Evaluation of possible biomarkers for caries risk in children 6 to 12 years of age

Background: Electrolytes, proteins, and other salivary molecules play an important role in tooth integrity and can serve as biomarkers associated with caries. Objective: To determine the concentration of potential biomarkers in children without caries (CF) and children with caries (CA). Methods: Uns...

Full description

Autores:
Universidad Cooperativa de Colombia
Angarita-Díaz, María del Pilar
Simon-Soro, Aurea
Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana
Forero, Diana
Balcázar, Felipe
Sarmiento, Luisa
Romero, Erika
Mira, Alex
Tipo de recurso:
Article of investigation
Fecha de publicación:
2021
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/45852
Acceso en línea:
https://hdl.handle.net/20.500.12494/45852
Palabra clave:
Biomarkers
child
dental caries
saliva
Rights
openAccess
License
Atribución – No comercial – Sin Derivar
id COOPER2_da19b39f1adbb71ea6734d015c6d7bf2
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/45852
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.spa.fl_str_mv Evaluation of possible biomarkers for caries risk in children 6 to 12 years of age
title Evaluation of possible biomarkers for caries risk in children 6 to 12 years of age
spellingShingle Evaluation of possible biomarkers for caries risk in children 6 to 12 years of age
Biomarkers
child
dental caries
saliva
title_short Evaluation of possible biomarkers for caries risk in children 6 to 12 years of age
title_full Evaluation of possible biomarkers for caries risk in children 6 to 12 years of age
title_fullStr Evaluation of possible biomarkers for caries risk in children 6 to 12 years of age
title_full_unstemmed Evaluation of possible biomarkers for caries risk in children 6 to 12 years of age
title_sort Evaluation of possible biomarkers for caries risk in children 6 to 12 years of age
dc.creator.fl_str_mv Universidad Cooperativa de Colombia
Angarita-Díaz, María del Pilar
Simon-Soro, Aurea
Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana
Forero, Diana
Balcázar, Felipe
Sarmiento, Luisa
Romero, Erika
Mira, Alex
dc.contributor.author.none.fl_str_mv Universidad Cooperativa de Colombia
Angarita-Díaz, María del Pilar
Simon-Soro, Aurea
Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana
Forero, Diana
Balcázar, Felipe
Sarmiento, Luisa
Romero, Erika
Mira, Alex
dc.subject.spa.fl_str_mv Biomarkers
child
dental caries
saliva
topic Biomarkers
child
dental caries
saliva
description Background: Electrolytes, proteins, and other salivary molecules play an important role in tooth integrity and can serve as biomarkers associated with caries. Objective: To determine the concentration of potential biomarkers in children without caries (CF) and children with caries (CA). Methods: Unstimulated saliva was collected, and the biomarkers quantified in duplicate, using commercial Enzyme Linked Immunosorbent Assay (ELISA) kits to determine IgA, fibronectin, cathelicidin LL-37, and statherin levels, as well as colorimetric tests to detect formate and phosphate. Results: Significantly higher concentrations of statherin was detected in the CF group (Median: 94,734.6; IQR: 92,934.6–95,113.7) compared to the CA2 group (90,875.0; IQR: 83,580.2–94,633.4) (p = 0.03). Slightly higher median IgA (48,250.0; IQR: 31,461.9–67,418.8) and LL-37 levels (56.1; IQR 43.6–116.2) and a lower concentration of formate were detected in the CF group (0.02; IQR 0.0034–0.15) compared to the group with caries (IgA: 37,776.42; IQR: 33,383.9–44,128.5; LL-37: 46.3; IQR: 40.1011–67.7; formate: 0.10; IQR: 0.01–0.18), but these differences were not statistically significant. Conclusion: The fact that these compounds have been identified as good markers for caries among European adults highlights the difficulty of identifying universal biomarkers that are applicable to all ages or to different populations.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-08-17
dc.date.accessioned.none.fl_str_mv 2022-07-22T21:09:11Z
dc.date.available.none.fl_str_mv 2022-07-22T21:09:11Z
dc.type.none.fl_str_mv Artículos Científicos
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.uri.spa.fl_str_mv 10.1080/20002297.2021.1956219
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12494/45852
dc.identifier.bibliographicCitation.spa.fl_str_mv María P Angarita-Díaz, Aurea Simon-Soro, Diana Forero, Felipe Balcázar, Luisa Sarmiento, Erika Romero & Alex Mira (2021) Evaluation of possible biomarkers for caries risk in children 6 to 12 years of age, Journal of Oral Microbiology, 13:1, 1956219, DOI: 10.1080/20002297.2021.1956219
identifier_str_mv 10.1080/20002297.2021.1956219
María P Angarita-Díaz, Aurea Simon-Soro, Diana Forero, Felipe Balcázar, Luisa Sarmiento, Erika Romero & Alex Mira (2021) Evaluation of possible biomarkers for caries risk in children 6 to 12 years of age, Journal of Oral Microbiology, 13:1, 1956219, DOI: 10.1080/20002297.2021.1956219
url https://hdl.handle.net/20.500.12494/45852
dc.relation.ispartofjournal.spa.fl_str_mv Journal of Oral Microbiology
dc.relation.references.spa.fl_str_mv [1] Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69 (3): 89–95.
[2] Aronson JK, Ferner RE.. Biomarkers-A General Review. Curr Protoc Pharmacol. 2017;17(76):9.23.1–9.23.17.
[3] Califf RM. Biomarker definitions and their applications. Exp Biol Med. 2018;243(3):213–221.
[4] Kianoush N, Adler CJ, Nguyen KA, et al. Bacterial profile of dentine caries and the impact of pH on bacterial population diversity. PLoS One. 2014;9(3):e92940.
[5] Twetman S. Prevention of dental caries as a non-communicable disease. Eur J Oral Sci. 2018;126(1):19–25.
[6] Di Pierro F, Zanvit A, Nobili P, et al. Cariogram outcome after 90 days of oral treatment with Streptococcus salivarius M18 in children at high risk fordental caries: results of a randomized, controlled study. Clin Cosmet Investig Dent. 2015;2015(7):107–113.
[7] Mira A, Artacho A, Camelo-Castillo A, et al. Salivary Immune and Metabolic Marker Analysis (SIMMA): a Diagnostic Test to Predict Caries Risk. Diagnostics (Basel). 2017;7(3):38.
[8] Hemadi AS, Huang R, Zhou Y, et al. Salivary proteins and microbiota as biomarkers for early childhood caries risk assessment. Int J Oral Sci. 2017;9(11):e1.
[9] Paqué PN, Herz C, Wiedemeier DB, et al. Salivary Biomarkers for Dental Caries Detection and Personalized Monitoring. J Pers Med. 2021;11(3):235.
[10] Divaris K. Predicting Dental Caries Outcomes in Children: a “Risky” Concept. J Dent Res. 2016;95(3):248–254.
[11] Piekoszewska-Ziętek P, Turska-Szybka A, Olczak-Kowalczyk D. Salivary proteins and peptides in the aetiology of caries in children: systematic literature review. Oral Dis. 2019;25(4):1048–1056.
[12] Tao R, Jurevic RJ, Coulton KK, et al. Salivary antimicrobial peptide expression and dental caries experience in children. Antimicrob Agents Chemother. 2005;49(9):3883–3888.
[13] Khurshid Z, Naseem M, Yahya I, et al. Significance and Diagnostic Role of Antimicrobial Cathelicidins (LL-37) Peptides in Oral Health. Biomolecules 2017;7(4):80.
[14] Soesilawati P, Notopuro H, Yuliati Y, et al. The role of salivary sIgA as protection for dental caries activity in Indonesian children. Clinical Cosmet and Investigational Dentistry. 2019;11:291–295.
15] Speziale P, Arciola CR, Pietrocola G. Fibronectin and its role in human infective diseases. Cells. 2019;8(12):1516.
[16] Llena-Puy MC, Montañana-Llorens C, Forner-Navarro L. Fibronectin levels in stimulated whole-saliva and their relationship with cariogenic oral bacteria. Int Dent J. 2000;50(1):57–59.
