Low-Cost Smart Indoor Greenhouse for Urban Farming

Currently, people want to take control of what they consume as well as the local authorities pursue to implement measures to improve sustainability, food security, and living standards. Indoor urban farming initiatives provide an opportunity to grow their own and obtain fresher food with fewer trans...

Full description

Autores:
Acosta Coll, Melisa
Anaya, Daniel
Ojeda-Field, Luis
Zamora Musa, Ronald
Tipo de recurso:
Article of investigation
Fecha de publicación:
2021
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/49096
Acceso en línea:
https://hdl.handle.net/20.500.12494/49096
Palabra clave:
Invernadero interior
Invernadero inteligente
Agricultura urbana
Indoor greenhouse
Smart greenhouse
Urban farming
Rights
closedAccess
License
http://purl.org/coar/access_right/c_14cb
id COOPER2_d2a07cf0ebf50a616c19d6d9fa680c06
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/49096
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.none.fl_str_mv Low-Cost Smart Indoor Greenhouse for Urban Farming
title Low-Cost Smart Indoor Greenhouse for Urban Farming
spellingShingle Low-Cost Smart Indoor Greenhouse for Urban Farming
Invernadero interior
Invernadero inteligente
Agricultura urbana
Indoor greenhouse
Smart greenhouse
Urban farming
title_short Low-Cost Smart Indoor Greenhouse for Urban Farming
title_full Low-Cost Smart Indoor Greenhouse for Urban Farming
title_fullStr Low-Cost Smart Indoor Greenhouse for Urban Farming
title_full_unstemmed Low-Cost Smart Indoor Greenhouse for Urban Farming
title_sort Low-Cost Smart Indoor Greenhouse for Urban Farming
dc.creator.fl_str_mv Acosta Coll, Melisa
Anaya, Daniel
Ojeda-Field, Luis
Zamora Musa, Ronald
dc.contributor.author.none.fl_str_mv Acosta Coll, Melisa
Anaya, Daniel
Ojeda-Field, Luis
Zamora Musa, Ronald
dc.subject.none.fl_str_mv Invernadero interior
Invernadero inteligente
Agricultura urbana
topic Invernadero interior
Invernadero inteligente
Agricultura urbana
Indoor greenhouse
Smart greenhouse
Urban farming
dc.subject.other.none.fl_str_mv Indoor greenhouse
Smart greenhouse
Urban farming
description Currently, people want to take control of what they consume as well as the local authorities pursue to implement measures to improve sustainability, food security, and living standards. Indoor urban farming initiatives provide an opportunity to grow their own and obtain fresher food with fewer transportation emissions, likewise, it is a strategy to lift people out of food poverty, reduce environmental impact since the use of herbicides and pesticides is minimal and helps to reduce food waste. However, factors such as the time dedicated to the cultivation of plants, and the adequate space inside their houses prevents them from carrying out this activity. This project presents the design of a low cost smart indoor greenhouse design to cultivate herbs and vegetables with minimum human intervention monitored by a web application. The prototype has three systems to control and monitor the main variables involved in the plant’s growth such as soil moisture, temperature, and solar light intensity. Likewise, it is suitable for a home with little space and it is easily installable, has low energy consumption, and is cost-efficient.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-09-13
dc.date.accessioned.none.fl_str_mv 2023-04-10T15:23:35Z
dc.date.available.none.fl_str_mv 2023-04-10T15:23:35Z
dc.type.none.fl_str_mv Artículos Científicos
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 03029743
dc.identifier.uri.none.fl_str_mv 10.1007/978-3-030-86973-1_9
https://hdl.handle.net/20.500.12494/49096
dc.identifier.bibliographicCitation.none.fl_str_mv Acosta-Coll, M., Anaya, D., Ojeda-Field, L., Zamora-Musa, R. (2021). Low-Cost Smart Indoor Greenhouse for Urban Farming. In: , et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12952. Springer, Cham. https://doi.org/10.1007/978-3-030-86973-1_9
identifier_str_mv 03029743
10.1007/978-3-030-86973-1_9
Acosta-Coll, M., Anaya, D., Ojeda-Field, L., Zamora-Musa, R. (2021). Low-Cost Smart Indoor Greenhouse for Urban Farming. In: , et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12952. Springer, Cham. https://doi.org/10.1007/978-3-030-86973-1_9
url https://hdl.handle.net/20.500.12494/49096
dc.relation.isversionof.none.fl_str_mv https://link.springer.com/chapter/10.1007/978-3-030-86973-1_9
dc.relation.ispartofjournal.none.fl_str_mv Lecture Notes in Computer Science
dc.relation.references.none.fl_str_mv Thompson Reuters Foundation: ANALYSIS-Urban farms to traffic bans: cities prep for post-coronavirus future. Thompson Reuters Foundation News, 21 April 2020
De Bon, H., Parrot, L., Moustier, P.: Sustainable urban agriculture in developing countries. A review. Agron. Sustain. Dev. 30, 21–32 (2010)
Farhangi, M., Turvani, M., Van der Valk, A., Carsjens, G.: High-tech urban agriculture in Amsterdam: an actor network analysis. Sustainability 12(10) (2020). https://doi.org/10.3390/su12103955
Zanele Khumalo, N., Sibanda, M.: Does urban and peri-urban agriculture contribute to household food security? An assessment of the food security status of households in Tongaat, eThekwini Municipality. Sustainability 11(14) (2019). https://doi.org/10.3390/su11041082
Zasad, I.: Multifunctional peri-urban agriculture—a review of societal demands and the provision of goods and services by farming. Land Use Policy 28(4), 639–648 (2011)
Orsini, F., Kahane, R., Nono-Womdim, R., Gianquinto, G.: Urban agriculture in the developing world: a review. Agron. Sustain. Dev. 33 (2013)
Pearson, L.J., Pearson, L., Pearson, C.J.: Sustainable urban agriculture: stocktake and opportunities. Int. J. Agric. Sustain. (2010). https://doi.org/10.3763/ijas.2009.0468
Pinstrup-Andersen, P.: Is it time to take vertical indoor farming seriously?. Glob. Food Secur. 17, 233–235 (2018)
Kaburuan, E.R., Jayadi, R., Harisno: A design of IoT-based monitoring system for intelligence indoor micro-climate horticulture farming in Indonesia. In: Procedia Computer Science, pp. 459–464 (2019)
Goodman, W., Minner, J.: Will the urban agricultural revolution be vertical and soilless? A case study of controlled environment agriculture in New York City. Land Use Policy 83, 160–173 (2019)
Sammons, P.J., Furukawua, T., Bulgin, A.: Autonomous pesticide spraying robot for use in a greenhouse. ISBN 0–9587583–7–9 (2005)
Benke, K., Tomkins, B.: Future food-production systems: vertical farming and controlled-environment agriculture. Sustain. Sci. Pract. Policy 13(1) (2017). https://doi.org/10.1080/15487733.2017.1394054
Martin, M., Molin, E.: Environmental assessment of an urban vertical hydroponic farming system in Sweden. Sustainability 11(15) (2019). https://doi.org/10.3390/su11154124
Pandit, A.A., Mancharkar, A.V.: Green house environment monitoring and control system. Int. J. Sci. Eng. Res. 7(8) (2016)
Chitti, S., Ktha, L.S.: Data acquisition of green house gases and energy monitoring system using GSM technology. Int. J. Innov. Technol. Explor. Eng. IJITEE 8 (2019)
Salazar-Aguilar, N.: Diseño de un Sistema Inteligente para el Control Automa-tizado de Inveranderos. Universidad Autónoma del Estado de More-los, México, Maestría (2020)
Moliner, R., Marsh, H., Heinz, E.: Del carbón activo al grafeno : Evolución de los materiales de carbono. In: Grupo de conversion de combustibles. ICB-CSIC, pp. 2–5 (2016)
Richard, M.: El carbón activo ya se fabrica con una estructura diseñada a medida, MIT Technol. Rev. 12 junio (2015)
Omo-Okoro, P.N., Daso, A.P., Okonkwo, J.O.: A review of the application of agricultural wastes as precursor materials for the adsorption of per- and polyfluoroalkyl substances: A focus on current approaches and methodologies. Environ. Technol. Innov. 9, 100–114 (2018). https://doi.org/10.1016/j.eti.2017.11.005
Palansooriya, K.N., et al.: Impacts of biochar application on upland agriculture: a review. J. Environ. Manage. 234(December 2018), 52–64 (2019). https://doi.org/10.1016/j.jenvman.2018.12.085
Green Power: Eco friendly technology. El uso de carbón vegetal como fertilizante, 27 July 2018
C. Jacobo Mendez Alzamora Consultor Eco-Agricultura. (PGSJ): Carbón en Agricultura – Engormix, 11 septiembre 2017
Yuan, C., Feng, S., Huo, Z., Ji, Q.: Effects of deficit irrigation with saline water on soil water-salt distribution and water use efficiency of maize for seed production in arid Northwest China. Agric. Water Manag. 212(September 2018), 424–432 (2019). https://doi.org/10.1016/j.agwat.2018.09.019
Kamcev, J., et al.: Author‘s accepted manuscript salt concentration dependence of ionic conductivity in ion exchange membranes. J. Membr. Sci. 547(October 2017), 123–133 (2017). https://doi.org/10.1016/j.memsci.2017.10.024
Sadiku, M.N.O., Alexander, C.K.: Fundamentals of Electric Circuits, Third Ed. vol. 91, Bookman (2017)
Cotching, W.E., Kögel-Knabner, I.: Organic matter in the agricultural soils of Tasmania, Australia-a review A R T I C L E I N F O, Geoderma 312(October 2017), 170–182 (2018). https://doi.org/10.1016/j.geoderma.2017.10.006
Frouz, J.: Effects of soil macro- and mesofauna on litter decomposition and soil organic matter stabilization. Geoderma 332(September 2017), 161–172 (2018). https://doi.org/10.1016/j.geoderma.2017.08.039
Rostami, S., Azhdarpoor, A.: The application of plant growth regulators to improve phytoremediation of contaminated soils: a review. Chemosphere 220, 818–827 (2019). https://doi.org/10.1016/j.chemosphere.2018.12.203
Piyare, R., Murphy, A.L., Tosato, P., Brunelli, D.: Plug into a plant: using a plant microbial fuel cell and a wake-up radio for an energy neutral sensing system. Proc. - 2017 IEEE 42nd Conf. Local Comput. Netw. Workshop LCN Workshop, pp. 18–25, 2017 (2017). https://doi.org/10.1109/LCN.Workshops.2017.60
Hubenova, Y., Mitov, M.: Conversion of solar energy into electricity by using duckweed in direct photosynthetic plant fuel cell. Bioelectrochemistry 87, 185–191 (2012). https://doi.org/10.1016/j.bioelechem.2012.02.008
Atzori, G., Mancuso, S., Masi, E.: Seawater potential use in soilless culture: a review. Sci. Hortic. 249(January), 199–207 (2019). https://doi.org/10.1016/j.scienta.2019.01.035
Yang, S., Wang, Z., Han, Z., Pan, X.: Performance modelling of seawater electrolysis in an undivided cell: Effects of current density and seawater salinity. Chem. Eng. Res. Des. 143(1037), 79–89 (2019). https://doi.org/10.1016/j.cherd.2019.01.009
CANNA Research: Influencia de la temperatura ambiental en las plantas, CANNA España. 15 de marzo (2017)
Olubode, O.O.: Influence of seasonal variability of precipitation and temperature on performances of pawpaw varieties intercropped with cucumber. Sci. Hortic. 243(February 2018), 622–644 (2019). https://doi.org/10.1016/j.scienta.2018.06.007
Sánchez-Lucas, R., Fernández-Escobar, R., Suárez, M.P., Benlloch, M., Benlloch-González, M., Quintero, J.M.: Effect of moderate high temperature on the vegetative growth and potassium allocation in olive plants. J. Plant Physiol. 207, 22–29 (2016). https://doi.org/10.1016/j.jplph.2016.10.001
Vegas, J.: Qué ocurre al regar las plantas con agua caliente?, 3 de abril (2016)
Ni, J., Cheng, Y., Wang, Q., Ng, C.W.W., Garg, A.: Effects of vegetation on soil temperature and water content: field monitoring and numerical modelling. J. Hydrol. 571(November 2018), 494–502 (2019). https://doi.org/10.1016/j.jhydrol.2019.02.009
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/closedAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_14cb
eu_rights_str_mv closedAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_14cb
dc.format.extent.none.fl_str_mv 120-132 p.
dc.coverage.temporal.none.fl_str_mv Vol. 12952
dc.publisher.none.fl_str_mv Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Industrial, Barrancabermeja
dc.publisher.program.none.fl_str_mv Ingeniería Industrial
dc.publisher.place.none.fl_str_mv Barrancabermeja
publisher.none.fl_str_mv Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Industrial, Barrancabermeja
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/104601ce-7e2f-40d4-974f-fda1c38f403f/download
https://repository.ucc.edu.co/bitstreams/1a14eefa-31c3-41d8-a67a-df7a1cde6e43/download
https://repository.ucc.edu.co/bitstreams/c0e0fd36-918e-4249-9d9b-7bcdb4ece564/download
https://repository.ucc.edu.co/bitstreams/3e32cdf1-5e27-4ef2-9c2b-3370d3970892/download
https://repository.ucc.edu.co/bitstreams/50a41115-d9b1-4e49-b90a-759b73b5ccbc/download
https://repository.ucc.edu.co/bitstreams/0440b1ca-f8cc-415b-a7b9-5454fec80946/download
https://repository.ucc.edu.co/bitstreams/d010f3a3-4cd8-4253-8f25-87f9cd056c72/download
bitstream.checksum.fl_str_mv 3bce4f7ab09dfc588f126e1e36e98a45
314514341a6afcf52e02e6371f9d5515
849eaef52496c2096e4e6f7784f3831b
0930618ca6d71ec45fc1da75b61f7559
ab736fa413caeecbec4ce4cb01b3e9be
7773594e508e08557561dd6d7d83bfb6
c3b3f7ccb3244054d61b991e75cffa9c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1811565290359619584
spelling Acosta Coll, MelisaAnaya, DanielOjeda-Field, LuisZamora Musa, RonaldVol. 129522023-04-10T15:23:35Z2023-04-10T15:23:35Z2021-09-130302974310.1007/978-3-030-86973-1_9https://hdl.handle.net/20.500.12494/49096Acosta-Coll, M., Anaya, D., Ojeda-Field, L., Zamora-Musa, R. (2021). Low-Cost Smart Indoor Greenhouse for Urban Farming. In: , et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12952. Springer, Cham. https://doi.org/10.1007/978-3-030-86973-1_9Currently, people want to take control of what they consume as well as the local authorities pursue to implement measures to improve sustainability, food security, and living standards. Indoor urban farming initiatives provide an opportunity to grow their own and obtain fresher food with fewer transportation emissions, likewise, it is a strategy to lift people out of food poverty, reduce environmental impact since the use of herbicides and pesticides is minimal and helps to reduce food waste. However, factors such as the time dedicated to the cultivation of plants, and the adequate space inside their houses prevents them from carrying out this activity. This project presents the design of a low cost smart indoor greenhouse design to cultivate herbs and vegetables with minimum human intervention monitored by a web application. The prototype has three systems to control and monitor the main variables involved in the plant’s growth such as soil moisture, temperature, and solar light intensity. Likewise, it is suitable for a home with little space and it is easily installable, has low energy consumption, and is cost-efficient.https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001348149https://orcid.org/0000-0003-4949-4438https://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000004982ronald.zamora@campusucc.edu.cohttps://scholar.google.com/citations?user=KXDKYVUAAAAJ&hl=es120-132 p.Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Industrial, BarrancabermejaIngeniería IndustrialBarrancabermejahttps://link.springer.com/chapter/10.1007/978-3-030-86973-1_9Lecture Notes in Computer ScienceThompson Reuters Foundation: ANALYSIS-Urban farms to traffic bans: cities prep for post-coronavirus future. Thompson Reuters Foundation News, 21 April 2020De Bon, H., Parrot, L., Moustier, P.: Sustainable urban agriculture in developing countries. A review. Agron. Sustain. Dev. 30, 21–32 (2010)Farhangi, M., Turvani, M., Van der Valk, A., Carsjens, G.: High-tech urban agriculture in Amsterdam: an actor network analysis. Sustainability 12(10) (2020). https://doi.org/10.3390/su12103955Zanele Khumalo, N., Sibanda, M.: Does urban and peri-urban agriculture contribute to household food security? An assessment of the food security status of households in Tongaat, eThekwini Municipality. Sustainability 11(14) (2019). https://doi.org/10.3390/su11041082Zasad, I.: Multifunctional peri-urban agriculture—a review of societal demands and the provision of goods and services by farming. Land Use Policy 28(4), 639–648 (2011)Orsini, F., Kahane, R., Nono-Womdim, R., Gianquinto, G.: Urban agriculture in the developing world: a review. Agron. Sustain. Dev. 33 (2013)Pearson, L.J., Pearson, L., Pearson, C.J.: Sustainable urban agriculture: stocktake and opportunities. Int. J. Agric. Sustain. (2010). https://doi.org/10.3763/ijas.2009.0468Pinstrup-Andersen, P.: Is it time to take vertical indoor farming seriously?. Glob. Food Secur. 17, 233–235 (2018)Kaburuan, E.R., Jayadi, R., Harisno: A design of IoT-based monitoring system for intelligence indoor micro-climate horticulture farming in Indonesia. In: Procedia Computer Science, pp. 459–464 (2019)Goodman, W., Minner, J.: Will the urban agricultural revolution be vertical and soilless? A case study of controlled environment agriculture in New York City. Land Use Policy 83, 160–173 (2019)Sammons, P.J., Furukawua, T., Bulgin, A.: Autonomous pesticide spraying robot for use in a greenhouse. ISBN 0–9587583–7–9 (2005)Benke, K., Tomkins, B.: Future food-production systems: vertical farming and controlled-environment agriculture. Sustain. Sci. Pract. Policy 13(1) (2017). https://doi.org/10.1080/15487733.2017.1394054Martin, M., Molin, E.: Environmental assessment of an urban vertical hydroponic farming system in Sweden. Sustainability 11(15) (2019). https://doi.org/10.3390/su11154124Pandit, A.A., Mancharkar, A.V.: Green house environment monitoring and control system. Int. J. Sci. Eng. Res. 7(8) (2016)Chitti, S., Ktha, L.S.: Data acquisition of green house gases and energy monitoring system using GSM technology. Int. J. Innov. Technol. Explor. Eng. IJITEE 8 (2019)Salazar-Aguilar, N.: Diseño de un Sistema Inteligente para el Control Automa-tizado de Inveranderos. Universidad Autónoma del Estado de More-los, México, Maestría (2020)Moliner, R., Marsh, H., Heinz, E.: Del carbón activo al grafeno : Evolución de los materiales de carbono. In: Grupo de conversion de combustibles. ICB-CSIC, pp. 2–5 (2016)Richard, M.: El carbón activo ya se fabrica con una estructura diseñada a medida, MIT Technol. Rev. 12 junio (2015)Omo-Okoro, P.N., Daso, A.P., Okonkwo, J.O.: A review of the application of agricultural wastes as precursor materials for the adsorption of per- and polyfluoroalkyl substances: A focus on current approaches and methodologies. Environ. Technol. Innov. 9, 100–114 (2018). https://doi.org/10.1016/j.eti.2017.11.005Palansooriya, K.N., et al.: Impacts of biochar application on upland agriculture: a review. J. Environ. Manage. 234(December 2018), 52–64 (2019). https://doi.org/10.1016/j.jenvman.2018.12.085Green Power: Eco friendly technology. El uso de carbón vegetal como fertilizante, 27 July 2018C. Jacobo Mendez Alzamora Consultor Eco-Agricultura. (PGSJ): Carbón en Agricultura – Engormix, 11 septiembre 2017Yuan, C., Feng, S., Huo, Z., Ji, Q.: Effects of deficit irrigation with saline water on soil water-salt distribution and water use efficiency of maize for seed production in arid Northwest China. Agric. Water Manag. 212(September 2018), 424–432 (2019). https://doi.org/10.1016/j.agwat.2018.09.019Kamcev, J., et al.: Author‘s accepted manuscript salt concentration dependence of ionic conductivity in ion exchange membranes. J. Membr. Sci. 547(October 2017), 123–133 (2017). https://doi.org/10.1016/j.memsci.2017.10.024Sadiku, M.N.O., Alexander, C.K.: Fundamentals of Electric Circuits, Third Ed. vol. 91, Bookman (2017)Cotching, W.E., Kögel-Knabner, I.: Organic matter in the agricultural soils of Tasmania, Australia-a review A R T I C L E I N F O, Geoderma 312(October 2017), 170–182 (2018). https://doi.org/10.1016/j.geoderma.2017.10.006Frouz, J.: Effects of soil macro- and mesofauna on litter decomposition and soil organic matter stabilization. Geoderma 332(September 2017), 161–172 (2018). https://doi.org/10.1016/j.geoderma.2017.08.039Rostami, S., Azhdarpoor, A.: The application of plant growth regulators to improve phytoremediation of contaminated soils: a review. Chemosphere 220, 818–827 (2019). https://doi.org/10.1016/j.chemosphere.2018.12.203Piyare, R., Murphy, A.L., Tosato, P., Brunelli, D.: Plug into a plant: using a plant microbial fuel cell and a wake-up radio for an energy neutral sensing system. Proc. - 2017 IEEE 42nd Conf. Local Comput. Netw. Workshop LCN Workshop, pp. 18–25, 2017 (2017). https://doi.org/10.1109/LCN.Workshops.2017.60Hubenova, Y., Mitov, M.: Conversion of solar energy into electricity by using duckweed in direct photosynthetic plant fuel cell. Bioelectrochemistry 87, 185–191 (2012). https://doi.org/10.1016/j.bioelechem.2012.02.008Atzori, G., Mancuso, S., Masi, E.: Seawater potential use in soilless culture: a review. Sci. Hortic. 249(January), 199–207 (2019). https://doi.org/10.1016/j.scienta.2019.01.035Yang, S., Wang, Z., Han, Z., Pan, X.: Performance modelling of seawater electrolysis in an undivided cell: Effects of current density and seawater salinity. Chem. Eng. Res. Des. 143(1037), 79–89 (2019). https://doi.org/10.1016/j.cherd.2019.01.009CANNA Research: Influencia de la temperatura ambiental en las plantas, CANNA España. 15 de marzo (2017)Olubode, O.O.: Influence of seasonal variability of precipitation and temperature on performances of pawpaw varieties intercropped with cucumber. Sci. Hortic. 243(February 2018), 622–644 (2019). https://doi.org/10.1016/j.scienta.2018.06.007Sánchez-Lucas, R., Fernández-Escobar, R., Suárez, M.P., Benlloch, M., Benlloch-González, M., Quintero, J.M.: Effect of moderate high temperature on the vegetative growth and potassium allocation in olive plants. J. Plant Physiol. 207, 22–29 (2016). https://doi.org/10.1016/j.jplph.2016.10.001Vegas, J.: Qué ocurre al regar las plantas con agua caliente?, 3 de abril (2016)Ni, J., Cheng, Y., Wang, Q., Ng, C.W.W., Garg, A.: Effects of vegetation on soil temperature and water content: field monitoring and numerical modelling. J. Hydrol. 571(November 2018), 494–502 (2019). https://doi.org/10.1016/j.jhydrol.2019.02.009Invernadero interiorInvernadero inteligenteAgricultura urbanaIndoor greenhouseSmart greenhouseUrban farmingLow-Cost Smart Indoor Greenhouse for Urban FarmingArtículos Científicoshttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/104601ce-7e2f-40d4-974f-fda1c38f403f/download3bce4f7ab09dfc588f126e1e36e98a45MD51ORIGINALLow-Cost Smart Indoor Greenhouse for Urban.pdfLow-Cost Smart Indoor Greenhouse for Urban.pdfapplication/pdf2399214https://repository.ucc.edu.co/bitstreams/1a14eefa-31c3-41d8-a67a-df7a1cde6e43/download314514341a6afcf52e02e6371f9d5515MD52Licencia de uso RI Low-Cost Smart Indoor - Ronald Zamora.pdfLicencia de uso RI Low-Cost Smart Indoor - Ronald Zamora.pdfapplication/pdf239961https://repository.ucc.edu.co/bitstreams/c0e0fd36-918e-4249-9d9b-7bcdb4ece564/download849eaef52496c2096e4e6f7784f3831bMD53TEXTLow-Cost Smart Indoor Greenhouse for Urban.pdf.txtLow-Cost Smart Indoor Greenhouse for Urban.pdf.txtExtracted texttext/plain31530https://repository.ucc.edu.co/bitstreams/3e32cdf1-5e27-4ef2-9c2b-3370d3970892/download0930618ca6d71ec45fc1da75b61f7559MD54Licencia de uso RI Low-Cost Smart Indoor - Ronald Zamora.pdf.txtLicencia de uso RI Low-Cost Smart Indoor - Ronald Zamora.pdf.txtExtracted texttext/plain5759https://repository.ucc.edu.co/bitstreams/50a41115-d9b1-4e49-b90a-759b73b5ccbc/downloadab736fa413caeecbec4ce4cb01b3e9beMD56THUMBNAILLow-Cost Smart Indoor Greenhouse for Urban.pdf.jpgLow-Cost Smart Indoor Greenhouse for Urban.pdf.jpgGenerated Thumbnailimage/jpeg12178https://repository.ucc.edu.co/bitstreams/0440b1ca-f8cc-415b-a7b9-5454fec80946/download7773594e508e08557561dd6d7d83bfb6MD55Licencia de uso RI Low-Cost Smart Indoor - Ronald Zamora.pdf.jpgLicencia de uso RI Low-Cost Smart Indoor - Ronald Zamora.pdf.jpgGenerated Thumbnailimage/jpeg12706https://repository.ucc.edu.co/bitstreams/d010f3a3-4cd8-4253-8f25-87f9cd056c72/downloadc3b3f7ccb3244054d61b991e75cffa9cMD5720.500.12494/49096oai:repository.ucc.edu.co:20.500.12494/490962024-08-10 21:02:38.815restrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo=