Análisis de la huella de carbono en la construcción y su impacto sobre el ambiente

A nivel mundial, el sector de la construcción es una de las industrias más contaminantes en la actualidad, se puede estimar que un 40% de la contaminación está ligada directa o indirectamente a las actividades constructivas. Por esta razón este texto se centra en una revisión de las distintas metodo...

Full description

Autores:
García Ochoa, José Alejandro
Quito Rodríguez, Juan Carlos
Perdomo Moreno, Johan Alexander
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2020
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/16031
Acceso en línea:
https://hdl.handle.net/20.500.12494/16031
Palabra clave:
Construcción sostenible
huella de carbono
análisis del ciclo de vida
metodologías para el análisis del ciclo de vida
emisiones de carbono
TG 2020 ICI 16031
sustainable construction
carbon footprint
carbon emission
life-cycle assessment
life-cycle assessment methodologies
Rights
openAccess
License
Atribución – No comercial
id COOPER2_d3c9530e6e2a72a9b320e65ad77ec51c
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/16031
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.spa.fl_str_mv Análisis de la huella de carbono en la construcción y su impacto sobre el ambiente
title Análisis de la huella de carbono en la construcción y su impacto sobre el ambiente
spellingShingle Análisis de la huella de carbono en la construcción y su impacto sobre el ambiente
Construcción sostenible
huella de carbono
análisis del ciclo de vida
metodologías para el análisis del ciclo de vida
emisiones de carbono
TG 2020 ICI 16031
sustainable construction
carbon footprint
carbon emission
life-cycle assessment
life-cycle assessment methodologies
title_short Análisis de la huella de carbono en la construcción y su impacto sobre el ambiente
title_full Análisis de la huella de carbono en la construcción y su impacto sobre el ambiente
title_fullStr Análisis de la huella de carbono en la construcción y su impacto sobre el ambiente
title_full_unstemmed Análisis de la huella de carbono en la construcción y su impacto sobre el ambiente
title_sort Análisis de la huella de carbono en la construcción y su impacto sobre el ambiente
dc.creator.fl_str_mv García Ochoa, José Alejandro
Quito Rodríguez, Juan Carlos
Perdomo Moreno, Johan Alexander
dc.contributor.advisor.none.fl_str_mv Agudelo Varela, Mateo
dc.contributor.author.none.fl_str_mv García Ochoa, José Alejandro
Quito Rodríguez, Juan Carlos
Perdomo Moreno, Johan Alexander
dc.subject.spa.fl_str_mv Construcción sostenible
huella de carbono
análisis del ciclo de vida
metodologías para el análisis del ciclo de vida
emisiones de carbono
topic Construcción sostenible
huella de carbono
análisis del ciclo de vida
metodologías para el análisis del ciclo de vida
emisiones de carbono
TG 2020 ICI 16031
sustainable construction
carbon footprint
carbon emission
life-cycle assessment
life-cycle assessment methodologies
dc.subject.classification.spa.fl_str_mv TG 2020 ICI 16031
dc.subject.other.spa.fl_str_mv sustainable construction
carbon footprint
carbon emission
life-cycle assessment
life-cycle assessment methodologies
description A nivel mundial, el sector de la construcción es una de las industrias más contaminantes en la actualidad, se puede estimar que un 40% de la contaminación está ligada directa o indirectamente a las actividades constructivas. Por esta razón este texto se centra en una revisión de las distintas metodologías y sus aportes a la cuantificación de las emisiones de carbono en los distintos niveles constructivos. Este análisis permite establecer que las actividades constructivas y sus impactos ambientales van mucho más allá del simple hecho de construir, sino que éstas generan impactos durante todo el ciclo de vida de la construcción, encontrando que es durante el ciclo de uso los mayores efectos sobre el ambiente.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-01-16T23:57:32Z
dc.date.available.none.fl_str_mv 2020-01-16T23:57:32Z
dc.date.issued.none.fl_str_mv 2020-01
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12494/16031
dc.identifier.bibliographicCitation.spa.fl_str_mv Garcia Ochoa, J. A., Quito Rodriguez, J. C., & Perdomo Moreno, J. A. (2019). Análisis de la huella de carbono en la construcción y su impacto sobre el ambiente. Villavicencio: Universidad Cooperativa de Colombia.Recuperado de: http://hdl.handle.net/20.500.12494/16031
url https://hdl.handle.net/20.500.12494/16031
identifier_str_mv Garcia Ochoa, J. A., Quito Rodriguez, J. C., & Perdomo Moreno, J. A. (2019). Análisis de la huella de carbono en la construcción y su impacto sobre el ambiente. Villavicencio: Universidad Cooperativa de Colombia.Recuperado de: http://hdl.handle.net/20.500.12494/16031
dc.relation.references.spa.fl_str_mv [1] Kibert CJ. Sustainable construction: green building design and delivery. 4th edition New Jersey: John Wiley & Sons; 2016.
[2] EPA. Inventory of U.S. greenhouse gas emissions and sinks: 1990–2016. EPA 430-P-18-001; 2018.
[3] Wang T, Seo S, Liao P, Fang D. GHG emission reduction performance of stateof-theart green buildings: review of two case studies. Renew Sustain Energy Rev 2016; 56:484–93.
[4] Sbci U. Buildings and climate change: summary for decision-makers. Paris: United Nations Environmental Programme, Sustainable Buildings and Climate Initiative; 2009. p. 1–62.
[5] Biswas WK. Carbon footprint and embodied energy consumption assessment of building construction works in Western Australia. Int J Sustain Built Environ 2014; 3:179–86.
[6] Chau C, Leung T, Ng W. A review on life cycle assessment, life cycle energy assessment and life cycle carbon emissions assessment on buildings. Appl Energy 2015; 143:395–413.
[7] IPCC. Climate change 2014: mitigation of climate change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press; 2015.
[8] Pachauri R, Reisinger A. IPCC fourth assessment report. Geneva: IPCC; 2007. p. 2007.
[9] EPA. Greenhouse Gases (GHG) Emissions; 2017.
[10] Sharma A, Saxena A, Sethi M, Shree V. Life cycle assessment of buildings: a review. Renew Sustain Energy Rev 2011; 15:871–5.
[11] Cole RJ. Energy and greenhouse gas emissions associated with the construction of alternative structural systems. Build Environ 1998; 34:335–48.
[12] Taborianski VM, Prado RT. Methodology of CO2 emission evaluation in the life cycle of office building façades. Environ Impact Assess Rev 2012; 33:41– 7.
[13] Kellenberger D, Althaus H. Relevance of simplifications in LCA of building components. Build Environ 2009; 44:818–25.
[14] Onat N, Kucukvar M, Tatari O. Scope-based carbon footprint analysis of US residential and commercial buildings: an input-output hybrid life cycle assessment approach. Build Environ 2014; 72:53–62.
[15] International Standard Organization. ISO 14040: environmental managementlife cycle assessment-principles and framework; 1997.
[16] Suh S, Huppes G. Methods for life cycle inventory of a product. J Clean Prod 2005; 13:687–97.
[17] Suh S, Lenzen M, Treloar GJ, Hondo H, Horvath A, Huppes G, et al. System boundary selection in life-cycle inventories using hybrid approaches. Environ Sci Technol 2004;38:657–64.
[18] Shao L, Chen G, Chen Z, Guo S, Han M, Zhang B, et al. Systems accounting for energy consumption and carbon emission by building. Commun Nonlinear Sci Numer Simul 2014;19:1859–73.
[19] Amanjeet S, George B, Satish J, Matt S. Review of life-cycle assessment applications in building construction. J Archit Eng 2011;17:15–23.
[20] Cabeza LF, Rincón L, Vilariño V, Pérez G, Castell A. Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: a review. Renew Sustain Energy Rev 2014;29:394–416.
[21] Van den Heede P, De Belie N. Environmental impact and life cycle assessment (LCA) of traditional and ‘green’ concretes: literature review and theoretical calculations. Cem Concr Compos 2012;34:431–42.
[22] Hertwich EG, Peters GP. Carbon footprint of nations: a global, trade-linked analysis. Environ Sci Technol 2009;43:6414–20.
[23] Mi Z, Zhang Y, Guan D, Shan Y, Liu Z, Cong R, et al. Consumption-based emission accounting for Chinese cities. Appl Energy 2016;184:1073–81.
[24] Minx JC, Wiedmann T, Wood R, Peters GP, Lenzen M, Owen A, et al. Input–output analysis and carbon footprinting: an overview of applications. Econ Syst Res 2009;21:187–216.
[25] Mi Z, Meng J, Guan D, Shan Y, Song M, Wei Y, et al. CO2 emission flows have reversed since the global financial crisis. Nat Commun 2017;8:1712.
[26] Druckman A, Jackson T. The carbon footprint of UK households 1990–2004: a socio-economically disaggregated, quasimulti-regional input–output model. Ecol Econ 2009;68:2066–77.
[27] Dietzenbacher E, Lenzen M, Los B, Guan D, Lahr ML, Sancho F, et al. Input– output analysis: the next 25 years. Econ Syst Res 2013;25:369–89.
[28] Hondo H, Sakai S, Tanno S. Sensitivity analysis of total CO2 emission intensities estimated using an input–output table. Appl Energy 2002;72:689–704.
[29] Bullard CW, Penner PS, Pilati DA. Net energy analysis: handbook for combining process and input-output analysis. Resources and Energy 1978;1:267–313.
[30] Zhang X, Wang F. Assessment of embodied carbon emissions for building construction in China: comparative case studies using alternative methods. Energy Build 2016;130:330–40.
[31] Bilec M, Ries R, Matthews HS, Sharrard AL. Example of a hybrid lifecycle assessment of construction processes. J Infrastruct Syst 2006;12:207– 15.
[32] Pomponi F, Lenzen M. Hybrid life cycle assessment (LCA) will likely yield more accurate results than process-based LCA. J Clean Prod 2018;176:210–5.
[33] Yang Y, Heijungs R, Brandão M. Hybrid life cycle assessment (LCA) does not necessarily yield more accurate results than process-based LCA. J Clean Prod 2017;150:237–42
[34] Garcia R, Freire F. Carbon footprint of particleboard: a comparison between ISO/TS 14067, GHG Protocol, PAS 2050 and Climate Declaration. J Clean Prod 2014;66:199–209.
[35] Teng Y, Pan W. Building life cycle carbon emissions: a review. Appl Energy 2017:1095–101.
[36] Liu T, Wang Q, Su B. A review of carbon labeling: standards, implementation, and impact. Renew Sustain Energy Rev 2016;53:68–79.
[37] Chomkhamsri K, Pelletier N. Analysis of existing environmental footprint methodologies for products and organizations: recommendations, rationale, and alignment. 2011.
[38] PAS B. 2050: 2008 specification for the assessment of the life cycle greenhouse gas emissions of goods and services. Br Stand Inst 2008.
[39] Organización Internacional de Normalización. ISO 14044: environmental management, life cycle assessment, requirements and guidelines, ISO; 2006.
[40] Wu P, Xia B, Pienaar J, Zhao X. The past, present and future of carbon labelling for construction materials – a review. Build Environ 2014;77:160–8
[41] Wu P, Xia B, Zhao X. The importance of use and end-of-life phases to the life cycle greenhouse gas (GHG) emissions of concrete – a review. Renew Sustain Energy Rev 2014;37:360–9.
[42] Crishna N, Banfill PFG, Goodsir S. Embodied energy and CO2 in UK dimension stone. Resour Conserv Recycl 2011;55:1265–73.
[43] Densley Tingley D, Davison B. Developing an LCA methodology to account for the environmental benefits of design for deconstruction. Build Environ 2012;57:387–95.
[44] Levasseur A, Lesage P, Margni M, Samson R. Biogenic carbon and temporary storage addressed with dynamic life cycle assessment. J Ind Ecol 2013;17:117–28.
[45] Sinden G. The contribution of PAS 2050 to the evolution of international greenhouse gas emission standards. Int J Life Cycle Assess 2009;14:195–203.
dc.rights.license.none.fl_str_mv Atribución – No comercial
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución – No comercial
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 22 p.
dc.publisher.spa.fl_str_mv Universidad Cooperativa de Colombia, Villavicencio, Ingeniería Civil
dc.publisher.program.spa.fl_str_mv Ingeniería Civil
dc.publisher.place.spa.fl_str_mv Villavicencio
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/db04e82c-180e-4775-9242-d50a6b56ff05/download
https://repository.ucc.edu.co/bitstreams/293fa706-df02-49c5-ba9b-99e24dc3dde9/download
https://repository.ucc.edu.co/bitstreams/d3101513-d9c4-4368-b9c9-71e8965d6fb8/download
https://repository.ucc.edu.co/bitstreams/cbfa33ad-8fce-4f76-84cb-85d3de1ba75f/download
https://repository.ucc.edu.co/bitstreams/d6f08568-65bf-436b-aa23-78803dd7341e/download
https://repository.ucc.edu.co/bitstreams/330c4cad-7d9e-4946-bb7e-f435993e5304/download
https://repository.ucc.edu.co/bitstreams/c042524c-a447-46e6-a3c0-7fbba348de7b/download
bitstream.checksum.fl_str_mv 9c5cec97a95109f2a3593e7800d884e5
ab4e5eb25f91dd387a7f7a8a11c1d286
3bce4f7ab09dfc588f126e1e36e98a45
e301e8874d60f60703db341885a8f416
6c93007659876293de9853bf49458be4
1f65d2e23395bb8142bb4362c7eaec16
6d93d3216dc4a7f5df47d4876fbec4d3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1811564961772601344
spelling Agudelo Varela, MateoGarcía Ochoa, José AlejandroQuito Rodríguez, Juan CarlosPerdomo Moreno, Johan Alexander2020-01-16T23:57:32Z2020-01-16T23:57:32Z2020-01https://hdl.handle.net/20.500.12494/16031Garcia Ochoa, J. A., Quito Rodriguez, J. C., & Perdomo Moreno, J. A. (2019). Análisis de la huella de carbono en la construcción y su impacto sobre el ambiente. Villavicencio: Universidad Cooperativa de Colombia.Recuperado de: http://hdl.handle.net/20.500.12494/16031A nivel mundial, el sector de la construcción es una de las industrias más contaminantes en la actualidad, se puede estimar que un 40% de la contaminación está ligada directa o indirectamente a las actividades constructivas. Por esta razón este texto se centra en una revisión de las distintas metodologías y sus aportes a la cuantificación de las emisiones de carbono en los distintos niveles constructivos. Este análisis permite establecer que las actividades constructivas y sus impactos ambientales van mucho más allá del simple hecho de construir, sino que éstas generan impactos durante todo el ciclo de vida de la construcción, encontrando que es durante el ciclo de uso los mayores efectos sobre el ambiente.jose.garciaoc@campusucc.edu.co22 p.Universidad Cooperativa de Colombia, Villavicencio, Ingeniería CivilIngeniería CivilVillavicencioConstrucción sosteniblehuella de carbonoanálisis del ciclo de vidametodologías para el análisis del ciclo de vidaemisiones de carbonoTG 2020 ICI 16031sustainable constructioncarbon footprintcarbon emissionlife-cycle assessmentlife-cycle assessment methodologiesAnálisis de la huella de carbono en la construcción y su impacto sobre el ambienteTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionAtribución – No comercialinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2[1] Kibert CJ. Sustainable construction: green building design and delivery. 4th edition New Jersey: John Wiley & Sons; 2016.[2] EPA. Inventory of U.S. greenhouse gas emissions and sinks: 1990–2016. EPA 430-P-18-001; 2018.[3] Wang T, Seo S, Liao P, Fang D. GHG emission reduction performance of stateof-theart green buildings: review of two case studies. Renew Sustain Energy Rev 2016; 56:484–93.[4] Sbci U. Buildings and climate change: summary for decision-makers. Paris: United Nations Environmental Programme, Sustainable Buildings and Climate Initiative; 2009. p. 1–62.[5] Biswas WK. Carbon footprint and embodied energy consumption assessment of building construction works in Western Australia. Int J Sustain Built Environ 2014; 3:179–86.[6] Chau C, Leung T, Ng W. A review on life cycle assessment, life cycle energy assessment and life cycle carbon emissions assessment on buildings. Appl Energy 2015; 143:395–413.[7] IPCC. Climate change 2014: mitigation of climate change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press; 2015.[8] Pachauri R, Reisinger A. IPCC fourth assessment report. Geneva: IPCC; 2007. p. 2007.[9] EPA. Greenhouse Gases (GHG) Emissions; 2017.[10] Sharma A, Saxena A, Sethi M, Shree V. Life cycle assessment of buildings: a review. Renew Sustain Energy Rev 2011; 15:871–5.[11] Cole RJ. Energy and greenhouse gas emissions associated with the construction of alternative structural systems. Build Environ 1998; 34:335–48.[12] Taborianski VM, Prado RT. Methodology of CO2 emission evaluation in the life cycle of office building façades. Environ Impact Assess Rev 2012; 33:41– 7.[13] Kellenberger D, Althaus H. Relevance of simplifications in LCA of building components. Build Environ 2009; 44:818–25.[14] Onat N, Kucukvar M, Tatari O. Scope-based carbon footprint analysis of US residential and commercial buildings: an input-output hybrid life cycle assessment approach. Build Environ 2014; 72:53–62.[15] International Standard Organization. ISO 14040: environmental managementlife cycle assessment-principles and framework; 1997.[16] Suh S, Huppes G. Methods for life cycle inventory of a product. J Clean Prod 2005; 13:687–97.[17] Suh S, Lenzen M, Treloar GJ, Hondo H, Horvath A, Huppes G, et al. System boundary selection in life-cycle inventories using hybrid approaches. Environ Sci Technol 2004;38:657–64.[18] Shao L, Chen G, Chen Z, Guo S, Han M, Zhang B, et al. Systems accounting for energy consumption and carbon emission by building. Commun Nonlinear Sci Numer Simul 2014;19:1859–73.[19] Amanjeet S, George B, Satish J, Matt S. Review of life-cycle assessment applications in building construction. J Archit Eng 2011;17:15–23.[20] Cabeza LF, Rincón L, Vilariño V, Pérez G, Castell A. Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: a review. Renew Sustain Energy Rev 2014;29:394–416.[21] Van den Heede P, De Belie N. Environmental impact and life cycle assessment (LCA) of traditional and ‘green’ concretes: literature review and theoretical calculations. Cem Concr Compos 2012;34:431–42.[22] Hertwich EG, Peters GP. Carbon footprint of nations: a global, trade-linked analysis. Environ Sci Technol 2009;43:6414–20.[23] Mi Z, Zhang Y, Guan D, Shan Y, Liu Z, Cong R, et al. Consumption-based emission accounting for Chinese cities. Appl Energy 2016;184:1073–81.[24] Minx JC, Wiedmann T, Wood R, Peters GP, Lenzen M, Owen A, et al. Input–output analysis and carbon footprinting: an overview of applications. Econ Syst Res 2009;21:187–216.[25] Mi Z, Meng J, Guan D, Shan Y, Song M, Wei Y, et al. CO2 emission flows have reversed since the global financial crisis. Nat Commun 2017;8:1712.[26] Druckman A, Jackson T. The carbon footprint of UK households 1990–2004: a socio-economically disaggregated, quasimulti-regional input–output model. Ecol Econ 2009;68:2066–77.[27] Dietzenbacher E, Lenzen M, Los B, Guan D, Lahr ML, Sancho F, et al. Input– output analysis: the next 25 years. Econ Syst Res 2013;25:369–89.[28] Hondo H, Sakai S, Tanno S. Sensitivity analysis of total CO2 emission intensities estimated using an input–output table. Appl Energy 2002;72:689–704.[29] Bullard CW, Penner PS, Pilati DA. Net energy analysis: handbook for combining process and input-output analysis. Resources and Energy 1978;1:267–313.[30] Zhang X, Wang F. Assessment of embodied carbon emissions for building construction in China: comparative case studies using alternative methods. Energy Build 2016;130:330–40.[31] Bilec M, Ries R, Matthews HS, Sharrard AL. Example of a hybrid lifecycle assessment of construction processes. J Infrastruct Syst 2006;12:207– 15.[32] Pomponi F, Lenzen M. Hybrid life cycle assessment (LCA) will likely yield more accurate results than process-based LCA. J Clean Prod 2018;176:210–5.[33] Yang Y, Heijungs R, Brandão M. Hybrid life cycle assessment (LCA) does not necessarily yield more accurate results than process-based LCA. J Clean Prod 2017;150:237–42[34] Garcia R, Freire F. Carbon footprint of particleboard: a comparison between ISO/TS 14067, GHG Protocol, PAS 2050 and Climate Declaration. J Clean Prod 2014;66:199–209.[35] Teng Y, Pan W. Building life cycle carbon emissions: a review. Appl Energy 2017:1095–101.[36] Liu T, Wang Q, Su B. A review of carbon labeling: standards, implementation, and impact. Renew Sustain Energy Rev 2016;53:68–79.[37] Chomkhamsri K, Pelletier N. Analysis of existing environmental footprint methodologies for products and organizations: recommendations, rationale, and alignment. 2011.[38] PAS B. 2050: 2008 specification for the assessment of the life cycle greenhouse gas emissions of goods and services. Br Stand Inst 2008.[39] Organización Internacional de Normalización. ISO 14044: environmental management, life cycle assessment, requirements and guidelines, ISO; 2006.[40] Wu P, Xia B, Pienaar J, Zhao X. The past, present and future of carbon labelling for construction materials – a review. Build Environ 2014;77:160–8[41] Wu P, Xia B, Zhao X. The importance of use and end-of-life phases to the life cycle greenhouse gas (GHG) emissions of concrete – a review. Renew Sustain Energy Rev 2014;37:360–9.[42] Crishna N, Banfill PFG, Goodsir S. Embodied energy and CO2 in UK dimension stone. Resour Conserv Recycl 2011;55:1265–73.[43] Densley Tingley D, Davison B. Developing an LCA methodology to account for the environmental benefits of design for deconstruction. Build Environ 2012;57:387–95.[44] Levasseur A, Lesage P, Margni M, Samson R. Biogenic carbon and temporary storage addressed with dynamic life cycle assessment. J Ind Ecol 2013;17:117–28.[45] Sinden G. The contribution of PAS 2050 to the evolution of international greenhouse gas emission standards. Int J Life Cycle Assess 2009;14:195–203.PublicationORIGINAL2020_Analisis_huella_carbono.pdf2020_Analisis_huella_carbono.pdfTrabajo de gradoapplication/pdf182168https://repository.ucc.edu.co/bitstreams/db04e82c-180e-4775-9242-d50a6b56ff05/download9c5cec97a95109f2a3593e7800d884e5MD522020_analisis_huella_carbono_LicenciaUso.pdf2020_analisis_huella_carbono_LicenciaUso.pdfLicencia de Usoapplication/pdf709998https://repository.ucc.edu.co/bitstreams/293fa706-df02-49c5-ba9b-99e24dc3dde9/downloadab4e5eb25f91dd387a7f7a8a11c1d286MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/d3101513-d9c4-4368-b9c9-71e8965d6fb8/download3bce4f7ab09dfc588f126e1e36e98a45MD53THUMBNAIL2020_Analisis_huella_carbono.pdf.jpg2020_Analisis_huella_carbono.pdf.jpgGenerated Thumbnailimage/jpeg5183https://repository.ucc.edu.co/bitstreams/cbfa33ad-8fce-4f76-84cb-85d3de1ba75f/downloade301e8874d60f60703db341885a8f416MD542020_analisis_huella_carbono_LicenciaUso.pdf.jpg2020_analisis_huella_carbono_LicenciaUso.pdf.jpgGenerated Thumbnailimage/jpeg4855https://repository.ucc.edu.co/bitstreams/d6f08568-65bf-436b-aa23-78803dd7341e/download6c93007659876293de9853bf49458be4MD55TEXT2020_Analisis_huella_carbono.pdf.txt2020_Analisis_huella_carbono.pdf.txtExtracted texttext/plain58919https://repository.ucc.edu.co/bitstreams/330c4cad-7d9e-4946-bb7e-f435993e5304/download1f65d2e23395bb8142bb4362c7eaec16MD562020_analisis_huella_carbono_LicenciaUso.pdf.txt2020_analisis_huella_carbono_LicenciaUso.pdf.txtExtracted texttext/plain6https://repository.ucc.edu.co/bitstreams/c042524c-a447-46e6-a3c0-7fbba348de7b/download6d93d3216dc4a7f5df47d4876fbec4d3MD5720.500.12494/16031oai:repository.ucc.edu.co:20.500.12494/160312024-08-10 22:00:51.216open.accesshttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo=