Emisiones de CO2 de hormigón tradicional y modificado. Revisión sistemática de literatura
Los problemas del impacto ambiental negativo asociado con la elevada emisión de CO2 durante la preparación de hormigón, ha requerido la incorporación de sustitutos de los materiales tradicionales que permiten mejorar las propiedades mecánicas y disminuir las emisiones. Este trabajo presenta una revi...
- Autores:
-
Avendaño Gonzalez, Anderson Alexander
Ogaza Diaz, Yeiner Jose
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2022
- Institución:
- Universidad Cooperativa de Colombia
- Repositorio:
- Repositorio UCC
- Idioma:
- OAI Identifier:
- oai:repository.ucc.edu.co:20.500.12494/44852
- Acceso en línea:
- https://hdl.handle.net/20.500.12494/44852
- Palabra clave:
- Hormigón sostenible
Huella de carbono
Análisis de ciclo de vida
Emisiones de CO2
TG 2022 ICI 44852
Sustainable concrete
Carbon footprint
Life cycle assessment
CO2 emissions
- Rights
- closedAccess
- License
- NINGUNA
id |
COOPER2_de305617361bfb11d031c83615c05300 |
---|---|
oai_identifier_str |
oai:repository.ucc.edu.co:20.500.12494/44852 |
network_acronym_str |
COOPER2 |
network_name_str |
Repositorio UCC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Emisiones de CO2 de hormigón tradicional y modificado. Revisión sistemática de literatura |
title |
Emisiones de CO2 de hormigón tradicional y modificado. Revisión sistemática de literatura |
spellingShingle |
Emisiones de CO2 de hormigón tradicional y modificado. Revisión sistemática de literatura Hormigón sostenible Huella de carbono Análisis de ciclo de vida Emisiones de CO2 TG 2022 ICI 44852 Sustainable concrete Carbon footprint Life cycle assessment CO2 emissions |
title_short |
Emisiones de CO2 de hormigón tradicional y modificado. Revisión sistemática de literatura |
title_full |
Emisiones de CO2 de hormigón tradicional y modificado. Revisión sistemática de literatura |
title_fullStr |
Emisiones de CO2 de hormigón tradicional y modificado. Revisión sistemática de literatura |
title_full_unstemmed |
Emisiones de CO2 de hormigón tradicional y modificado. Revisión sistemática de literatura |
title_sort |
Emisiones de CO2 de hormigón tradicional y modificado. Revisión sistemática de literatura |
dc.creator.fl_str_mv |
Avendaño Gonzalez, Anderson Alexander Ogaza Diaz, Yeiner Jose |
dc.contributor.advisor.none.fl_str_mv |
Arbeláez Pérez, Oscar Felipe |
dc.contributor.author.none.fl_str_mv |
Avendaño Gonzalez, Anderson Alexander Ogaza Diaz, Yeiner Jose |
dc.subject.spa.fl_str_mv |
Hormigón sostenible Huella de carbono Análisis de ciclo de vida Emisiones de CO2 |
topic |
Hormigón sostenible Huella de carbono Análisis de ciclo de vida Emisiones de CO2 TG 2022 ICI 44852 Sustainable concrete Carbon footprint Life cycle assessment CO2 emissions |
dc.subject.classification.spa.fl_str_mv |
TG 2022 ICI 44852 |
dc.subject.other.spa.fl_str_mv |
Sustainable concrete Carbon footprint Life cycle assessment CO2 emissions |
description |
Los problemas del impacto ambiental negativo asociado con la elevada emisión de CO2 durante la preparación de hormigón, ha requerido la incorporación de sustitutos de los materiales tradicionales que permiten mejorar las propiedades mecánicas y disminuir las emisiones. Este trabajo presenta una revisión de los trabajos reportados entre 2000 y 2021, esta revisión se de-limitó a documentos tipo artículo que reportaran el cálculo de las emisiones de CO2 durante la preparación de hormigones tradicionales y modificados. Se encontró que las emisiones dependen del tipo y del porcentaje de incorporación de los susti-tutos, así como de la resistencia requerida, siendo menor la disminución para los sustitutos del cemento. Se discuten las perspectivas futuras frente al tema y los desafíos que enfrenta la industria del hormigón. Se espera con esta revisión motivar el reporte de las emisiones de CO2 en hormigones modificados como parámetro de cuantificación del impacto ambiental en la industria del hormigón. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-05-09T20:54:50Z |
dc.date.available.none.fl_str_mv |
2022-05-09T20:54:50Z |
dc.date.issued.none.fl_str_mv |
2022-04-21 |
dc.type.none.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12494/44852 |
dc.identifier.bibliographicCitation.spa.fl_str_mv |
Avendaño Gonzalez, A. A. y Ogaza Diaz, Y. J. (2022). Emisiones de CO2 de hormigón tradicional y modificado. Revisión sistemática de literatura. [Tesis de pregrado, Universidad Cooperativa de Colombia]. Repositorio Institucional UCC. https://repository.ucc.edu.co/handle/20.500.12494/44852 |
url |
https://hdl.handle.net/20.500.12494/44852 |
identifier_str_mv |
Avendaño Gonzalez, A. A. y Ogaza Diaz, Y. J. (2022). Emisiones de CO2 de hormigón tradicional y modificado. Revisión sistemática de literatura. [Tesis de pregrado, Universidad Cooperativa de Colombia]. Repositorio Institucional UCC. https://repository.ucc.edu.co/handle/20.500.12494/44852 |
dc.relation.references.spa.fl_str_mv |
Adesina, A. (2020). Recent advances in the concrete industry to reduce its carbon dioxide emissions. Environmental Challenges, 1(November), 100004. https://doi.org/10.1016/j.envc.2020.100004 Alnahhal, M. F., Alengaram, U. J., Jumaat, M. Z., Abutaha, F., Alqedra, M. A., & Nayaka, R. R. (2018). Assessment on engineering properties and CO2 emissions of recycled aggregate concrete incorporating waste products as supplements to Portland cement. Journal of Cleaner Production, 203, 822–835. https://doi.org/10.1016/j.jclepro.2018.08.292 Alsalman, A., Assi, L. N., Kareem, R. S., Carter, K., & Ziehl, P. (2021). Energy and CO2 emission assessments of alkali-activated concrete and Ordinary Portland Cement concrete: A comparative analysis of different grades of concrete. Cleaner Environmental Systems, 3(April), 100047. https://doi.org/10.1016/j.cesys.2021.100047 Alsubari, B., Shafigh, P., Jumaat, M. (2016). Utilization of high-volume treated palm oil fuel ash to produce sustainable self- compacting concrete. Journal of Cleaner Production, 137, 982-996. https://doi.org/10.1016/j.jclepro.2016.07.133 Aprianti, E., Shafigh, P., Bahri, S., & Farahani, J. N. (2015). Supplementary cementitious materials origin from agricultural wastes - A review. Construction and Building Materials, 74, 176–187. https://doi.org/10.1016/j.conbuildmat.2014.10.010 Baynes, T. M., Crawford, R. H., Schinabeck, J., Bontinck, P. A., Stephan, A., Wiedmann, T., Lenzen, M., Kenway, S., Yu, M., Teh, S. H., Lane, J., Geschke, A., Fry, J., & Chen, G. (2018). The Australian industrial ecology virtual laboratory and multi-scale assessment of buildings and construction. Energy and Buildings, 164(2018), 14–20. https://doi.org/10.1016/j.enbuild.2017.12.056 Berenguer, R. A., Capraro, A. P. B., Farias de Medeiros, M. H., Carneiro, A. M. P., & de Oliveira, R. A. (2020). Sugar cane bagasse ash as a partial substitute of Portland cement: Effect on mechanical properties and emission of carbon dioxide. Journal of Environmental Chemical Engineering, 8(2), 103655. https://doi.org/10.1016/j.jece.2020.103655 Boarder, R. F. W., Owens, P. L., & Khatib, J. M. (2016). The sustainability of lightweight aggregates manufactured from clay wastes for reducing the carbon footprint of structural and foundation concrete. In Sustainability of Construction Materials (Second Edi, Issue December). Elsevier Ltd. https://doi.org/10.1016/b978-0-08-100370-1.00010-x Bostanci, S. C., Limbachiya, M., & Kew, H. (2018). Use of recycled aggregates for low carbon and cost effective concrete construction. Journal of Cleaner Production, 189, 176–196. https://doi.org/10.1016/j.jclepro.2018.04.090 Caldas, L. R., Saraiva, A. B., Lucena, A. F. P., Da Gloria, M. Y., Santos, A. S., & Filho, R. D. T. (2021). Building materials in a circular economy: The case of wood waste as CO2-sink in bio concrete. Resources, Conservation and Recycling, 166(August 2020). https://doi.org/10.1016/j.resconrec.2020.105346 Celik, K., Meral, C., Petek Gursel, A., Mehta, P. K., Horvath, A., & Monteiro, P. J. M. (2015). Mechanical properties, durability, and life-cycle assessment of self-consolidating concrete mixtures made with blended portland cements containing fly ash and limestone powder. Cement and Concrete Composites, 56, 59–72. https://doi.org/10.1016/j.cemconcomp.2014.11.003 Chong, B. W., Othman, R., Ramadhansyah, P. J., Doh, S. I., & Li, X. (2020). Properties of concrete with eggshell powder: A review. Physics and Chemistry of the Earth, 120(December 2019), 102951. https://doi.org/10.1016/j.pce.2020.102951 Costa, F. N., & Ribeiro, D. V. (2020). Reduction in CO2 emissions during production of cement, with partial replacement of traditional raw materials by civil construction waste (CCW). Journal of Cleaner Production, 276, 123302. https://doi.org/10.1016/j.jclepro.2020.123302 Depaa, R. A. B., Priyadarshini, V., Hemamalinie, A., Francis Xavier, J., & Surendrababu, K. (2020). Assessment of strength properties of concrete made with rice husk ash. Materials Today: Proceedings, 45, 6724–6727. https://doi.org/10.1016/j.matpr.2020.12.605 Dixit, M. K. (2017). Life cycle embodied energy analysis of residential buildings: A review of literature to investigate embodied energy parameters. Renewable and Sustainable Energy Reviews, 79(October 2016), 390–413. https://doi.org/10.1016/j.rser.2017.05.051 Esmaeili, J., & Oudah Al-Mwanes, A. (2021). A review: Properties of eco-friendly ultra-high-performance concrete incorporated with waste glass as a partial replacement for cement. Materials Today: Proceedings, 42, 1958–1965. https://doi.org/10.1016/j.matpr.2020.12.242 Flower, D. J. M., & Sanjayan, J. G. (2007). Green house gas emissions due to concrete manufacture. The International Journal of Life Cycle Assessment, 12(5), 282–288. https://doi.org/10.1007/s11367-007-0327-3 Fu, Q., Xu, W., Zhao, X., Bu, M. X., Yuan, Q., & Niu, D. (2021). The microstructure and durability of fly ash-based geopolymer concrete: A review. Ceramics International, 47(21), 29550–29566. https://doi.org/10.1016/j.ceramint.2021.07.190 Gao, T., Shen, L., Shen, M., Chen, F., Liu, L., & Gao, L. (2015). Analysis on differences of carbon dioxide emission from cement production and their major determinants. Journal of Cleaner Production, 103, 160–170. https://doi.org/10.1016/j.jclepro.2014.11.026 García-Segura, T., Yepes, V., & Alcalá, J. (2014). Life cycle greenhouse gas emissions of blended cement concrete including carbonation and durability. International Journal of Life Cycle Assessment, 19(1), 3–12. https://doi.org/10.1007/s11367- 013-0614-0 Gartner, E. (2004). Industrially interesting approaches to “low-CO2” cements. Cement and Concrete Research, 34(9), 1489–1498. https://doi.org/10.1016/j.cemconres.2004.01.021 Gencel, O., Karadag, O., Oren, O. H., & Bilir, T. (2021). Steel slag and its applications in cement and concrete technology: A review. Construction and Building Materials, 283, 122783. https://doi.org/10.1016/j.conbuildmat.2021.122783 Gursel, A. P., Maryman, H., & Ostertag, C. (2016). A life-cycle approach to environmental, mechanical, and durability properties of “green” concrete mixes with rice husk ash. Journal of Cleaner Production, 112, 823–836. https://doi.org/10.1016/j.jclepro.2015.06.029 Habert, G., & Roussel, N. (2009). Study of two concrete mix-design strategies to reach carbon mitigation objectives. Cement and Concrete Composites, 31(6), 397–402. https://doi.org/10.1016/j.cemconcomp.2009.04.001 Hamada, H. M., Skariah Thomas, B., Tayeh, B., Yahaya, F. M., Muthusamy, K., & Yang, J. (2020). Use of oil palm shell as an aggregate in cement concrete: A review. Construction and Building Materials, 265, 120357. https://doi.org/10.1016/j.conbuildmat.2020.120357 Hamada, H. M., Tayeh, B. A., Al-Attar, A., Yahaya, F. M., Muthusamy, K., & Humada, A. M. (2020). The present state of the use of eggshell powder in concrete: A review. Journal of Building Engineering, 32(April), 101583. https://doi.org/10.1016/j.jobe.2020.101583 Hamada, H. M., Thomas, B. S., Yahaya, F. M., Muthusamy, K., Yang, J., Abdalla, J. A., & Hawileh, R. A. (2021). Sustainable use of palm oil fuel ash as a supplementary cementitious material: A comprehensive review. Journal of Building Engineering, 40(July 2020), 102286. https://doi.org/10.1016/j.jobe.2021.102286 Hanif, A., Kim, Y., Lu, Z., & Park, C. (2017). Early-age behavior of recycled aggregate concrete under steam curing regime. Journal of Cleaner Production, 152, 103–114. https://doi.org/10.1016/j.jclepro.2017.03.107 Islam, M., Mo, K., Alengaram, U. (2016). Mechanical and fresh properties of sustainable oil palm shell lightweight concrete incorporating palm oil fuel ash. Jorunal of Cleaner Production, 115, 307-314. https://doi.org/10.1016/j.jclepro.2015.12.051 Jagadesh, P., Ramachandramurthy, A., & Murugesan, R. (2018). Evaluation of mechanical properties of Sugar Cane Bagasse Ash concrete. Construction and Building Materials, 176, 608–617. https://doi.org/10.1016/j.conbuildmat.2018.05.037 Jani, Y., & Hogland, W. (2014). Waste glass in the production of cement and concrete - A review. In Journal of Environmental Chemical Engineering (Vol. 2, Issue 3). Elsevier. https://doi.org/10.1016/j.jece.2014.03.016 Jha, P., Sachan, A. K., & Singh, R. P. (2021). Agro-waste sugarcane bagasse ash (ScBA) as partial replacement of binder material in concrete. Materials Today: Proceedings, 44, 419–427. https://doi.org/10.1016/j.matpr.2020.09.751 Jian, S.-M., Wu, B., & Hu, N. (2021). Environmental impacts of three waste concrete recycling strategies for prefabricated components through comparative life cycle assessment. Journal of Cleaner Production, 328(381), 129463. https://doi.org/10.1016/j.jclepro.2021.129463 Jiang, W., Li, X., Lv, Y., Jiang, D., Liu, Z., & He, C. (2020). Mechanical and hydration properties of low clinker cement containing high volume superfine blast furnace slag and nano silica. Construction and Building Materials, 238, 117683. https://doi.org/10.1016/j.conbuildmat.2019.117683 Jiménez, L. F., Domínguez, J. A., & Vega-Azamar, R. E. (2018). Carbon footprint of recycled aggregate concrete. Advances in Civil Engineering, 2018. https://doi.org/10.1155/2018/7949741 Kajaste, R., & Hurme, M. (2016). Cement industry greenhouse gas emissions - Management options and abatement cost. Journal of Cleaner Production, 112, 4041–4052. https://doi.org/10.1016/j.jclepro.2015.07.055 Kim, T., Tae, S., & Roh, S. (2013). Assessment of the CO2 emission and cost reduction performance of a low-carbon-emission concrete mix design using an optimal mix design system. Renewable and Sustainable Energy Reviews, 25, 729–741. https://doi.org/10.1016/j.rser.2013.05.013 Krithika, J., & Ramesh Kumar, G. B. (2020). Influence of fly ash on concrete - A systematic review. Materials Today: Proceedings, 33, 906–911. https://doi.org/10.1016/j.matpr.2020.06.425 Kulkarni, N. G., & Rao, A. B. (2016). Carbon footprint of solid clay bricks fired in clamps of India. Journal of Cleaner Production, 135, 1396–1406. https://doi.org/10.1016/j.jclepro.2016.06.152 Kumar, V. K., Priya, A. K., Manikandan, G., Naveen, A. S., Nitishkumar, B., & Pradeep, P. (2020). Review of materials used in light weight concrete. Materials Today: Proceedings, 37(Part 2), 3538–3539. https://doi.org/10.1016/j.matpr.2020.09.425 Lee, J. W., Jang, Y. Il, Park, W. S., Yun, H. Do, & Kim, S. W. (2020). The Effect of Fly Ash and Recycled Aggregate on the Strength and Carbon Emission Impact of FRCCs. International Journal of Concrete Structures and Materials, 14(1). https://doi.org/10.1186/s40069-020-0392-6 Manjunatha, M., Preethi, S., Malingaraya, Mounika, H. G., Niveditha, K. N., & Ravi. (2021). Life cycle assessment (LCA) of concrete prepared with sustainable cement-based materials. Materials Today: Proceedings, 47, 3637–3644. https://doi.org/10.1016/j.matpr.2021.01.248 Marcea, R. L., & Lau, K. K. (1992). Carbon Dioxide Implications of Building Materials. Journal of Forest Engineering, 3(2), 37–43. https://doi.org/10.1080/08435243.1992.10702637 Marinković, S., Carević, V., & Dragaš, J. (2021). The role of service life in Life Cycle Assessment of concrete structures. Journal of Cleaner Production, 290. https://doi.org/10.1016/j.jclepro.2020.125610 Mathew, S. P., Nadir, Y., & Muhammed Arif, M. (2019). Experimental study of thermal properties of concrete with partial replacement of coarse aggregate by coconut shell. Materials Today: Proceedings, xxxx. https://doi.org/10.1016/j.matpr.2019.11.249 Plaza, P., Sáez del Bosque, I. F., Frías, M., Sánchez de Rojas, M. I., & Medina, C. (2021). Use of recycled coarse and fine aggregates in structural eco-concretes. Physical and mechanical properties and CO2 emissions. Construction and Building Materials, 285, 122926. https://doi.org/10.1016/j.conbuildmat.2021.122926 Pomponi, F., & Moncaster, A. (2016). Embodied carbon mitigation and reduction in the built environment – What does the evidence say? Journal of Environmental Management, 181, 687–700. https://doi.org/10.1016/j.jenvman.2016.08.036 Raheem, A. A., Abdulwahab, R., & Kareem, M. A. (2021). Incorporation of metakaolin and nanosilica in blended cement mortar and concrete- A review. Journal of Cleaner Production, 290, 125852. https://doi.org/10.1016/j.jclepro.2021.125852 Raheem, Akeem A., & Ikotun, B. D. (2020). Incorporation of agricultural residues as partial substitution for cement in concrete and mortar – A review. Journal of Building Engineering, 31(April), 101428. https://doi.org/10.1016/j.jobe.2020.101428 Rama Jyosyula, S. K., Surana, S., & Raju, S. (2020). Role of lightweight materials of construction on carbon dioxide emission of a reinforced concrete building. Materials Today: Proceedings, 27, 984–990. https://doi.org/10.1016/j.matpr.2020.01.294 Rashid, K., Yazdanbakhsh, A., & Rehman, M. U. (2019). Sustainable selection of the concrete incorporating recycled tire aggregate to be used as medium to low strength material. Journal of Cleaner Production, 224, 396–410. https://doi.org/10.1016/j.jclepro.2019.03.197 Robalo, K., Costa, H., do Carmo, R., & Júlio, E. (2021). Experimental development of low cement content and recycled construction and demolition waste aggregates concrete. Construction and Building Materials, 273, 121680. https://doi.org/10.1016/j.conbuildmat.2020.121680 Sabău, M., Bompa, D. V., & Silva, L. F. O. (2021). Comparative carbon emission assessments of recycled and natural aggregate concrete: Environmental influence of cement content. Geoscience Frontiers, 12(6). https://doi.org/10.1016/j.gsf.2021.101235 Sathiparan, N. (2021). Utilization prospects of eggshell powder in sustainable construction material – A review. Construction and Building Materials, 293, 123465. https://doi.org/10.1016/j.conbuildmat.2021.123465 Scharff, H. (2014). Landfill reduction experience in The Netherlands. Waste Management, 34(11), 2218–2224. https://doi.org/10.1016/j.wasman.2014.05.019 Serres, N., Braymand, S., & Feugeas, F. (2016). Environmental evaluation of concrete made from recycled concrete aggregate implementing life cycle assessment. Journal of Building Engineering, 5, 24–33. https://doi.org/10.1016/j.jobe.2015.11.004 Soliman, N. A., & Tagnit-Hamou, A. (2016). Development of ultra-high-performance concrete using glass powder – Towards ecofriendly concrete. Construction and Building Materials, 125, 600–612. https://doi.org/10.1016/j.conbuildmat.2016.08.073 Syahida Adnan, Z., Ariffin, N. F., Syed Mohsin, S. M., & Abdul Shukor Lim, N. H. (2021). Review paper: Performance of rice husk ash as a material for partial cement replacement in concrete. Materials Today: Proceedings, xxxx. https://doi.org/10.1016/j.matpr.2021.02.400 Tait, M. W., & Cheung, W. M. (2016). A comparative cradle-to-gate life cycle assessment of three concrete mix designs. International Journal of Life Cycle Assessment, 21(6), 847–860. https://doi.org/10.1007/s11367-016-1045-5 Thomas, B. S., Kumar, S., & Arel, H. S. (2017). Sustainable concrete containing palm oil fuel ash as a supplementary cementitious material – A review. Renewable and Sustainable Energy Reviews, 80(April), 550–561. https://doi.org/10.1016/j.rser.2017.05.128 Torres, V., Sande, D., Sadique, M., Pineda, P., Bras, A., Atherton, W., & Riley, M. (2021). Potential use of sugar cane bagasse ash as sand replacement for durable concrete. Journal of Building Engineering, 39(September 2020), 102277. https://doi.org/10.1016/j.jobe.2021.102277 Tosic, N., & Dragas, J. (2016). Use of Recycled and Waste Materials in Concrete : A Serbian perspective Use of recycled and waste materials in concrete a serbian perspective, Second International Student International Conference, Belgrade, Serbia. Turk, J., Cotič, Z., Mladenovič, A., & Šajna, A. (2015). Environmental evaluation of green concretes versus conventional concrete by means of LCA. Waste Management, 45(305), 194–205. https://doi.org/10.1016/j.wasman.2015.06.035 Turner, L. K., & Collins, F. G. (2013). Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete. Construction and Building Materials, 43, 125–130. https://doi.org/10.1016/j.conbuildmat.2013.01.023 Vishwakarma, V., & Ramachandran, D. (2018). Green Concrete mix using solid waste and nanoparticles as alternatives – A review. Construction and Building Materials, 162, 96–103. https://doi.org/10.1016/j.conbuildmat.2017.11.174 Zhang, Y., Luo, W., Wang, J., Wang, Y., Xu, Y., & Xiao, J. (2019). A review of life cycle assessment of recycled aggregate concrete. Construction and Building Materials, 209, 115–125. https://doi.org/10.1016/j.conbuildmat.2019.03.078 |
dc.rights.license.none.fl_str_mv |
NINGUNA |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/closedAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
rights_invalid_str_mv |
NINGUNA http://purl.org/coar/access_right/c_14cb |
eu_rights_str_mv |
closedAccess |
dc.format.extent.spa.fl_str_mv |
117 p. |
dc.publisher.spa.fl_str_mv |
Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Civil, Medellín y Envigado |
dc.publisher.program.spa.fl_str_mv |
Ingeniería Civil |
dc.publisher.place.spa.fl_str_mv |
Medellín |
institution |
Universidad Cooperativa de Colombia |
bitstream.url.fl_str_mv |
https://repository.ucc.edu.co/bitstreams/b798d895-f7ef-40f1-8779-0b68bb2cf990/download https://repository.ucc.edu.co/bitstreams/d9a6ec68-c5e6-4325-8248-c3f31558ad5c/download https://repository.ucc.edu.co/bitstreams/95c28024-c9ea-40a1-b8ac-e547f376c31a/download https://repository.ucc.edu.co/bitstreams/e326c8be-337e-47f1-8934-f24f0422420f/download https://repository.ucc.edu.co/bitstreams/04b2fb8f-f9b4-4977-b977-c4de94d37b9b/download https://repository.ucc.edu.co/bitstreams/aad6c93b-7854-4681-a266-5ba27843a57b/download https://repository.ucc.edu.co/bitstreams/558720ee-6fc4-4c32-9be5-f00395a2f586/download https://repository.ucc.edu.co/bitstreams/8892ea44-cad0-4d9d-8c0e-d40f83c884e3/download https://repository.ucc.edu.co/bitstreams/1dcaaa97-1eb9-4edd-b766-88918d7a3ed2/download https://repository.ucc.edu.co/bitstreams/c297c2e8-4412-4107-92f3-496a6568986e/download |
bitstream.checksum.fl_str_mv |
830db00cf883ec6326ee07510348b52b 26c1f72a2617d552a0b33032b1ba06f5 a3c0a403c885c3a702714db1fdaccb0e 3bce4f7ab09dfc588f126e1e36e98a45 19ca285534022fbbd174720cb5ddd390 fb5dca0b73d14a6f08f92af5ce35e966 349cc6a72367d5878cf2271e5624b696 0b4c83fc8f58b3fa32d611cf26c454da e524dd4647e5d088d594401f1f3d240b 9b239727c70a2fe62c4f0e8d1c893f5e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Cooperativa de Colombia |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1814247036931801088 |
spelling |
Arbeláez Pérez, Oscar Felipe Avendaño Gonzalez, Anderson AlexanderOgaza Diaz, Yeiner Jose2022-05-09T20:54:50Z2022-05-09T20:54:50Z2022-04-21https://hdl.handle.net/20.500.12494/44852Avendaño Gonzalez, A. A. y Ogaza Diaz, Y. J. (2022). Emisiones de CO2 de hormigón tradicional y modificado. Revisión sistemática de literatura. [Tesis de pregrado, Universidad Cooperativa de Colombia]. Repositorio Institucional UCC. https://repository.ucc.edu.co/handle/20.500.12494/44852Los problemas del impacto ambiental negativo asociado con la elevada emisión de CO2 durante la preparación de hormigón, ha requerido la incorporación de sustitutos de los materiales tradicionales que permiten mejorar las propiedades mecánicas y disminuir las emisiones. Este trabajo presenta una revisión de los trabajos reportados entre 2000 y 2021, esta revisión se de-limitó a documentos tipo artículo que reportaran el cálculo de las emisiones de CO2 durante la preparación de hormigones tradicionales y modificados. Se encontró que las emisiones dependen del tipo y del porcentaje de incorporación de los susti-tutos, así como de la resistencia requerida, siendo menor la disminución para los sustitutos del cemento. Se discuten las perspectivas futuras frente al tema y los desafíos que enfrenta la industria del hormigón. Se espera con esta revisión motivar el reporte de las emisiones de CO2 en hormigones modificados como parámetro de cuantificación del impacto ambiental en la industria del hormigón.The problems of the negative environmental impact associated with the high emission of CO2 during the preparation of con-crete, has required the incorporation of substitutes for traditional precursors that allow to improve mechanical properties and reduce emissions. This paper presents a review of the works reported between 2000 and 2021, This review was delimited to articles that included the calculation of CO2 emissions during the preparation of traditional and modified concretes. It was found that the emissions depend on the type and percentage of incorporation of the substitutes, as well as the required re-sistance, with less decrease for cement substitutes. Future perspectives on the topic and challenges facing the concrete industry are discussed. It is expected with this review to motivate the reporting of CO2 emissions in modified concrete as a parameter for quantifying the environmental impact in the concrete industryanderson.avendanog@campusucc.edu.coyeiner.ogazad@campusucc.edu.co117 p.Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Civil, Medellín y EnvigadoIngeniería CivilMedellínHormigón sostenibleHuella de carbonoAnálisis de ciclo de vidaEmisiones de CO2TG 2022 ICI 44852Sustainable concreteCarbon footprintLife cycle assessmentCO2 emissionsEmisiones de CO2 de hormigón tradicional y modificado. Revisión sistemática de literaturaTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionNINGUNAinfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbAdesina, A. (2020). Recent advances in the concrete industry to reduce its carbon dioxide emissions. Environmental Challenges, 1(November), 100004. https://doi.org/10.1016/j.envc.2020.100004Alnahhal, M. F., Alengaram, U. J., Jumaat, M. Z., Abutaha, F., Alqedra, M. A., & Nayaka, R. R. (2018). Assessment on engineering properties and CO2 emissions of recycled aggregate concrete incorporating waste products as supplements to Portland cement. Journal of Cleaner Production, 203, 822–835. https://doi.org/10.1016/j.jclepro.2018.08.292Alsalman, A., Assi, L. N., Kareem, R. S., Carter, K., & Ziehl, P. (2021). Energy and CO2 emission assessments of alkali-activated concrete and Ordinary Portland Cement concrete: A comparative analysis of different grades of concrete. Cleaner Environmental Systems, 3(April), 100047. https://doi.org/10.1016/j.cesys.2021.100047Alsubari, B., Shafigh, P., Jumaat, M. (2016). Utilization of high-volume treated palm oil fuel ash to produce sustainable self- compacting concrete. Journal of Cleaner Production, 137, 982-996. https://doi.org/10.1016/j.jclepro.2016.07.133Aprianti, E., Shafigh, P., Bahri, S., & Farahani, J. N. (2015). Supplementary cementitious materials origin from agricultural wastes - A review. Construction and Building Materials, 74, 176–187. https://doi.org/10.1016/j.conbuildmat.2014.10.010Baynes, T. M., Crawford, R. H., Schinabeck, J., Bontinck, P. A., Stephan, A., Wiedmann, T., Lenzen, M., Kenway, S., Yu, M., Teh, S. H., Lane, J., Geschke, A., Fry, J., & Chen, G. (2018). The Australian industrial ecology virtual laboratory and multi-scale assessment of buildings and construction. Energy and Buildings, 164(2018), 14–20. https://doi.org/10.1016/j.enbuild.2017.12.056Berenguer, R. A., Capraro, A. P. B., Farias de Medeiros, M. H., Carneiro, A. M. P., & de Oliveira, R. A. (2020). Sugar cane bagasse ash as a partial substitute of Portland cement: Effect on mechanical properties and emission of carbon dioxide. Journal of Environmental Chemical Engineering, 8(2), 103655. https://doi.org/10.1016/j.jece.2020.103655Boarder, R. F. W., Owens, P. L., & Khatib, J. M. (2016). The sustainability of lightweight aggregates manufactured from clay wastes for reducing the carbon footprint of structural and foundation concrete. In Sustainability of Construction Materials (Second Edi, Issue December). Elsevier Ltd. https://doi.org/10.1016/b978-0-08-100370-1.00010-xBostanci, S. C., Limbachiya, M., & Kew, H. (2018). Use of recycled aggregates for low carbon and cost effective concrete construction. Journal of Cleaner Production, 189, 176–196. https://doi.org/10.1016/j.jclepro.2018.04.090Caldas, L. R., Saraiva, A. B., Lucena, A. F. P., Da Gloria, M. Y., Santos, A. S., & Filho, R. D. T. (2021). Building materials in a circular economy: The case of wood waste as CO2-sink in bio concrete. Resources, Conservation and Recycling, 166(August 2020). https://doi.org/10.1016/j.resconrec.2020.105346Celik, K., Meral, C., Petek Gursel, A., Mehta, P. K., Horvath, A., & Monteiro, P. J. M. (2015). Mechanical properties, durability, and life-cycle assessment of self-consolidating concrete mixtures made with blended portland cements containing fly ash and limestone powder. Cement and Concrete Composites, 56, 59–72. https://doi.org/10.1016/j.cemconcomp.2014.11.003Chong, B. W., Othman, R., Ramadhansyah, P. J., Doh, S. I., & Li, X. (2020). Properties of concrete with eggshell powder: A review. Physics and Chemistry of the Earth, 120(December 2019), 102951. https://doi.org/10.1016/j.pce.2020.102951Costa, F. N., & Ribeiro, D. V. (2020). Reduction in CO2 emissions during production of cement, with partial replacement of traditional raw materials by civil construction waste (CCW). Journal of Cleaner Production, 276, 123302. https://doi.org/10.1016/j.jclepro.2020.123302Depaa, R. A. B., Priyadarshini, V., Hemamalinie, A., Francis Xavier, J., & Surendrababu, K. (2020). Assessment of strength properties of concrete made with rice husk ash. Materials Today: Proceedings, 45, 6724–6727. https://doi.org/10.1016/j.matpr.2020.12.605Dixit, M. K. (2017). Life cycle embodied energy analysis of residential buildings: A review of literature to investigate embodied energy parameters. Renewable and Sustainable Energy Reviews, 79(October 2016), 390–413. https://doi.org/10.1016/j.rser.2017.05.051Esmaeili, J., & Oudah Al-Mwanes, A. (2021). A review: Properties of eco-friendly ultra-high-performance concrete incorporated with waste glass as a partial replacement for cement. Materials Today: Proceedings, 42, 1958–1965. https://doi.org/10.1016/j.matpr.2020.12.242Flower, D. J. M., & Sanjayan, J. G. (2007). Green house gas emissions due to concrete manufacture. The International Journal of Life Cycle Assessment, 12(5), 282–288. https://doi.org/10.1007/s11367-007-0327-3Fu, Q., Xu, W., Zhao, X., Bu, M. X., Yuan, Q., & Niu, D. (2021). The microstructure and durability of fly ash-based geopolymer concrete: A review. Ceramics International, 47(21), 29550–29566. https://doi.org/10.1016/j.ceramint.2021.07.190Gao, T., Shen, L., Shen, M., Chen, F., Liu, L., & Gao, L. (2015). Analysis on differences of carbon dioxide emission from cement production and their major determinants. Journal of Cleaner Production, 103, 160–170. https://doi.org/10.1016/j.jclepro.2014.11.026García-Segura, T., Yepes, V., & Alcalá, J. (2014). Life cycle greenhouse gas emissions of blended cement concrete including carbonation and durability. International Journal of Life Cycle Assessment, 19(1), 3–12. https://doi.org/10.1007/s11367- 013-0614-0Gartner, E. (2004). Industrially interesting approaches to “low-CO2” cements. Cement and Concrete Research, 34(9), 1489–1498. https://doi.org/10.1016/j.cemconres.2004.01.021Gencel, O., Karadag, O., Oren, O. H., & Bilir, T. (2021). Steel slag and its applications in cement and concrete technology: A review. Construction and Building Materials, 283, 122783. https://doi.org/10.1016/j.conbuildmat.2021.122783Gursel, A. P., Maryman, H., & Ostertag, C. (2016). A life-cycle approach to environmental, mechanical, and durability properties of “green” concrete mixes with rice husk ash. Journal of Cleaner Production, 112, 823–836. https://doi.org/10.1016/j.jclepro.2015.06.029Habert, G., & Roussel, N. (2009). Study of two concrete mix-design strategies to reach carbon mitigation objectives. Cement and Concrete Composites, 31(6), 397–402. https://doi.org/10.1016/j.cemconcomp.2009.04.001Hamada, H. M., Skariah Thomas, B., Tayeh, B., Yahaya, F. M., Muthusamy, K., & Yang, J. (2020). Use of oil palm shell as an aggregate in cement concrete: A review. Construction and Building Materials, 265, 120357. https://doi.org/10.1016/j.conbuildmat.2020.120357Hamada, H. M., Tayeh, B. A., Al-Attar, A., Yahaya, F. M., Muthusamy, K., & Humada, A. M. (2020). The present state of the use of eggshell powder in concrete: A review. Journal of Building Engineering, 32(April), 101583. https://doi.org/10.1016/j.jobe.2020.101583Hamada, H. M., Thomas, B. S., Yahaya, F. M., Muthusamy, K., Yang, J., Abdalla, J. A., & Hawileh, R. A. (2021). Sustainable use of palm oil fuel ash as a supplementary cementitious material: A comprehensive review. Journal of Building Engineering, 40(July 2020), 102286. https://doi.org/10.1016/j.jobe.2021.102286Hanif, A., Kim, Y., Lu, Z., & Park, C. (2017). Early-age behavior of recycled aggregate concrete under steam curing regime. Journal of Cleaner Production, 152, 103–114. https://doi.org/10.1016/j.jclepro.2017.03.107Islam, M., Mo, K., Alengaram, U. (2016). Mechanical and fresh properties of sustainable oil palm shell lightweight concrete incorporating palm oil fuel ash. Jorunal of Cleaner Production, 115, 307-314. https://doi.org/10.1016/j.jclepro.2015.12.051Jagadesh, P., Ramachandramurthy, A., & Murugesan, R. (2018). Evaluation of mechanical properties of Sugar Cane Bagasse Ash concrete. Construction and Building Materials, 176, 608–617. https://doi.org/10.1016/j.conbuildmat.2018.05.037Jani, Y., & Hogland, W. (2014). Waste glass in the production of cement and concrete - A review. In Journal of Environmental Chemical Engineering (Vol. 2, Issue 3). Elsevier. https://doi.org/10.1016/j.jece.2014.03.016Jha, P., Sachan, A. K., & Singh, R. P. (2021). Agro-waste sugarcane bagasse ash (ScBA) as partial replacement of binder material in concrete. Materials Today: Proceedings, 44, 419–427. https://doi.org/10.1016/j.matpr.2020.09.751Jian, S.-M., Wu, B., & Hu, N. (2021). Environmental impacts of three waste concrete recycling strategies for prefabricated components through comparative life cycle assessment. Journal of Cleaner Production, 328(381), 129463. https://doi.org/10.1016/j.jclepro.2021.129463Jiang, W., Li, X., Lv, Y., Jiang, D., Liu, Z., & He, C. (2020). Mechanical and hydration properties of low clinker cement containing high volume superfine blast furnace slag and nano silica. Construction and Building Materials, 238, 117683. https://doi.org/10.1016/j.conbuildmat.2019.117683Jiménez, L. F., Domínguez, J. A., & Vega-Azamar, R. E. (2018). Carbon footprint of recycled aggregate concrete. Advances in Civil Engineering, 2018. https://doi.org/10.1155/2018/7949741Kajaste, R., & Hurme, M. (2016). Cement industry greenhouse gas emissions - Management options and abatement cost. Journal of Cleaner Production, 112, 4041–4052. https://doi.org/10.1016/j.jclepro.2015.07.055Kim, T., Tae, S., & Roh, S. (2013). Assessment of the CO2 emission and cost reduction performance of a low-carbon-emission concrete mix design using an optimal mix design system. Renewable and Sustainable Energy Reviews, 25, 729–741. https://doi.org/10.1016/j.rser.2013.05.013Krithika, J., & Ramesh Kumar, G. B. (2020). Influence of fly ash on concrete - A systematic review. Materials Today: Proceedings, 33, 906–911. https://doi.org/10.1016/j.matpr.2020.06.425Kulkarni, N. G., & Rao, A. B. (2016). Carbon footprint of solid clay bricks fired in clamps of India. Journal of Cleaner Production, 135, 1396–1406. https://doi.org/10.1016/j.jclepro.2016.06.152Kumar, V. K., Priya, A. K., Manikandan, G., Naveen, A. S., Nitishkumar, B., & Pradeep, P. (2020). Review of materials used in light weight concrete. Materials Today: Proceedings, 37(Part 2), 3538–3539. https://doi.org/10.1016/j.matpr.2020.09.425Lee, J. W., Jang, Y. Il, Park, W. S., Yun, H. Do, & Kim, S. W. (2020). The Effect of Fly Ash and Recycled Aggregate on the Strength and Carbon Emission Impact of FRCCs. International Journal of Concrete Structures and Materials, 14(1). https://doi.org/10.1186/s40069-020-0392-6Manjunatha, M., Preethi, S., Malingaraya, Mounika, H. G., Niveditha, K. N., & Ravi. (2021). Life cycle assessment (LCA) of concrete prepared with sustainable cement-based materials. Materials Today: Proceedings, 47, 3637–3644. https://doi.org/10.1016/j.matpr.2021.01.248Marcea, R. L., & Lau, K. K. (1992). Carbon Dioxide Implications of Building Materials. Journal of Forest Engineering, 3(2), 37–43. https://doi.org/10.1080/08435243.1992.10702637Marinković, S., Carević, V., & Dragaš, J. (2021). The role of service life in Life Cycle Assessment of concrete structures. Journal of Cleaner Production, 290. https://doi.org/10.1016/j.jclepro.2020.125610Mathew, S. P., Nadir, Y., & Muhammed Arif, M. (2019). Experimental study of thermal properties of concrete with partial replacement of coarse aggregate by coconut shell. Materials Today: Proceedings, xxxx. https://doi.org/10.1016/j.matpr.2019.11.249Plaza, P., Sáez del Bosque, I. F., Frías, M., Sánchez de Rojas, M. I., & Medina, C. (2021). Use of recycled coarse and fine aggregates in structural eco-concretes. Physical and mechanical properties and CO2 emissions. Construction and Building Materials, 285, 122926. https://doi.org/10.1016/j.conbuildmat.2021.122926Pomponi, F., & Moncaster, A. (2016). Embodied carbon mitigation and reduction in the built environment – What does the evidence say? Journal of Environmental Management, 181, 687–700. https://doi.org/10.1016/j.jenvman.2016.08.036Raheem, A. A., Abdulwahab, R., & Kareem, M. A. (2021). Incorporation of metakaolin and nanosilica in blended cement mortar and concrete- A review. Journal of Cleaner Production, 290, 125852. https://doi.org/10.1016/j.jclepro.2021.125852Raheem, Akeem A., & Ikotun, B. D. (2020). Incorporation of agricultural residues as partial substitution for cement in concrete and mortar – A review. Journal of Building Engineering, 31(April), 101428. https://doi.org/10.1016/j.jobe.2020.101428Rama Jyosyula, S. K., Surana, S., & Raju, S. (2020). Role of lightweight materials of construction on carbon dioxide emission of a reinforced concrete building. Materials Today: Proceedings, 27, 984–990. https://doi.org/10.1016/j.matpr.2020.01.294Rashid, K., Yazdanbakhsh, A., & Rehman, M. U. (2019). Sustainable selection of the concrete incorporating recycled tire aggregate to be used as medium to low strength material. Journal of Cleaner Production, 224, 396–410. https://doi.org/10.1016/j.jclepro.2019.03.197Robalo, K., Costa, H., do Carmo, R., & Júlio, E. (2021). Experimental development of low cement content and recycled construction and demolition waste aggregates concrete. Construction and Building Materials, 273, 121680. https://doi.org/10.1016/j.conbuildmat.2020.121680Sabău, M., Bompa, D. V., & Silva, L. F. O. (2021). Comparative carbon emission assessments of recycled and natural aggregate concrete: Environmental influence of cement content. Geoscience Frontiers, 12(6). https://doi.org/10.1016/j.gsf.2021.101235Sathiparan, N. (2021). Utilization prospects of eggshell powder in sustainable construction material – A review. Construction and Building Materials, 293, 123465. https://doi.org/10.1016/j.conbuildmat.2021.123465Scharff, H. (2014). Landfill reduction experience in The Netherlands. Waste Management, 34(11), 2218–2224. https://doi.org/10.1016/j.wasman.2014.05.019Serres, N., Braymand, S., & Feugeas, F. (2016). Environmental evaluation of concrete made from recycled concrete aggregate implementing life cycle assessment. Journal of Building Engineering, 5, 24–33. https://doi.org/10.1016/j.jobe.2015.11.004Soliman, N. A., & Tagnit-Hamou, A. (2016). Development of ultra-high-performance concrete using glass powder – Towards ecofriendly concrete. Construction and Building Materials, 125, 600–612. https://doi.org/10.1016/j.conbuildmat.2016.08.073Syahida Adnan, Z., Ariffin, N. F., Syed Mohsin, S. M., & Abdul Shukor Lim, N. H. (2021). Review paper: Performance of rice husk ash as a material for partial cement replacement in concrete. Materials Today: Proceedings, xxxx. https://doi.org/10.1016/j.matpr.2021.02.400Tait, M. W., & Cheung, W. M. (2016). A comparative cradle-to-gate life cycle assessment of three concrete mix designs. International Journal of Life Cycle Assessment, 21(6), 847–860. https://doi.org/10.1007/s11367-016-1045-5Thomas, B. S., Kumar, S., & Arel, H. S. (2017). Sustainable concrete containing palm oil fuel ash as a supplementary cementitious material – A review. Renewable and Sustainable Energy Reviews, 80(April), 550–561. https://doi.org/10.1016/j.rser.2017.05.128Torres, V., Sande, D., Sadique, M., Pineda, P., Bras, A., Atherton, W., & Riley, M. (2021). Potential use of sugar cane bagasse ash as sand replacement for durable concrete. Journal of Building Engineering, 39(September 2020), 102277. https://doi.org/10.1016/j.jobe.2021.102277Tosic, N., & Dragas, J. (2016). Use of Recycled and Waste Materials in Concrete : A Serbian perspective Use of recycled and waste materials in concrete a serbian perspective, Second International Student International Conference, Belgrade, Serbia.Turk, J., Cotič, Z., Mladenovič, A., & Šajna, A. (2015). Environmental evaluation of green concretes versus conventional concrete by means of LCA. Waste Management, 45(305), 194–205. https://doi.org/10.1016/j.wasman.2015.06.035Turner, L. K., & Collins, F. G. (2013). Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete. Construction and Building Materials, 43, 125–130. https://doi.org/10.1016/j.conbuildmat.2013.01.023Vishwakarma, V., & Ramachandran, D. (2018). Green Concrete mix using solid waste and nanoparticles as alternatives – A review. Construction and Building Materials, 162, 96–103. https://doi.org/10.1016/j.conbuildmat.2017.11.174Zhang, Y., Luo, W., Wang, J., Wang, Y., Xu, Y., & Xiao, J. (2019). A review of life cycle assessment of recycled aggregate concrete. Construction and Building Materials, 209, 115–125. https://doi.org/10.1016/j.conbuildmat.2019.03.078PublicationORIGINAL2022_Emisiones_CO2_Hormigon-LicenciaUso.pdf2022_Emisiones_CO2_Hormigon-LicenciaUso.pdfLicencia Usoapplication/pdf928390https://repository.ucc.edu.co/bitstreams/b798d895-f7ef-40f1-8779-0b68bb2cf990/download830db00cf883ec6326ee07510348b52bMD512022_Emisiones_CO2_Hormigón-Actasustentacion.pdf2022_Emisiones_CO2_Hormigón-Actasustentacion.pdfActaapplication/pdf73749https://repository.ucc.edu.co/bitstreams/d9a6ec68-c5e6-4325-8248-c3f31558ad5c/download26c1f72a2617d552a0b33032b1ba06f5MD522022_Emisiones_CO2_Hormigón.pdf2022_Emisiones_CO2_Hormigón.pdfTrabajo de gradoapplication/pdf335576https://repository.ucc.edu.co/bitstreams/95c28024-c9ea-40a1-b8ac-e547f376c31a/downloada3c0a403c885c3a702714db1fdaccb0eMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/e326c8be-337e-47f1-8934-f24f0422420f/download3bce4f7ab09dfc588f126e1e36e98a45MD54THUMBNAIL2022_Emisiones_CO2_Hormigon-LicenciaUso.pdf.jpg2022_Emisiones_CO2_Hormigon-LicenciaUso.pdf.jpgGenerated Thumbnailimage/jpeg5099https://repository.ucc.edu.co/bitstreams/04b2fb8f-f9b4-4977-b977-c4de94d37b9b/download19ca285534022fbbd174720cb5ddd390MD552022_Emisiones_CO2_Hormigón-Actasustentacion.pdf.jpg2022_Emisiones_CO2_Hormigón-Actasustentacion.pdf.jpgGenerated Thumbnailimage/jpeg4893https://repository.ucc.edu.co/bitstreams/aad6c93b-7854-4681-a266-5ba27843a57b/downloadfb5dca0b73d14a6f08f92af5ce35e966MD562022_Emisiones_CO2_Hormigón.pdf.jpg2022_Emisiones_CO2_Hormigón.pdf.jpgGenerated Thumbnailimage/jpeg4353https://repository.ucc.edu.co/bitstreams/558720ee-6fc4-4c32-9be5-f00395a2f586/download349cc6a72367d5878cf2271e5624b696MD57TEXT2022_Emisiones_CO2_Hormigon-LicenciaUso.pdf.txt2022_Emisiones_CO2_Hormigon-LicenciaUso.pdf.txtExtracted texttext/plain6016https://repository.ucc.edu.co/bitstreams/8892ea44-cad0-4d9d-8c0e-d40f83c884e3/download0b4c83fc8f58b3fa32d611cf26c454daMD582022_Emisiones_CO2_Hormigón-Actasustentacion.pdf.txt2022_Emisiones_CO2_Hormigón-Actasustentacion.pdf.txtExtracted texttext/plain1764https://repository.ucc.edu.co/bitstreams/1dcaaa97-1eb9-4edd-b766-88918d7a3ed2/downloade524dd4647e5d088d594401f1f3d240bMD592022_Emisiones_CO2_Hormigón.pdf.txt2022_Emisiones_CO2_Hormigón.pdf.txtExtracted texttext/plain54463https://repository.ucc.edu.co/bitstreams/c297c2e8-4412-4107-92f3-496a6568986e/download9b239727c70a2fe62c4f0e8d1c893f5eMD51020.500.12494/44852oai:repository.ucc.edu.co:20.500.12494/448522024-08-10 21:23:00.184restrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo= |