[17] Park Y-D, Jang J-H, Oh Y-J, et al. Analyses of organic acids and inorganic anions and their relationship in human saliva before and after glucose intake. Arch Oral Biol. 2014;59(1):1–11.
[18] Poureslami R, Re S, Poureslami. Concentration of Calcium, Phosphate and Fluoride Ions in Microbial Plaque and Saliva after Using CPP-ACP Paste in 6-9 year-old Children. J Dent Biomater. 2016;3(2):214–219.
[19] Margolis HC, Moreno EC. Composition and cariogenic potential of dental plaque fluid. Crit Rev Oral Biol Med. 1994;5(1):1–25.
[20] Chawda JG, Chaduvula N, Patel HR, et al. Salivary SIgA and dental caries activity. Indian Pediatr. 2011;48(9):719–721.
[21] Omar OM, Khattab NM, Rashed LA. Glucosyltransferase B, immunoglobulin A, and caries experience among a group of Egyptian preschool children. J. Pediatr. Dent. 2012;79(2):63–68.
[22] Colombo NH, Ribas LF, Pereira JA, et al. Antimicrobial peptides in saliva of children with severe early childhood caries. Arch Oral Biol. 2016;69:40–46.
[23] Lo Giudice G, Nicita F, Militi A, et al. Correlation of s-IgA and IL-6 Salivary with Caries Disease and Oral Hygiene Parameters in Children. Dent J. 2020;8(1):3.
[24] Lo Giudice G, Militi A, Nicita F, et al. Correlation between Oral Hygiene and IL-6 in Children. Dent J. 2020,8(3):91.
[25] Vitorino R, Lobo MJ, Duarte JR, et al. The role of salivary peptides in dental caries. Biomed Chromatogr. 2005;19(3):214–222.
[26] Carpenter G, Cotroneo E, Moazzez R, et al. Composition of enamel pellicle from dental erosion patients. Caries Res. 2014;48(5):361–367.
[27] Mutahar M, O’Toole S, Carpenter G, et al. Reduced statherin in acquired enamel pellicle on eroded teeth compared to healthy teeth in the same subjects: an in-vivo study. PLoS One. 2017;12(8):e0183660.
[28] Yin A, Margolis HC, Yao Y, et al. Multi-component adsorption model for pellicle formation: the influence of salivary proteins and non-salivary phospho proteins on the binding of histatin 5 onto hydroxyapatite. Arch Oral Biol. 2006;51(2):102–110.
[29] Rudney JD, Staikov RK, Johnson JD. Potential biomarkers of human salivary function: a modified proteomic approach. Archives of Oral Biolology. 2009;54(1):91–100.
[30] Shimotoyodome A, Kobayashi H, Tokimitsu I, et al. Statherin and histatin 1 reduce parotid saliva-promoted Streptococcus mutans strain MT8148 adhesion to hydroxyapatite surfaces. Caries Res. 2006;40(5):403–411.
[31] Razi MA, Qamar S, Singhal A, et al. Role of natural salivary defenses in the maintenance of healthy oral microbiota in children and adolescents. J Family Med Prim Care. 2020;9(3):1603–1607.
[32] Simón-Soro Á S-S, D’Auria G, Collado MC, et al. Revealing microbial recognition by specific antibodies. BMC Microbiol. 2015;15(1):132.
[33] Davidopoulou S, Diza E, Menexes G, et al. Salivary concentration of the antimicrobial peptide LL-37 in children. Arch Oral Biol. 2012;57(7):865–869.
[34] Ribeiro TR, Dria KJ, de Carvalho CB, et al. Salivary peptide profile and its association with early childhood caries. Int J Paediatr Dent. 2013;23(3):225–234.
[35] Hasty DL, Simpson WA. Effects of fibronectin and other salivary macromolecules on the adherence of Escherichia coli to buccal epithelial cells. Infect Immun. 1987;55(9):2103–2109.
[36] Bagherian A, Asadikaram G. Comparison of some salivary characteristics between children with and without early childhood caries. Indian J Dent Res. 2012;23(5):628–632.
[37] Animireddy D, Reddy Bekkem VT, Vallala P, et al. Evaluation of pH, buffering capacity, viscosity and flow rate levels of saliva in caries-free, minimal caries and nursing caries children: an in vivo study. Contemp Clin Dent. 2014;5(3):324–328.
[38] Kuribayashi M, Kitasako Y, Matin K, et al. Intraoral pH measurement of carious lesions with qPCR of cariogenic bacteria to differentiate caries activity. J Dent. 2012;40(3):222–228.
[39] Featherstone JD, Rodgers BE. Effect of acetic, lactic and other organic acids on the formation of artificial carious lesions. Caries Res. 1981;15(5):377–385.
[40] Shahrabi MA, Nikfarjam JA, Alikhani AA, et al. A comparison of salivary calcium, phosphate, and alkaline phosphatase in children with severe, moderate caries, and caries free in Tehran’s kindergartens. J Indian Soc Pedod Prev Dent. 2008;26(2):74–77.
[41] Aruna S, Meenakshi B, Rama KV, et al. Salivary levels of calcium and phosphorus in children with and without early childhood caries: a pilot study. SRM J Res Dent Sci. 2020;11:72–75.
[42] Young DA, Featherstone JD. Caries management by risk assessment. Community Dent Oral Epidemiol. 2013;41(1):e53–63.
dc.rights.license.none.fl_str_mv Atribución – No comercial – Sin Derivar
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución – No comercial – Sin Derivar
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 9
dc.coverage.temporal.spa.fl_str_mv 13
dc.publisher.spa.fl_str_mv Universidad Cooperativa de Colombia
Andrej M. Kielbassa
dc.publisher.program.spa.fl_str_mv Odontología
dc.publisher.place.spa.fl_str_mv Villavicencio
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/cbf62670-41f6-48cf-8aed-46b7c1353372/download
https://repository.ucc.edu.co/bitstreams/477a9105-7177-4433-a1ff-758aa75edb15/download
https://repository.ucc.edu.co/bitstreams/e9334f3d-043f-4354-9f12-73a630c01c40/download
https://repository.ucc.edu.co/bitstreams/65eeea39-6434-4ea4-b0f9-2a00f77fc210/download
https://repository.ucc.edu.co/bitstreams/9f0ba205-8f14-4e08-b6c6-b2e1ce409d07/download
https://repository.ucc.edu.co/bitstreams/d0531fd7-6bb9-417a-80af-0bc631886428/download
https://repository.ucc.edu.co/bitstreams/e5f5ead3-b2e3-4987-8f21-14910072cb39/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
f85b6dd46e266f25bf8f2dd72a4f9190
bc5a80a4da861c2eb093a472725494ce
77165db19e4c076c76a83cc1ccd56837
a20d45513ecb325dbbc5c73a6ac12d6c
57b017fbeb0cf8c8fff7f8ae8eaca5de
e1aebd66a1c11f0f6e80561b0b939124
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1811565652353220608
spelling Universidad Cooperativa de ColombiaAngarita-Díaz, María del PilarSimon-Soro, AureaFundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat ValencianaForero, DianaBalcázar, FelipeSarmiento, LuisaRomero, ErikaMira, Alex132022-07-22T21:09:11Z2022-07-22T21:09:11Z2021-08-1710.1080/20002297.2021.1956219https://hdl.handle.net/20.500.12494/45852María P Angarita-Díaz, Aurea Simon-Soro, Diana Forero, Felipe Balcázar, Luisa Sarmiento, Erika Romero & Alex Mira (2021) Evaluation of possible biomarkers for caries risk in children 6 to 12 years of age, Journal of Oral Microbiology, 13:1, 1956219, DOI: 10.1080/20002297.2021.1956219Background: Electrolytes, proteins, and other salivary molecules play an important role in tooth integrity and can serve as biomarkers associated with caries. Objective: To determine the concentration of potential biomarkers in children without caries (CF) and children with caries (CA). Methods: Unstimulated saliva was collected, and the biomarkers quantified in duplicate, using commercial Enzyme Linked Immunosorbent Assay (ELISA) kits to determine IgA, fibronectin, cathelicidin LL-37, and statherin levels, as well as colorimetric tests to detect formate and phosphate. Results: Significantly higher concentrations of statherin was detected in the CF group (Median: 94,734.6; IQR: 92,934.6–95,113.7) compared to the CA2 group (90,875.0; IQR: 83,580.2–94,633.4) (p = 0.03). Slightly higher median IgA (48,250.0; IQR: 31,461.9–67,418.8) and LL-37 levels (56.1; IQR 43.6–116.2) and a lower concentration of formate were detected in the CF group (0.02; IQR 0.0034–0.15) compared to the group with caries (IgA: 37,776.42; IQR: 33,383.9–44,128.5; LL-37: 46.3; IQR: 40.1011–67.7; formate: 0.10; IQR: 0.01–0.18), but these differences were not statistically significant. Conclusion: The fact that these compounds have been identified as good markers for caries among European adults highlights the difficulty of identifying universal biomarkers that are applicable to all ages or to different populations.https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=00015613820000-0002-5435-3456GIOMETmaria.angaritad@campusucc.edu.co9Universidad Cooperativa de ColombiaAndrej M. KielbassaOdontologíaVillavicencioBiomarkerschilddental cariessalivaEvaluation of possible biomarkers for caries risk in children 6 to 12 years of ageArtículos Científicoshttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribución – No comercial – Sin Derivarinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Journal of Oral Microbiology[1] Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69 (3): 89–95.[2] Aronson JK, Ferner RE.. Biomarkers-A General Review. Curr Protoc Pharmacol. 2017;17(76):9.23.1–9.23.17.[3] Califf RM. Biomarker definitions and their applications. Exp Biol Med. 2018;243(3):213–221.[4] Kianoush N, Adler CJ, Nguyen KA, et al. Bacterial profile of dentine caries and the impact of pH on bacterial population diversity. PLoS One. 2014;9(3):e92940.[5] Twetman S. Prevention of dental caries as a non-communicable disease. Eur J Oral Sci. 2018;126(1):19–25.[6] Di Pierro F, Zanvit A, Nobili P, et al. Cariogram outcome after 90 days of oral treatment with Streptococcus salivarius M18 in children at high risk fordental caries: results of a randomized, controlled study. Clin Cosmet Investig Dent. 2015;2015(7):107–113.[7] Mira A, Artacho A, Camelo-Castillo A, et al. Salivary Immune and Metabolic Marker Analysis (SIMMA): a Diagnostic Test to Predict Caries Risk. Diagnostics (Basel). 2017;7(3):38.[8] Hemadi AS, Huang R, Zhou Y, et al. Salivary proteins and microbiota as biomarkers for early childhood caries risk assessment. Int J Oral Sci. 2017;9(11):e1.[9] Paqué PN, Herz C, Wiedemeier DB, et al. Salivary Biomarkers for Dental Caries Detection and Personalized Monitoring. J Pers Med. 2021;11(3):235.[10] Divaris K. Predicting Dental Caries Outcomes in Children: a “Risky” Concept. J Dent Res. 2016;95(3):248–254.[11] Piekoszewska-Ziętek P, Turska-Szybka A, Olczak-Kowalczyk D. Salivary proteins and peptides in the aetiology of caries in children: systematic literature review. Oral Dis. 2019;25(4):1048–1056.[12] Tao R, Jurevic RJ, Coulton KK, et al. Salivary antimicrobial peptide expression and dental caries experience in children. Antimicrob Agents Chemother. 2005;49(9):3883–3888.[13] Khurshid Z, Naseem M, Yahya I, et al. Significance and Diagnostic Role of Antimicrobial Cathelicidins (LL-37) Peptides in Oral Health. Biomolecules 2017;7(4):80.[14] Soesilawati P, Notopuro H, Yuliati Y, et al. The role of salivary sIgA as protection for dental caries activity in Indonesian children. Clinical Cosmet and Investigational Dentistry. 2019;11:291–295.15] Speziale P, Arciola CR, Pietrocola G. Fibronectin and its role in human infective diseases. Cells. 2019;8(12):1516.[16] Llena-Puy MC, Montañana-Llorens C, Forner-Navarro L. Fibronectin levels in stimulated whole-saliva and their relationship with cariogenic oral bacteria. Int Dent J. 2000;50(1):57–59.[17] Park Y-D, Jang J-H, Oh Y-J, et al. Analyses of organic acids and inorganic anions and their relationship in human saliva before and after glucose intake. Arch Oral Biol. 2014;59(1):1–11.[18] Poureslami R, Re S, Poureslami. Concentration of Calcium, Phosphate and Fluoride Ions in Microbial Plaque and Saliva after Using CPP-ACP Paste in 6-9 year-old Children. J Dent Biomater. 2016;3(2):214–219.[19] Margolis HC, Moreno EC. Composition and cariogenic potential of dental plaque fluid. Crit Rev Oral Biol Med. 1994;5(1):1–25.[20] Chawda JG, Chaduvula N, Patel HR, et al. Salivary SIgA and dental caries activity. Indian Pediatr. 2011;48(9):719–721.[21] Omar OM, Khattab NM, Rashed LA. Glucosyltransferase B, immunoglobulin A, and caries experience among a group of Egyptian preschool children. J. Pediatr. Dent. 2012;79(2):63–68.[22] Colombo NH, Ribas LF, Pereira JA, et al. Antimicrobial peptides in saliva of children with severe early childhood caries. Arch Oral Biol. 2016;69:40–46.[23] Lo Giudice G, Nicita F, Militi A, et al. Correlation of s-IgA and IL-6 Salivary with Caries Disease and Oral Hygiene Parameters in Children. Dent J. 2020;8(1):3.[24] Lo Giudice G, Militi A, Nicita F, et al. Correlation between Oral Hygiene and IL-6 in Children. Dent J. 2020,8(3):91.[25] Vitorino R, Lobo MJ, Duarte JR, et al. The role of salivary peptides in dental caries. Biomed Chromatogr. 2005;19(3):214–222.[26] Carpenter G, Cotroneo E, Moazzez R, et al. Composition of enamel pellicle from dental erosion patients. Caries Res. 2014;48(5):361–367.[27] Mutahar M, O’Toole S, Carpenter G, et al. Reduced statherin in acquired enamel pellicle on eroded teeth compared to healthy teeth in the same subjects: an in-vivo study. PLoS One. 2017;12(8):e0183660.[28] Yin A, Margolis HC, Yao Y, et al. Multi-component adsorption model for pellicle formation: the influence of salivary proteins and non-salivary phospho proteins on the binding of histatin 5 onto hydroxyapatite. Arch Oral Biol. 2006;51(2):102–110.[29] Rudney JD, Staikov RK, Johnson JD. Potential biomarkers of human salivary function: a modified proteomic approach. Archives of Oral Biolology. 2009;54(1):91–100.[30] Shimotoyodome A, Kobayashi H, Tokimitsu I, et al. Statherin and histatin 1 reduce parotid saliva-promoted Streptococcus mutans strain MT8148 adhesion to hydroxyapatite surfaces. Caries Res. 2006;40(5):403–411.[31] Razi MA, Qamar S, Singhal A, et al. Role of natural salivary defenses in the maintenance of healthy oral microbiota in children and adolescents. J Family Med Prim Care. 2020;9(3):1603–1607.[32] Simón-Soro Á S-S, D’Auria G, Collado MC, et al. Revealing microbial recognition by specific antibodies. BMC Microbiol. 2015;15(1):132.[33] Davidopoulou S, Diza E, Menexes G, et al. Salivary concentration of the antimicrobial peptide LL-37 in children. Arch Oral Biol. 2012;57(7):865–869.[34] Ribeiro TR, Dria KJ, de Carvalho CB, et al. Salivary peptide profile and its association with early childhood caries. Int J Paediatr Dent. 2013;23(3):225–234.[35] Hasty DL, Simpson WA. Effects of fibronectin and other salivary macromolecules on the adherence of Escherichia coli to buccal epithelial cells. Infect Immun. 1987;55(9):2103–2109.[36] Bagherian A, Asadikaram G. Comparison of some salivary characteristics between children with and without early childhood caries. Indian J Dent Res. 2012;23(5):628–632.[37] Animireddy D, Reddy Bekkem VT, Vallala P, et al. Evaluation of pH, buffering capacity, viscosity and flow rate levels of saliva in caries-free, minimal caries and nursing caries children: an in vivo study. Contemp Clin Dent. 2014;5(3):324–328.[38] Kuribayashi M, Kitasako Y, Matin K, et al. Intraoral pH measurement of carious lesions with qPCR of cariogenic bacteria to differentiate caries activity. J Dent. 2012;40(3):222–228.[39] Featherstone JD, Rodgers BE. Effect of acetic, lactic and other organic acids on the formation of artificial carious lesions. Caries Res. 1981;15(5):377–385.[40] Shahrabi MA, Nikfarjam JA, Alikhani AA, et al. A comparison of salivary calcium, phosphate, and alkaline phosphatase in children with severe, moderate caries, and caries free in Tehran’s kindergartens. J Indian Soc Pedod Prev Dent. 2008;26(2):74–77.[41] Aruna S, Meenakshi B, Rama KV, et al. Salivary levels of calcium and phosphorus in children with and without early childhood caries: a pilot study. SRM J Res Dent Sci. 2020;11:72–75.[42] Young DA, Featherstone JD. Caries management by risk assessment. Community Dent Oral Epidemiol. 2013;41(1):e53–63.PublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repository.ucc.edu.co/bitstreams/cbf62670-41f6-48cf-8aed-46b7c1353372/download8a4605be74aa9ea9d79846c1fba20a33MD53ORIGINALLicencia de uso RI Ver5 biomarkers.pdfLicencia de uso RI Ver5 biomarkers.pdfapplication/pdf749931https://repository.ucc.edu.co/bitstreams/477a9105-7177-4433-a1ff-758aa75edb15/downloadf85b6dd46e266f25bf8f2dd72a4f9190MD512021_Evaluation of possible biomarkers for caries.pdf2021_Evaluation of possible biomarkers for caries.pdfapplication/pdf3763452https://repository.ucc.edu.co/bitstreams/e9334f3d-043f-4354-9f12-73a630c01c40/downloadbc5a80a4da861c2eb093a472725494ceMD52THUMBNAILLicencia de uso RI Ver5 biomarkers.pdf.jpgLicencia de uso RI Ver5 biomarkers.pdf.jpgGenerated Thumbnailimage/jpeg4948https://repository.ucc.edu.co/bitstreams/65eeea39-6434-4ea4-b0f9-2a00f77fc210/download77165db19e4c076c76a83cc1ccd56837MD542021_Evaluation of possible biomarkers for caries.pdf.jpg2021_Evaluation of possible biomarkers for caries.pdf.jpgGenerated Thumbnailimage/jpeg4188https://repository.ucc.edu.co/bitstreams/9f0ba205-8f14-4e08-b6c6-b2e1ce409d07/downloada20d45513ecb325dbbc5c73a6ac12d6cMD55TEXTLicencia de uso RI Ver5 biomarkers.pdf.txtLicencia de uso RI Ver5 biomarkers.pdf.txtExtracted texttext/plain6129https://repository.ucc.edu.co/bitstreams/d0531fd7-6bb9-417a-80af-0bc631886428/download57b017fbeb0cf8c8fff7f8ae8eaca5deMD562021_Evaluation of possible biomarkers for caries.pdf.txt2021_Evaluation of possible biomarkers for caries.pdf.txtExtracted texttext/plain39612https://repository.ucc.edu.co/bitstreams/e5f5ead3-b2e3-4987-8f21-14910072cb39/downloade1aebd66a1c11f0f6e80561b0b939124MD5720.500.12494/45852oai:repository.ucc.edu.co:20.500.12494/458522024-08-10 20:56:51.466restrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=