para Produccion de Acidos Grasos Volatiles (AGV) a Partir Del Aqua Residual Sintetica de La Industria Cervecera, Como Plataforma de Biorrefineria .Khan, M.A., Ngo, H.H., Guo, W.S., Liu, Y., Nghiem, L.D., Hai, F.I., Deng, L.J., Wang, J., Wu, Y., 2016. Optimization of process parameters for production of volatile fatty acid, biohydrogen and methane from anaerobic digestion, Bioresource Technololy 219, 738-748.Kumar, G., Ponnusamy, V.K., Bhosale, R.R., Shobana, S., Yoon, J.-., Bhatia, S.K., Rajesh Banu, J., Kim, S.-., 2019. A review on the conversion of volatile fatty acids to polyhydroxyalkanoates using dark fermentative effluents from hydrogen production, Bioresource Technology. 287.Li, N.,He, J.,Yan, H.,Chen, S.,Dai, X., 2017. Pathways in bacterial and archaeal communities dictated by ammonium stress in a high solid anaerobic digester with dewatered sludge, Bioresource Technology. 241.Liguori, R., Amore, A., Faraco, V., 2013. Waste valorization by biotechnological conversion into added value products, Appl. Microbiol. Biotechnol. 97, 6129-6147.Luo, K., Pang, Y., Yang, Q., Wang, D., Li, X., Lei, M., Huang, Q., 2019. A critical review of volatile fatty acids produced from waste activated sludge: enhanced strategies and its applications, Environ. Sci. Pollut. ResOwen, W.F., Stuckey, D.C., Healy Jr., J.B., Young, L.Y., McCarty, P.L., 1979. Bioassay for monitoring biochemical methane potential and anaerobic toxicity, Water Res. 13, 485-492.Strazzera, G., Battista, F., Garcia, N.H., Frison, N., Bolzonella, D., 2018. Volatile fatty acids production from food wastes for biorefinery platforms: A review, J. Environ. Manage. 226, 278-288.Yuan, Y., Hu, X., Chen, H., Zhou, Y., Zhou, Y., Wang, D., 2019. Advances in enhanced volatile fatty acid production from anaerobic fermentation of waste activated sludge, Sci. Total Environ. 694.Zeng, R.J., Yuan, Z., Keller, J., 2006. Effects of solids concentration, pH and carbon addition on the production rate and composition of volatile fatty acids in prefermenters using primary sewage sludge, Water Sci. Technol. 53.Zhou, A., Guo, Z., Yang, C., Kong, F., Liu, W., Wang, A., 2013. Volatile fatty acids productivity by anaerobic co-digesting waste activated sludge and corn straw: Effect of feedstock proportion, J. Biotechnol. 168, 234-239Ácidos VolátilesDigestión anaeróbicaLodos de planta de tratamiento de aguas residualesParámetros de operaciónVolatile AcidsAnaerobic digestionWaste water treatment plant sludgeOperational parametersVolatile fatty acids production from fermentation of waste activated sludgeArtículos Científicoshttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribucióninfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationORIGINAL2020_Volatile_Fatty_Acids.pdf2020_Volatile_Fatty_Acids.pdfArticuloapplication/pdf681816https://repository.ucc.edu.co/bitstreams/b399bba9-c2c5-4d51-b428-8a4d6affa9ed/download89ca1251882558f3b85344470f6dfbb8MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/58eb6a33-5582-4369-9dc4-b549d521cdf9/download3bce4f7ab09dfc588f126e1e36e98a45MD52THUMBNAIL2020_Volatile_Fatty_Acids.pdf.jpg2020_Volatile_Fatty_Acids.pdf.jpgGenerated Thumbnailimage/jpeg5885https://repository.ucc.edu.co/bitstreams/89deca44-2515-4794-9c66-25584cc796f0/download94437ddbff18c5a9fdaec2c2337cf7a2MD53TEXT2020_Volatile_Fatty_Acids.pdf.txt2020_Volatile_Fatty_Acids.pdf.txtExtracted texttext/plain20739https://repository.ucc.edu.co/bitstreams/061ff5e3-4d7d-49ee-a7b6-df897d06d837/download6f75b75098a1057180e5beb12fcb51f4MD5420.500.12494/33307oai:repository.ucc.edu.co:20.500.12494/333072024-08-10 21:03:05.333restrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo=