Low-Cost Smart Indoor Greenhouse for Urban Farming
Currently, people want to take control of what they consume as well as the local authorities pursue to implement measures to improve sustainability, food security, and living standards. Indoor urban farming initiatives provide an opportunity to grow their own and obtain fresher food with fewer trans...
- Autores:
-
Acosta Coll, Melisa
Anaya, Daniel
Ojeda-Field, Luis
Zamora Musa, Ronald
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2021
- Institución:
- Universidad Cooperativa de Colombia
- Repositorio:
- Repositorio UCC
- Idioma:
- OAI Identifier:
- oai:repository.ucc.edu.co:20.500.12494/49096
- Acceso en línea:
- https://hdl.handle.net/20.500.12494/49096
- Palabra clave:
- Invernadero interior
Invernadero inteligente
Agricultura urbana
Indoor greenhouse
Smart greenhouse
Urban farming
- Rights
- closedAccess
- License
- http://purl.org/coar/access_right/c_14cb
id |
COOPER2_d2a07cf0ebf50a616c19d6d9fa680c06 |
---|---|
oai_identifier_str |
oai:repository.ucc.edu.co:20.500.12494/49096 |
network_acronym_str |
COOPER2 |
network_name_str |
Repositorio UCC |
repository_id_str |
|
dc.title.none.fl_str_mv |
Low-Cost Smart Indoor Greenhouse for Urban Farming |
title |
Low-Cost Smart Indoor Greenhouse for Urban Farming |
spellingShingle |
Low-Cost Smart Indoor Greenhouse for Urban Farming Invernadero interior Invernadero inteligente Agricultura urbana Indoor greenhouse Smart greenhouse Urban farming |
title_short |
Low-Cost Smart Indoor Greenhouse for Urban Farming |
title_full |
Low-Cost Smart Indoor Greenhouse for Urban Farming |
title_fullStr |
Low-Cost Smart Indoor Greenhouse for Urban Farming |
title_full_unstemmed |
Low-Cost Smart Indoor Greenhouse for Urban Farming |
title_sort |
Low-Cost Smart Indoor Greenhouse for Urban Farming |
dc.creator.fl_str_mv |
Acosta Coll, Melisa Anaya, Daniel Ojeda-Field, Luis Zamora Musa, Ronald |
dc.contributor.author.none.fl_str_mv |
Acosta Coll, Melisa Anaya, Daniel Ojeda-Field, Luis Zamora Musa, Ronald |
dc.subject.none.fl_str_mv |
Invernadero interior Invernadero inteligente Agricultura urbana |
topic |
Invernadero interior Invernadero inteligente Agricultura urbana Indoor greenhouse Smart greenhouse Urban farming |
dc.subject.other.none.fl_str_mv |
Indoor greenhouse Smart greenhouse Urban farming |
description |
Currently, people want to take control of what they consume as well as the local authorities pursue to implement measures to improve sustainability, food security, and living standards. Indoor urban farming initiatives provide an opportunity to grow their own and obtain fresher food with fewer transportation emissions, likewise, it is a strategy to lift people out of food poverty, reduce environmental impact since the use of herbicides and pesticides is minimal and helps to reduce food waste. However, factors such as the time dedicated to the cultivation of plants, and the adequate space inside their houses prevents them from carrying out this activity. This project presents the design of a low cost smart indoor greenhouse design to cultivate herbs and vegetables with minimum human intervention monitored by a web application. The prototype has three systems to control and monitor the main variables involved in the plant’s growth such as soil moisture, temperature, and solar light intensity. Likewise, it is suitable for a home with little space and it is easily installable, has low energy consumption, and is cost-efficient. |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021-09-13 |
dc.date.accessioned.none.fl_str_mv |
2023-04-10T15:23:35Z |
dc.date.available.none.fl_str_mv |
2023-04-10T15:23:35Z |
dc.type.none.fl_str_mv |
Artículos Científicos |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
03029743 |
dc.identifier.uri.none.fl_str_mv |
10.1007/978-3-030-86973-1_9 https://hdl.handle.net/20.500.12494/49096 |
dc.identifier.bibliographicCitation.none.fl_str_mv |
Acosta-Coll, M., Anaya, D., Ojeda-Field, L., Zamora-Musa, R. (2021). Low-Cost Smart Indoor Greenhouse for Urban Farming. In: , et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12952. Springer, Cham. https://doi.org/10.1007/978-3-030-86973-1_9 |
identifier_str_mv |
03029743 10.1007/978-3-030-86973-1_9 Acosta-Coll, M., Anaya, D., Ojeda-Field, L., Zamora-Musa, R. (2021). Low-Cost Smart Indoor Greenhouse for Urban Farming. In: , et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12952. Springer, Cham. https://doi.org/10.1007/978-3-030-86973-1_9 |
url |
https://hdl.handle.net/20.500.12494/49096 |
dc.relation.isversionof.none.fl_str_mv |
https://link.springer.com/chapter/10.1007/978-3-030-86973-1_9 |
dc.relation.ispartofjournal.none.fl_str_mv |
Lecture Notes in Computer Science |
dc.relation.references.none.fl_str_mv |
Thompson Reuters Foundation: ANALYSIS-Urban farms to traffic bans: cities prep for post-coronavirus future. Thompson Reuters Foundation News, 21 April 2020 De Bon, H., Parrot, L., Moustier, P.: Sustainable urban agriculture in developing countries. A review. Agron. Sustain. Dev. 30, 21–32 (2010) Farhangi, M., Turvani, M., Van der Valk, A., Carsjens, G.: High-tech urban agriculture in Amsterdam: an actor network analysis. Sustainability 12(10) (2020). https://doi.org/10.3390/su12103955 Zanele Khumalo, N., Sibanda, M.: Does urban and peri-urban agriculture contribute to household food security? An assessment of the food security status of households in Tongaat, eThekwini Municipality. Sustainability 11(14) (2019). https://doi.org/10.3390/su11041082 Zasad, I.: Multifunctional peri-urban agriculture—a review of societal demands and the provision of goods and services by farming. Land Use Policy 28(4), 639–648 (2011) Orsini, F., Kahane, R., Nono-Womdim, R., Gianquinto, G.: Urban agriculture in the developing world: a review. Agron. Sustain. Dev. 33 (2013) Pearson, L.J., Pearson, L., Pearson, C.J.: Sustainable urban agriculture: stocktake and opportunities. Int. J. Agric. Sustain. (2010). https://doi.org/10.3763/ijas.2009.0468 Pinstrup-Andersen, P.: Is it time to take vertical indoor farming seriously?. Glob. Food Secur. 17, 233–235 (2018) Kaburuan, E.R., Jayadi, R., Harisno: A design of IoT-based monitoring system for intelligence indoor micro-climate horticulture farming in Indonesia. In: Procedia Computer Science, pp. 459–464 (2019) Goodman, W., Minner, J.: Will the urban agricultural revolution be vertical and soilless? A case study of controlled environment agriculture in New York City. Land Use Policy 83, 160–173 (2019) Sammons, P.J., Furukawua, T., Bulgin, A.: Autonomous pesticide spraying robot for use in a greenhouse. ISBN 0–9587583–7–9 (2005) Benke, K., Tomkins, B.: Future food-production systems: vertical farming and controlled-environment agriculture. Sustain. Sci. Pract. Policy 13(1) (2017). https://doi.org/10.1080/15487733.2017.1394054 Martin, M., Molin, E.: Environmental assessment of an urban vertical hydroponic farming system in Sweden. Sustainability 11(15) (2019). https://doi.org/10.3390/su11154124 Pandit, A.A., Mancharkar, A.V.: Green house environment monitoring and control system. Int. J. Sci. Eng. Res. 7(8) (2016) Chitti, S., Ktha, L.S.: Data acquisition of green house gases and energy monitoring system using GSM technology. Int. J. Innov. Technol. Explor. Eng. IJITEE 8 (2019) Salazar-Aguilar, N.: Diseño de un Sistema Inteligente para el Control Automa-tizado de Inveranderos. Universidad Autónoma del Estado de More-los, México, Maestría (2020) Moliner, R., Marsh, H., Heinz, E.: Del carbón activo al grafeno : Evolución de los materiales de carbono. In: Grupo de conversion de combustibles. ICB-CSIC, pp. 2–5 (2016) Richard, M.: El carbón activo ya se fabrica con una estructura diseñada a medida, MIT Technol. Rev. 12 junio (2015) Omo-Okoro, P.N., Daso, A.P., Okonkwo, J.O.: A review of the application of agricultural wastes as precursor materials for the adsorption of per- and polyfluoroalkyl substances: A focus on current approaches and methodologies. Environ. Technol. Innov. 9, 100–114 (2018). https://doi.org/10.1016/j.eti.2017.11.005 Palansooriya, K.N., et al.: Impacts of biochar application on upland agriculture: a review. J. Environ. Manage. 234(December 2018), 52–64 (2019). https://doi.org/10.1016/j.jenvman.2018.12.085 Green Power: Eco friendly technology. El uso de carbón vegetal como fertilizante, 27 July 2018 C. Jacobo Mendez Alzamora Consultor Eco-Agricultura. (PGSJ): Carbón en Agricultura – Engormix, 11 septiembre 2017 Yuan, C., Feng, S., Huo, Z., Ji, Q.: Effects of deficit irrigation with saline water on soil water-salt distribution and water use efficiency of maize for seed production in arid Northwest China. Agric. Water Manag. 212(September 2018), 424–432 (2019). https://doi.org/10.1016/j.agwat.2018.09.019 Kamcev, J., et al.: Author‘s accepted manuscript salt concentration dependence of ionic conductivity in ion exchange membranes. J. Membr. Sci. 547(October 2017), 123–133 (2017). https://doi.org/10.1016/j.memsci.2017.10.024 Sadiku, M.N.O., Alexander, C.K.: Fundamentals of Electric Circuits, Third Ed. vol. 91, Bookman (2017) Cotching, W.E., Kögel-Knabner, I.: Organic matter in the agricultural soils of Tasmania, Australia-a review A R T I C L E I N F O, Geoderma 312(October 2017), 170–182 (2018). https://doi.org/10.1016/j.geoderma.2017.10.006 Frouz, J.: Effects of soil macro- and mesofauna on litter decomposition and soil organic matter stabilization. Geoderma 332(September 2017), 161–172 (2018). https://doi.org/10.1016/j.geoderma.2017.08.039 Rostami, S., Azhdarpoor, A.: The application of plant growth regulators to improve phytoremediation of contaminated soils: a review. Chemosphere 220, 818–827 (2019). https://doi.org/10.1016/j.chemosphere.2018.12.203 Piyare, R., Murphy, A.L., Tosato, P., Brunelli, D.: Plug into a plant: using a plant microbial fuel cell and a wake-up radio for an energy neutral sensing system. Proc. - 2017 IEEE 42nd Conf. Local Comput. Netw. Workshop LCN Workshop, pp. 18–25, 2017 (2017). https://doi.org/10.1109/LCN.Workshops.2017.60 Hubenova, Y., Mitov, M.: Conversion of solar energy into electricity by using duckweed in direct photosynthetic plant fuel cell. Bioelectrochemistry 87, 185–191 (2012). https://doi.org/10.1016/j.bioelechem.2012.02.008 Atzori, G., Mancuso, S., Masi, E.: Seawater potential use in soilless culture: a review. Sci. Hortic. 249(January), 199–207 (2019). https://doi.org/10.1016/j.scienta.2019.01.035 Yang, S., Wang, Z., Han, Z., Pan, X.: Performance modelling of seawater electrolysis in an undivided cell: Effects of current density and seawater salinity. Chem. Eng. Res. Des. 143(1037), 79–89 (2019). https://doi.org/10.1016/j.cherd.2019.01.009 CANNA Research: Influencia de la temperatura ambiental en las plantas, CANNA España. 15 de marzo (2017) Olubode, O.O.: Influence of seasonal variability of precipitation and temperature on performances of pawpaw varieties intercropped with cucumber. Sci. Hortic. 243(February 2018), 622–644 (2019). https://doi.org/10.1016/j.scienta.2018.06.007 Sánchez-Lucas, R., Fernández-Escobar, R., Suárez, M.P., Benlloch, M., Benlloch-González, M., Quintero, J.M.: Effect of moderate high temperature on the vegetative growth and potassium allocation in olive plants. J. Plant Physiol. 207, 22–29 (2016). https://doi.org/10.1016/j.jplph.2016.10.001 Vegas, J.: Qué ocurre al regar las plantas con agua caliente?, 3 de abril (2016) Ni, J., Cheng, Y., Wang, Q., Ng, C.W.W., Garg, A.: Effects of vegetation on soil temperature and water content: field monitoring and numerical modelling. J. Hydrol. 571(November 2018), 494–502 (2019). https://doi.org/10.1016/j.jhydrol.2019.02.009 |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/closedAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
eu_rights_str_mv |
closedAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_14cb |
dc.format.extent.none.fl_str_mv |
120-132 p. |
dc.coverage.temporal.none.fl_str_mv |
Vol. 12952 |
dc.publisher.none.fl_str_mv |
Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Industrial, Barrancabermeja |
dc.publisher.program.none.fl_str_mv |
Ingeniería Industrial |
dc.publisher.place.none.fl_str_mv |
Barrancabermeja |
publisher.none.fl_str_mv |
Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Industrial, Barrancabermeja |
institution |
Universidad Cooperativa de Colombia |
bitstream.url.fl_str_mv |
https://repository.ucc.edu.co/bitstreams/104601ce-7e2f-40d4-974f-fda1c38f403f/download https://repository.ucc.edu.co/bitstreams/1a14eefa-31c3-41d8-a67a-df7a1cde6e43/download https://repository.ucc.edu.co/bitstreams/c0e0fd36-918e-4249-9d9b-7bcdb4ece564/download https://repository.ucc.edu.co/bitstreams/3e32cdf1-5e27-4ef2-9c2b-3370d3970892/download https://repository.ucc.edu.co/bitstreams/50a41115-d9b1-4e49-b90a-759b73b5ccbc/download https://repository.ucc.edu.co/bitstreams/0440b1ca-f8cc-415b-a7b9-5454fec80946/download https://repository.ucc.edu.co/bitstreams/d010f3a3-4cd8-4253-8f25-87f9cd056c72/download |
bitstream.checksum.fl_str_mv |
3bce4f7ab09dfc588f126e1e36e98a45 314514341a6afcf52e02e6371f9d5515 849eaef52496c2096e4e6f7784f3831b 0930618ca6d71ec45fc1da75b61f7559 ab736fa413caeecbec4ce4cb01b3e9be 7773594e508e08557561dd6d7d83bfb6 c3b3f7ccb3244054d61b991e75cffa9c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Cooperativa de Colombia |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1811565290359619584 |
spelling |
Acosta Coll, MelisaAnaya, DanielOjeda-Field, LuisZamora Musa, RonaldVol. 129522023-04-10T15:23:35Z2023-04-10T15:23:35Z2021-09-130302974310.1007/978-3-030-86973-1_9https://hdl.handle.net/20.500.12494/49096Acosta-Coll, M., Anaya, D., Ojeda-Field, L., Zamora-Musa, R. (2021). Low-Cost Smart Indoor Greenhouse for Urban Farming. In: , et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12952. Springer, Cham. https://doi.org/10.1007/978-3-030-86973-1_9Currently, people want to take control of what they consume as well as the local authorities pursue to implement measures to improve sustainability, food security, and living standards. Indoor urban farming initiatives provide an opportunity to grow their own and obtain fresher food with fewer transportation emissions, likewise, it is a strategy to lift people out of food poverty, reduce environmental impact since the use of herbicides and pesticides is minimal and helps to reduce food waste. However, factors such as the time dedicated to the cultivation of plants, and the adequate space inside their houses prevents them from carrying out this activity. This project presents the design of a low cost smart indoor greenhouse design to cultivate herbs and vegetables with minimum human intervention monitored by a web application. The prototype has three systems to control and monitor the main variables involved in the plant’s growth such as soil moisture, temperature, and solar light intensity. Likewise, it is suitable for a home with little space and it is easily installable, has low energy consumption, and is cost-efficient.https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001348149https://orcid.org/0000-0003-4949-4438https://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000004982ronald.zamora@campusucc.edu.cohttps://scholar.google.com/citations?user=KXDKYVUAAAAJ&hl=es120-132 p.Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Industrial, BarrancabermejaIngeniería IndustrialBarrancabermejahttps://link.springer.com/chapter/10.1007/978-3-030-86973-1_9Lecture Notes in Computer ScienceThompson Reuters Foundation: ANALYSIS-Urban farms to traffic bans: cities prep for post-coronavirus future. Thompson Reuters Foundation News, 21 April 2020De Bon, H., Parrot, L., Moustier, P.: Sustainable urban agriculture in developing countries. A review. Agron. Sustain. Dev. 30, 21–32 (2010)Farhangi, M., Turvani, M., Van der Valk, A., Carsjens, G.: High-tech urban agriculture in Amsterdam: an actor network analysis. Sustainability 12(10) (2020). https://doi.org/10.3390/su12103955Zanele Khumalo, N., Sibanda, M.: Does urban and peri-urban agriculture contribute to household food security? An assessment of the food security status of households in Tongaat, eThekwini Municipality. Sustainability 11(14) (2019). https://doi.org/10.3390/su11041082Zasad, I.: Multifunctional peri-urban agriculture—a review of societal demands and the provision of goods and services by farming. Land Use Policy 28(4), 639–648 (2011)Orsini, F., Kahane, R., Nono-Womdim, R., Gianquinto, G.: Urban agriculture in the developing world: a review. Agron. Sustain. Dev. 33 (2013)Pearson, L.J., Pearson, L., Pearson, C.J.: Sustainable urban agriculture: stocktake and opportunities. Int. J. Agric. Sustain. (2010). https://doi.org/10.3763/ijas.2009.0468Pinstrup-Andersen, P.: Is it time to take vertical indoor farming seriously?. Glob. Food Secur. 17, 233–235 (2018)Kaburuan, E.R., Jayadi, R., Harisno: A design of IoT-based monitoring system for intelligence indoor micro-climate horticulture farming in Indonesia. In: Procedia Computer Science, pp. 459–464 (2019)Goodman, W., Minner, J.: Will the urban agricultural revolution be vertical and soilless? A case study of controlled environment agriculture in New York City. Land Use Policy 83, 160–173 (2019)Sammons, P.J., Furukawua, T., Bulgin, A.: Autonomous pesticide spraying robot for use in a greenhouse. ISBN 0–9587583–7–9 (2005)Benke, K., Tomkins, B.: Future food-production systems: vertical farming and controlled-environment agriculture. Sustain. Sci. Pract. Policy 13(1) (2017). https://doi.org/10.1080/15487733.2017.1394054Martin, M., Molin, E.: Environmental assessment of an urban vertical hydroponic farming system in Sweden. Sustainability 11(15) (2019). https://doi.org/10.3390/su11154124Pandit, A.A., Mancharkar, A.V.: Green house environment monitoring and control system. Int. J. Sci. Eng. Res. 7(8) (2016)Chitti, S., Ktha, L.S.: Data acquisition of green house gases and energy monitoring system using GSM technology. Int. J. Innov. Technol. Explor. Eng. IJITEE 8 (2019)Salazar-Aguilar, N.: Diseño de un Sistema Inteligente para el Control Automa-tizado de Inveranderos. Universidad Autónoma del Estado de More-los, México, Maestría (2020)Moliner, R., Marsh, H., Heinz, E.: Del carbón activo al grafeno : Evolución de los materiales de carbono. In: Grupo de conversion de combustibles. ICB-CSIC, pp. 2–5 (2016)Richard, M.: El carbón activo ya se fabrica con una estructura diseñada a medida, MIT Technol. Rev. 12 junio (2015)Omo-Okoro, P.N., Daso, A.P., Okonkwo, J.O.: A review of the application of agricultural wastes as precursor materials for the adsorption of per- and polyfluoroalkyl substances: A focus on current approaches and methodologies. Environ. Technol. Innov. 9, 100–114 (2018). https://doi.org/10.1016/j.eti.2017.11.005Palansooriya, K.N., et al.: Impacts of biochar application on upland agriculture: a review. J. Environ. Manage. 234(December 2018), 52–64 (2019). https://doi.org/10.1016/j.jenvman.2018.12.085Green Power: Eco friendly technology. El uso de carbón vegetal como fertilizante, 27 July 2018C. Jacobo Mendez Alzamora Consultor Eco-Agricultura. (PGSJ): Carbón en Agricultura – Engormix, 11 septiembre 2017Yuan, C., Feng, S., Huo, Z., Ji, Q.: Effects of deficit irrigation with saline water on soil water-salt distribution and water use efficiency of maize for seed production in arid Northwest China. Agric. Water Manag. 212(September 2018), 424–432 (2019). https://doi.org/10.1016/j.agwat.2018.09.019Kamcev, J., et al.: Author‘s accepted manuscript salt concentration dependence of ionic conductivity in ion exchange membranes. J. Membr. Sci. 547(October 2017), 123–133 (2017). https://doi.org/10.1016/j.memsci.2017.10.024Sadiku, M.N.O., Alexander, C.K.: Fundamentals of Electric Circuits, Third Ed. vol. 91, Bookman (2017)Cotching, W.E., Kögel-Knabner, I.: Organic matter in the agricultural soils of Tasmania, Australia-a review A R T I C L E I N F O, Geoderma 312(October 2017), 170–182 (2018). https://doi.org/10.1016/j.geoderma.2017.10.006Frouz, J.: Effects of soil macro- and mesofauna on litter decomposition and soil organic matter stabilization. Geoderma 332(September 2017), 161–172 (2018). https://doi.org/10.1016/j.geoderma.2017.08.039Rostami, S., Azhdarpoor, A.: The application of plant growth regulators to improve phytoremediation of contaminated soils: a review. Chemosphere 220, 818–827 (2019). https://doi.org/10.1016/j.chemosphere.2018.12.203Piyare, R., Murphy, A.L., Tosato, P., Brunelli, D.: Plug into a plant: using a plant microbial fuel cell and a wake-up radio for an energy neutral sensing system. Proc. - 2017 IEEE 42nd Conf. Local Comput. Netw. Workshop LCN Workshop, pp. 18–25, 2017 (2017). https://doi.org/10.1109/LCN.Workshops.2017.60Hubenova, Y., Mitov, M.: Conversion of solar energy into electricity by using duckweed in direct photosynthetic plant fuel cell. Bioelectrochemistry 87, 185–191 (2012). https://doi.org/10.1016/j.bioelechem.2012.02.008Atzori, G., Mancuso, S., Masi, E.: Seawater potential use in soilless culture: a review. Sci. Hortic. 249(January), 199–207 (2019). https://doi.org/10.1016/j.scienta.2019.01.035Yang, S., Wang, Z., Han, Z., Pan, X.: Performance modelling of seawater electrolysis in an undivided cell: Effects of current density and seawater salinity. Chem. Eng. Res. Des. 143(1037), 79–89 (2019). https://doi.org/10.1016/j.cherd.2019.01.009CANNA Research: Influencia de la temperatura ambiental en las plantas, CANNA España. 15 de marzo (2017)Olubode, O.O.: Influence of seasonal variability of precipitation and temperature on performances of pawpaw varieties intercropped with cucumber. Sci. Hortic. 243(February 2018), 622–644 (2019). https://doi.org/10.1016/j.scienta.2018.06.007Sánchez-Lucas, R., Fernández-Escobar, R., Suárez, M.P., Benlloch, M., Benlloch-González, M., Quintero, J.M.: Effect of moderate high temperature on the vegetative growth and potassium allocation in olive plants. J. Plant Physiol. 207, 22–29 (2016). https://doi.org/10.1016/j.jplph.2016.10.001Vegas, J.: Qué ocurre al regar las plantas con agua caliente?, 3 de abril (2016)Ni, J., Cheng, Y., Wang, Q., Ng, C.W.W., Garg, A.: Effects of vegetation on soil temperature and water content: field monitoring and numerical modelling. J. Hydrol. 571(November 2018), 494–502 (2019). https://doi.org/10.1016/j.jhydrol.2019.02.009Invernadero interiorInvernadero inteligenteAgricultura urbanaIndoor greenhouseSmart greenhouseUrban farmingLow-Cost Smart Indoor Greenhouse for Urban FarmingArtículos Científicoshttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/104601ce-7e2f-40d4-974f-fda1c38f403f/download3bce4f7ab09dfc588f126e1e36e98a45MD51ORIGINALLow-Cost Smart Indoor Greenhouse for Urban.pdfLow-Cost Smart Indoor Greenhouse for Urban.pdfapplication/pdf2399214https://repository.ucc.edu.co/bitstreams/1a14eefa-31c3-41d8-a67a-df7a1cde6e43/download314514341a6afcf52e02e6371f9d5515MD52Licencia de uso RI Low-Cost Smart Indoor - Ronald Zamora.pdfLicencia de uso RI Low-Cost Smart Indoor - Ronald Zamora.pdfapplication/pdf239961https://repository.ucc.edu.co/bitstreams/c0e0fd36-918e-4249-9d9b-7bcdb4ece564/download849eaef52496c2096e4e6f7784f3831bMD53TEXTLow-Cost Smart Indoor Greenhouse for Urban.pdf.txtLow-Cost Smart Indoor Greenhouse for Urban.pdf.txtExtracted texttext/plain31530https://repository.ucc.edu.co/bitstreams/3e32cdf1-5e27-4ef2-9c2b-3370d3970892/download0930618ca6d71ec45fc1da75b61f7559MD54Licencia de uso RI Low-Cost Smart Indoor - Ronald Zamora.pdf.txtLicencia de uso RI Low-Cost Smart Indoor - Ronald Zamora.pdf.txtExtracted texttext/plain5759https://repository.ucc.edu.co/bitstreams/50a41115-d9b1-4e49-b90a-759b73b5ccbc/downloadab736fa413caeecbec4ce4cb01b3e9beMD56THUMBNAILLow-Cost Smart Indoor Greenhouse for Urban.pdf.jpgLow-Cost Smart Indoor Greenhouse for Urban.pdf.jpgGenerated Thumbnailimage/jpeg12178https://repository.ucc.edu.co/bitstreams/0440b1ca-f8cc-415b-a7b9-5454fec80946/download7773594e508e08557561dd6d7d83bfb6MD55Licencia de uso RI Low-Cost Smart Indoor - Ronald Zamora.pdf.jpgLicencia de uso RI Low-Cost Smart Indoor - Ronald Zamora.pdf.jpgGenerated Thumbnailimage/jpeg12706https://repository.ucc.edu.co/bitstreams/d010f3a3-4cd8-4253-8f25-87f9cd056c72/downloadc3b3f7ccb3244054d61b991e75cffa9cMD5720.500.12494/49096oai:repository.ucc.edu.co:20.500.12494/490962024-08-10 21:02:38.815restrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo= |