Atorvastatin Effectively Inhibits Ancestral and Two Emerging Variants of SARS-CoV-2 in vitro

This article evaluated the in vitro antiviral effect of atorvastatin (ATV) against SARS-CoV-2 and identified the interaction affinity between this compound and two SARS-CoV-2 proteins. The antiviral activity of atorvastatin against this virus was evaluated by three different treatment strategies [(i...

Full description

Autores:
Zapata-Cardona, María I
Flórez-Álvarez, Lizdany
Hernández López, Juan Carlos
Zapata Builes, Wildeman
Guerra-Sandoval, Ariadna L
Hincapié-García, Jaime
Rugeles, Maria T
Tipo de recurso:
Article of investigation
Fecha de publicación:
2022
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/45190
Acceso en línea:
https://hdl.handle.net/20.500.12494/45190
Palabra clave:
SARS-CoV-2
antiviral
molecular docking
COVID-19
variants
Rights
openAccess
License
Atribución
id COOPER2_d0a6dd27f06d8ba4f7fbf3d18176da48
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/45190
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.spa.fl_str_mv Atorvastatin Effectively Inhibits Ancestral and Two Emerging Variants of SARS-CoV-2 in vitro
title Atorvastatin Effectively Inhibits Ancestral and Two Emerging Variants of SARS-CoV-2 in vitro
spellingShingle Atorvastatin Effectively Inhibits Ancestral and Two Emerging Variants of SARS-CoV-2 in vitro
SARS-CoV-2
antiviral
molecular docking
COVID-19
variants
title_short Atorvastatin Effectively Inhibits Ancestral and Two Emerging Variants of SARS-CoV-2 in vitro
title_full Atorvastatin Effectively Inhibits Ancestral and Two Emerging Variants of SARS-CoV-2 in vitro
title_fullStr Atorvastatin Effectively Inhibits Ancestral and Two Emerging Variants of SARS-CoV-2 in vitro
title_full_unstemmed Atorvastatin Effectively Inhibits Ancestral and Two Emerging Variants of SARS-CoV-2 in vitro
title_sort Atorvastatin Effectively Inhibits Ancestral and Two Emerging Variants of SARS-CoV-2 in vitro
dc.creator.fl_str_mv Zapata-Cardona, María I
Flórez-Álvarez, Lizdany
Hernández López, Juan Carlos
Zapata Builes, Wildeman
Guerra-Sandoval, Ariadna L
Hincapié-García, Jaime
Rugeles, Maria T
dc.contributor.author.none.fl_str_mv Zapata-Cardona, María I
Flórez-Álvarez, Lizdany
Hernández López, Juan Carlos
Zapata Builes, Wildeman
Guerra-Sandoval, Ariadna L
Hincapié-García, Jaime
Rugeles, Maria T
dc.subject.spa.fl_str_mv SARS-CoV-2
antiviral
molecular docking
COVID-19
variants
topic SARS-CoV-2
antiviral
molecular docking
COVID-19
variants
description This article evaluated the in vitro antiviral effect of atorvastatin (ATV) against SARS-CoV-2 and identified the interaction affinity between this compound and two SARS-CoV-2 proteins. The antiviral activity of atorvastatin against this virus was evaluated by three different treatment strategies [(i) pre-post treatment, (ii) pre-infection treatment, and (iii) post-infection treatment] using Vero E6 and Caco-2 cells. The interaction of atorvastatin with RdRp (RNA-dependent RNA polymerase) and 3CL protease (3-chymotrypsin-like protease) was evaluated by molecular docking. The CC50s (half-maximal cytotoxic concentrations) obtained for ATV were 50.3 and 64.5 μM in Vero E6 and Caco-2, respectively. This compound showed antiviral activity against SARS-CoV-2 D614G strain in Vero E6 with median effective concentrations (EC50s) of 15.4, 12.1, and 11.1μM by pre-post, pre-infection, and post-infection treatments, respectively. ATV also inhibited Delta and Mu variants by pre-post treatment (EC50s of 16.8 and 21.1μM, respectively). In addition, ATV showed an antiviral effect against the D614G strain independent of the cell line (EC50 of 7.4μM in Caco-2). The interaction of atorvastatin with SARS-CoV-2 RdRp and 3CL protease yielded a binding affinity of −6.7kcal/mol and −7.5kcal/mol, respectively. Our study demonstrated the in vitro antiviral activity of atorvastatin against the ancestral SARS-CoV-2 D614G strain and two emerging variants (Delta and Mu), with an independent effect of the cell line. A favorable binding affinity between ATV and viral proteins by bioinformatics methods was found. Due to the extensive clinical experience of atorvastatin use, it could prove valuable in the treatment of COVID-19.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-06-03T15:15:20Z
dc.date.available.none.fl_str_mv 2022-06-03T15:15:20Z
dc.date.issued.none.fl_str_mv 2022-03-18
dc.type.none.fl_str_mv Artículos Científicos
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.uri.spa.fl_str_mv 10.3389/fmicb.2022.721103. PMID: 35369500
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12494/45190
dc.identifier.bibliographicCitation.spa.fl_str_mv Zapata-Cardona MI, Flórez-Álvarez L, Zapata-Builes W, Guerra-Sandoval AL, Guerra-Almonacid CM, Hincapié-García J, Rugeles MT, Hernandez JC. Atorvastatin Effectively Inhibits Ancestral and Two Emerging Variants of SARS-CoV-2 in vitro. Front Microbiol. 2022 Mar 18;13:721103. doi: 10.3389/fmicb.2022.721103. PMID: 35369500; PMCID: PMC8972052.
identifier_str_mv 10.3389/fmicb.2022.721103. PMID: 35369500
Zapata-Cardona MI, Flórez-Álvarez L, Zapata-Builes W, Guerra-Sandoval AL, Guerra-Almonacid CM, Hincapié-García J, Rugeles MT, Hernandez JC. Atorvastatin Effectively Inhibits Ancestral and Two Emerging Variants of SARS-CoV-2 in vitro. Front Microbiol. 2022 Mar 18;13:721103. doi: 10.3389/fmicb.2022.721103. PMID: 35369500; PMCID: PMC8972052.
url https://hdl.handle.net/20.500.12494/45190
dc.relation.ispartofjournal.spa.fl_str_mv Frontiers in Microbiology
dc.relation.references.spa.fl_str_mv Abdelnabi, R. (2020). Atorvastatin as Adjunctive Therapy in COVID-19 (STATCO19). National Library of Medicine: United States
Abdelnabi, R., Foo, C. S., de Jonghe, S., Maes, P., Weynand, B., and Neyts, J. (2021). Molnupiravir inhibits replication of the emerging SARS-CoV-2 variants of concern in a hamster infection model. J. Infect. Dis. 224, 749–753. doi: 10.1093/infdis/jiab361
Acharya, A., Pandey, K., Thurman, M., Klug, E., Trivedi, J., Sharma, K., et al. (2021). Discovery and evaluation of entry inhibitors for SARS-CoV-2 and its emerging variants. J. Virol. 95, e01437–e01421. doi: 10.1128/ JVI.01437-21
Ader, F., Bouscambert-Duchamp, M., Hites, M., Peiffer-Smadja, N., Poissy, J., Belhadi, D., et al. (2021). Remdesivir plus standard of care versus standard of care alone for the treatment of patients admitted to hospital with COVID-19 (DisCoVeRy): a phase 3, randomised, controlled, open-label trial. Lancet Infect. Dis. 22, 209–221. doi: 10.1016/S1473-3099(21)00485-0
Ahmad, J., Ikram, S., Ahmad, F., Rehman, I. U., and Mushtaq, M. (2020). SARS-CoV-2 RNA dependent RNA polymerase (RdRp) – a drug repurposing study. Heliyon 6:e04502. doi: 10.1016/j.heliyon.2020.e04502
Alexpandi, R., de Mesquita, J. F., Pandian, S. K., and Ravi, A. V. (2020). Quinolines-based SARS-CoV-2 3CLpro and RdRp inhibitors and spike-RBDACE2 inhibitor for drug-repurposing Against COVID-19: an in silico analysis. Front. Microbiol. 11:1796. doi: 10.3389/fmicb.2020.01796
Al-Horani, R. A., Kar, S., and Aliter, K. F. (2020). Potential anti-COVID-19 therapeutics that block the early stage of the viral life cycle: structures, mechanisms, and clinical trials. Int. J. Mol. Sci. 21:5224. doi: 10.3390/ ijms21155224
Baby, K., et al. (2020). Targeting SARS-CoV-2 RNA-dependent RNA polymerase: an in silico drug repurposing for COVID-19. F1000Res. 9:1166. doi: 10.12688/ f1000research.26359.1
Bajimaya, S., Hayashi, T., Frankl, T., Bryk, P., Ward, B., and Takimoto, T. (2017). Cholesterol reducing agents inhibit assembly of type I parainfluenza viruses. Virology 501, 127–135. doi: 10.1016/j.virol.2016.11.011
Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., et al. (2000). The Protein Data Bank. Nucleic Acids Res. 28, 235–242. doi: 10.1093/nar/28.1.235
BIOVIA (2020), D.S. Discovery Studio Visualizer Software, Version 16.1 2017. Available at: https://discover.3ds.com/discovery-studio-visualizer-download [Aceesed December, 2020].
Björkhem-Bergman, L., Lindh, J. D., and Bergman, P. (2011). What is a relevant statin concentration in cell experiments claiming pleiotropic effects? Br. J. Clin. Pharmacol. 72, 164–165. doi: 10.1111/j.1365-2125.2011.03907.x
Blaess, M., Kaiser, L., Sauer, M., Csuk, R., and Deigner, H.-P. (2020). COVID-19/ SARS-CoV-2 Infection: Lysosomes and Lysosomotropism Implicate New Treatment Strategies and Personal Risks. Int. J. Mol. Sci. 21:4953. doi: 10.3390/ ijms21144953
Boopathi, S., Poma, A. B., and Kolandaivel, P. (2020). Novel 2019 coronavirus structure, mechanism of action, antiviral drug promises and rule out against its treatment. J. Biomol. Struct. Dyn. 39, 1–10. doi: 10.1080/07391102.2020.1758788
Bryan-Marrugo, O. L., Arellanos-Soto, D., Rojas-Martinez, A., Barrera-Saldaña, H., Ramos-Jimenez, J., Vidaltamayo, R., et al. (2016). The anti-dengue virus properties of statins may be associated with alterations in the cellular antiviral profile expression. Mol. Med. Rep. 14, 2155–2163. doi: 10.3892/mmr.2016.5519
Calligari, P., Bobone, S., Ricci, G., and Bocedi, A. (2020). Molecular investigation of SARS-CoV-2 proteins and their interactions with antiviral drugs. Viruses 12:445. doi: 10.3390/v12040445
Castiglione, V., Chiriacò, M., Emdin, M., Taddei, S., and Vergaro, G. (2020). Statin therapy in COVID-19 infection. Eur. Heart J. 6, 258–259. doi: 10.1093/ ehjcvp/pvaa042
Choi, G. J., Kim, H. M., and Kang, H. (2020). The potential role of dyslipidemia in COVID-19 severity: an umbrella review of systematic reviews. J. Lipid Atheroscler. 9, 435–448. doi: 10.12997/jla.2020.9.3.435
Clausen, T. M., et al., (2020). SARS-CoV-2 infection depends on cellular heparan sulfate and ACE2. bioRxiv [Preprint].
ClinicalTrials.gov (2020). Intermediate-dose vs standard prophylactic anticoagulation and statin vs placebo in ICU patients with COVID-19 (INSPIRATION). National Library of Medicine: United States
Conzelmann, C., Gilg, A., Groß, R., Schütz, D., Preising, N., Ständker, L., et al. (2020). An enzyme-based immunodetection assay to quantify SARSCoV-2 infection. Antivir. Res. 181:104882. doi: 10.1016/j.antiviral.2020.10488
Corman, V. M., Landt, O., Kaiser, M., Molenkamp, R., Meijer, A., Chu, D. K., et al. (2020). Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 25:2000045. doi: 10.2807/1560-7917.ES.2020.25.3.2000045
da Silva Gomes Dias, S., Soares, V. C., Ferreira, A. C., Sacramento, C. Q., Fintelman-Rodrigues, N., Temerozo, J. R., et al. (2020). Lipid droplets fuel SARS-CoV-2 replication and production of inflammatory mediators. PLoS Pathog. 16:e1009127. doi: 10.1371/journal.ppat.1009127
Delang, L., Paeshuyse, J., Vliegen, I., Leyssen, P., Obeid, S., Durantel, D., et al. (2009). Statins potentiate the in vitro anti-hepatitis C virus activity of selective hepatitis C virus inhibitors and delay or prevent resistance development. Hepatology 50, 6–16. doi: 10.1002/hep.22916
Devaux, C. A., Rolain, J. M., Colson, P., and Raoult, D. (2020). New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? Int. J. Antimicrob. Agents 55:105938. doi: 10.1016/j. ijantimicag.2020.105938
Díaz, F. J., Aguilar-Jiménez, W., Flórez-Álvarez, L., Valencia, G., Laiton-Donato, K., Franco-Muñoz, C., et al. (2020). Aislamiento y caracterización de una cepa temprana de SARS-CoV-2 durante la epidemia de 2020 en Medellín, Colombia. Biomédica 40, 148–158. doi: 10.7705/biomedica.5834
Ding, S., Yu, B., and van Vuuren, A. J. (2021). Statins significantly repress rotavirus replication through downregulation of cholesterol synthesis. Gut Microbes 13:1955643. doi: 10.1080/19490976.2021.1955643
Episcopio, D., Aminov, S., Benjamin, S., Germain, G., Datan, E., Landazuri, J., et al. (2019). Atorvastatin restricts the ability of influenza virus to generate lipid droplets and severely suppresses the replication of the virus. FASEB J. 33, 9516–9525. doi: 10.1096/fj.201900428RR
Esakandari, H., Nabi-Afjadi, M., Fakkari-Afjadi, J., Farahmandian, N., Miresmaeili, S. M., and Bahreini, E. (2020). A comprehensive review of COVID-19 characteristics. Biol. Proced. Online 22:19. doi: 10.1186/ s12575-020-00128-2
Españo, E., Nam, J. H., Song, E. J., Song, D., Lee, C. K., and Kim, J. K. (2019). Lipophilic statins inhibit Zika virus production in Vero cells. Sci. Rep. 9, 11461–11461. doi: 10.1038/s41598-019-47956-1
FDA (2020). Coronavirus (COVID-19) Update: FDA Authorizes Drug Combination for Treatment of COVID-19. Available at: https://www.fda.gov/news-events/ press-announcements/coronavirus-covid-19-update-fda-authorizes-drugcombination-treatment-covid-19 (Accessed January, 2021)
FDA (2021a). FDA Approves First Treatment for COVID-19. Available at: https://www.fda.gov/news-events/press-announcements/fda-approves-firsttreatment-covid-19 (Accessed December, 2021)
FDA (2021b). Coronavirus (COVID-19) Update: FDA Authorizes Drug Combination for Treatment of COVID-19. Available at: https://www.fda. gov/news-events/press-announcements/coronavirus-covid-19-update-fdaauthorizes-drug-combination-treatment-covid-19
Fedson, D. S., Opal, S. M., and Rordam, O. M. (2020). Hiding in plain sight: an approach to treating patients with severe COVID-19 Infection. MBio 11, e00398–e00320. doi: 10.1128/mBio.00398-20
Feng, B., Xu, L., Wang, H., Yan, X., Xue, J., Liu, F., et al. (2011). Atorvastatin exerts its anti-atherosclerotic effects by targeting the receptor for advanced glycation end products. Biochim. Biophys. Acta 1812, 1130–1137. doi: 10.1016/j. bbadis.2011.05.007
Ganjali, S., Bianconi, V., Penson, P. E., Pirro, M., Banach, M., Watts, G. F., et al. (2020). Commentary: statins, COVID-19, and coronary artery disease: killing two birds with one stone. Metab. Clin. Exp. 113, 154375–154375. doi: 10.1016/j.metabol.2020.154375
Gao, Y., Yan, L., Huang, Y., Liu, F., Zhao, Y., Cao, L., et al. (2020). Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science 368, 779–782. doi: 10.1126/science.abb7498
González-Rayasa, J., Ana, R.-G., José, G.-G., José, G.-Y., José, H.-H., and, Rosa, del Carmen L.-S. (2020). COVID-19 and ACE -inhibitors and angiotensin receptor blockers-: The need to differentiate between early infection and acute lung injury. Rev. Colomb. de Cardiol. 27, 129–131. doi: 10.1016/j. rccar.2020.04.005
Greenwood, J., Steinman, L., and Zamvil, S. S. (2006). Statin therapy and autoimmune disease: from protein prenylation to immunomodulation. Nat. Rev. Immunol. 6, 358–370. doi: 10.1038/nri1839
Haidari, M., Ali, M., Casscells, S. W., and Madjid, M. (2007). Statins block influenza infection by down-regulating rho/rho kinase pathway. Circulation 116, 116–117. doi: 10.1161/circ.116.suppl_16.II_7
Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., and Hutchison, G. R. (2012). Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Chemother. 4:17. doi: 10.1186/1758-2946-4-17
Harisna, A. H., Nurdiansyah, R., Syaifie, P. H., Nugroho, D. W., Saputro, K. E., Firdayani, , et al. (2021). In silico investigation of potential inhibitors to main protease and spike protein of SARS-CoV-2 in propolis. Biochem. Biophys. Rep. 26:100969. doi: 10.1016/j.bbrep.2021.100969
Isusi, E., Aspichueta, P., Liza, M., Hernández, M.́. L., Dı́az, C., Hernández, G., et al. (2000). Short- and long-term effects of atorvastatin, lovastatin and simvastatin on the cellular metabolism of cholesteryl esters and VLDL secretion in rat hepatocytes. Atherosclerosis 153, 283–294. doi: 10.1016/ S0021-9150(00)00407-X
Jendele, L., Krivak, R., Skoda, P., Novotny, M., and Hoksza, D. (2019). PrankWeb: a web server for ligand binding site prediction and visualization. Nucleic Acids Res. 47, W345–W349. doi: 10.1093/nar/gkz424
Kalil, A. C., Patterson, T. F., Mehta, A. K., Tomashek, K. M., Wolfe, C. R., Ghazaryan, V., et al. (2020). Baricitinib plus Remdesivir for hospitalized adults with Covid-19. N. Engl. J. Med. 384, 795–807. doi: 10.1056/NEJMoa2031994
Khateeb, J., Li, Y., and Zhang, H. (2021). Emerging SARS-CoV-2 variants of concern and potential intervention approaches. Crit. Care 25, 244–244. doi: 10.1186/s13054-021-03662-x
Kim, S. S., Peng, L. F., Lin, W., Choe, W.-H., Sakamoto, N., Kato, N., et al. (2007). A cell-based, high-throughput screen for small molecule regulators of hepatitis C virus replication. Gastroenterology 132, 311–320. doi: 10.1053/j. gastro.2006.10.032
Klein, S., Cortese, M., Winter, S. L., Wachsmuth-Melm, M., Neufeldt, C. J., Cerikan, B., et al. (2020). SARS-CoV-2 structure and replication characterized by in situ cryo-electron tomography. Nat. Commun. 11:5885. doi: 10.1038/ s41467-020-19619-7
Korber, B., Fischer, W. M., Gnanakaran, S., Yoon, H., Theiler, J., Abfalterer, W., et al. (2020). Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell 182, 812–827.e19. doi: 10.1016/j.cell.2020.06.043
Koulgi, S., Jani, V., Uppuladinne, M. V. N., Sonavane, U., and Joshi, R. (2020). Remdesivir-bound and ligand-free simulations reveal the probable mechanism of inhibiting the RNA dependent RNA polymerase of severe acute respiratory syndrome coronavirus 2. RSC Adv. 10, 26792–26803. doi: 10.1039/D0RA04743K
Kow, C. S., and Hasan, S. S. (2020). Meta-analysis of effect of statins in patients with COVID-19. Am. J. Cardiol. 134, 153–155. doi: 10.1016/j. amjcard.2020.08.004
Kumar, R., Mehta, D., Mishra, N., Nayak, D., and Sunil, S. (2020). Role of host-mediated post-translational modifications (PTMs) in RNA virus pathogenesis. Int. J. Mol. Sci. 22:323. doi: 10.3390/ijms22010323
Kumar, Y., Singh, H., and Patel, C. N. (2020). In silico prediction of potential inhibitors for the main protease of SARS-CoV-2 using molecular docking and dynamics simulation based drug-repurposing. J. Infect. Public Health 13, 1210–1223. doi: 10.1016/j.jiph.2020.06.016
Kwon, P. S., Oh, H., Kwon, S. J., Jin, W., Zhang, F., Fraser, K., et al. (2020). Sulfated polysaccharides effectively inhibit SARS-CoV-2 in vitro. Cell Dis. 6:50. doi: 10.1038/s41421-020-00192-8
Li, Z., Li, X., Huang, Y. Y., Wu, Y., Liu, R., Zhou, L., et al. (2020). Identify potent SARS-CoV-2 main protease inhibitors via accelerated free energy perturbation-based virtual screening of existing drugs. Proc. Natl. Acad. Sci. 117, 27381–27387. doi: 10.1073/pnas.2010470117
Lotfi, M., Hamblin, M. R., and Rezaei, N. (2020). COVID-19: transmission, prevention, and potential therapeutic opportunities. Clin. Chim. Acta 508, 254–266. doi: 10.1016/j.cca.2020.05.044
Lu, Y., Liu, D. X., and Tam, J. P. (2008). Lipid rafts are involved in SARS-CoV entry into Vero E6 cells. Biochem. Biophys. Res. Commun. 369, 344–349. doi: 10.1016/j.bbrc.2008.02.023
Marín-Palma, D., Tabares-Guevara, J. H., Zapata-Cardona, M. I., Flórez-Álvarez, L., Yepes, L. M., Rugeles, M. T., et al. (2021). Curcumin inhibits in vitro SARS-CoV-2 infection in vero E6 cells through multiple antiviral mechanisms. Molecules 26:6900. doi: 10.3390/molecules26226900
Martínez-Gutierrez, M., Castellanos, J. E., and Gallego-Gómez, J. C. (2011). Statins reduce dengue virus production via decreased virion assembly. Intervirology 54, 202–216. doi: 10.1159/000321892
Matsushita, K., Ding, N., Kou, M., Hu, X., Chen, M., Gao, Y., et al. (2020). The relationship of COVID-19 severity with cardiovascular disease and its traditional risk factors: a systematic review and meta-analysis. Glob. Heart 15, 64–64. doi: 10.5334/gh.814
Mehrbod, P., Ideris, A., Omar, A. R., and Hair-Bejo, M. (2012). Evaluation of antiviral effect of atorvastatin on H1N1 infection in MDCK cells. Afr. J. Microbiol. Res. 6, 5715–5719. doi: 10.5897/AJMR12.1011
Mendonça, L., Howe, A, Gilchrist, JB, Sun, D, Knight, ML, Zanetti-Domingues, LC, et al., (2020). SARS-CoV-2 assembly and egress pathway revealed by correlative multi-modal multi-scale Cryo-imaging. bioRxiv [Preprint].
Mendoza, E. J., Manguiat, K., Wood, H., and Drebot, M. (2020). Two Detailed Plaque Assay Protocols for the Quantification of Infectious SARS-CoV-2. Curr. Protoc. Microbiol. 57:ecpmc105. doi: 10.1002/cpmc.105
Minz, M. M., Bansal, M., and Kasliwal, R. R. (2020). Statins and SARS-CoV-2 disease: current concepts and possible benefits. Diabetes Metab. Syndr. 14, 2063–2067. doi: 10.1016/j.dsx.2020.10.021
Mukherjee, S., Bhattacharyya, D., and Bhunia, A. (2020). Host-membrane interacting interface of the SARS coronavirus envelope protein: immense functional potential of C-terminal domain. Biophys. Chem. 266, 106452–106452. doi: 10.1016/j.bpc.2020.106452
Mycroft-West, C. J., Su, D., Pagani, I., Rudd, T. R., Elli, S., Gandhi, N. S., et al. (2020). Heparin inhibits cellular invasion by SARS-CoV-2: structural dependence of the interaction of the spike S1 receptor-binding domain with heparin. Thromb. Haemost. 120, 1700–1715. doi: 10.1055/s-0040- 1721319
Naik, V. R., Munikumar, M., Ramakrishna, U., Srujana, M., Goudar, G., Naresh, P., et al. (2020). Remdesivir (GS-5734) as a therapeutic option of 2019-nCOV main protease - in silico approach. J. Biomol. Struct. Dyn. 39, 4701–4714. doi: 10.1080/07391102.2020.1781694
Nimgampalle, M., Devanathan, V., and Saxena, A. (2020). Screening of Chloroquine, Hydroxychloroquine and its derivatives for their binding affinity to multiple SARS-CoV-2 protein drug targets. J. Biomol. Struct. Dyn. 39, 4949–4961. doi: 10.1080/07391102.2020.1782265
Otto, S. P., Day, T., Arino, J., Colijn, C., Dushoff, J., Li, M., et al. (2021). The origins and potential future of SARS-CoV-2 variants of concern in the evolving COVID-19 pandemic. Curr. Biol. 31, R918–R929. doi: 10.1016/j. cub.2021.06.049
https://doi.org/10.3389/fmolb.2020.578964
Pan, H., Peto, R., Henao-Restrepo, A. M., Preziosi, M. P., Sathiyamoorthy, V., Abdool Karim, Q., et al. (2021). Repurposed antiviral drugs for Covid-19 - interim WHO solidarity trial results. N. Engl. J. Med. 384, 497–511. doi: 10.1056/NEJMoa2023184
Parquet, V., Henry, M., Wurtz, N., Dormoi, J., Briolant, S., Gil, M., et al. (2010). Atorvastatin as a potential anti-malarial drug: in vitro synergy in combinational therapy with quinine against plasmodium falciparum. Malar. J. 9:139. doi: 10.1186/1475-2875-9-139
Pawlos, A., Niedzielski, M., Gorzelak-Pabiś, P., Broncel, M., and Woźniak, E. (2021). COVID-19: direct and indirect mechanisms of statins. Int. J. Mol. Sci. 22, 4177. doi: 10.3390/ijms22084177
PFIZER (2010). Pfizer announces European Union approval of a new form of lipitor (atorvastatin) for use in children. Available at: https://www.pfizer. com/news/press-release/press-release-detail/pfizer_announces_european_ union_approval_of_a_new_form_of_lipitor_atorvastatin_for_use_in_children (Accessed January, 2021).
Reiner, Ž., Hatamipour, M., Banach, M., Pirro, M., al-Rasadi, K., Jamialahmadi, T., et al. (2020). Statins and the COVID-19 main protease: in silico evidence on direct interaction. Arch. Med. Sci. 16, 490–496. doi: 10.5114/aoms.2020.94655
Rudrapal, M., Khairnar, S., and Jadhav, A. (2020). Drug Repurposing (DR): An Emerging Approach in Drug Discovery. London: IntechOpen. Sabatino, J., de Rosa, S., di Salvo, G., and Indolfi, C. (2020). Impact of cardiovascular risk profile on COVID-19 outcome. A meta-analysis. PLoS One 15:e0237131. doi: 10.1371/journal.pone.0237131
Sacco, M. D., Ma, C., Lagarias, P., Gao, A., Townsend, J. A., Meng, X., et al. (2020). Structure and inhibition of the SARS-CoV-2 main protease reveal strategy for developing dual inhibitors against Mspro and cathepsin L. Sci. Adv. 6:eabe0751. doi: 10.1126/sciadv.abe0751
Sanders, D. W., et al., (2020). SARS-CoV-2 requires cholesterol for viral entry and pathological syncytia formation. bioRxiv [preprint].
Schmidt, N. M., Wing, P. A. C., McKeating, J. A., and Maini, M. K. (2020). Cholesterol-modifying drugs in COVID-19. Oxf. open immunol. 1:iqaa001. doi: 10.1093/oxfimm/iqaa001
Schöning-Stierand, K., Diedrich, K., Fährrolfes, R., Flachsenberg, F., Meyder, A., Nittinger, E., et al. (2020). ProteinsPlus: interactive analysis of protein–ligand binding interfaces. Nucleic Acids Res. 48, W48–W53. doi: 10.1093/nar/gkaa235
Shrivastava-Ranjan, P., Flint, M., Bergeron, É., McElroy, A. K., Chatterjee, P., Albariño, C. G., et al. (2018). Statins Suppress Ebola Virus Infectivity by Interfering with Glycoprotein Processing. MBio 9, e00660–e00618. doi: 10.1128/mBio.00660-18
Simabuco, F. M., Tamura, R. E., Pavan, I. C. B., Morale, M. G., and Ventura, A. M. (2021). Molecular mechanisms and pharmacological interventions in the replication cycle of human coronaviruses. Genet. Mol. Biol. 44:e20200212. doi: 10.1590/1678-4685-gmb-2020-0212
Singh, D. D., Han, I., Choi, E. H., and Yadav, D. K. (2020). Recent advances in pathophysiology, drug development and future perspectives of SARSCoV-2. Front. Cell Dev. Biol. 8:580202. doi: 10.3389/fcell.2020.580202
Su, H. X., Yao, S., Zhao, W. F., Li, M. J., Liu, J., Shang, W. J., et al. (2020). Anti-SARS-CoV-2 activities in vitro of Shuanghuanglian preparations and bioactive ingredients. Acta Pharmacol. Sin. 41, 1167–1177. doi: 10.1038/ s41401-020-0483-6
Su, H. X., Yao, S., Zhao, W. F., Li, M. J., Liu, J., Shang, W. J., et al. (2020). Anti-SARS-CoV-2 activities in vitro of Shuanghuanglian preparations and bioactive ingredients. Acta Pharmacol. Sin. 41, 1167–1177. doi: 10.1038/ s41401-020-0483-6
Tandon, R., Sharp, J. S., Zhang, F., Pomin, V. H., Ashpole, N. M., Mitra, D., et al. (2021). Effective inhibition of SARS-CoV-2 entry by heparin and enoxaparin derivatives. J. Virol. 95, e01987–e01920. doi: 10.1128/ JVI.01987-20
Trott, O., and Olson, A. J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461. doi: 10.1002/jcc.21334
Uzunova, K., Filipova, E., Pavlova, V., and Vekov, T. (2020). Insights into antiviral mechanisms of remdesivir, lopinavir/ritonavir and chloroquine/ hydroxychloroquine affecting the new SARS-CoV-2. Biomed. Pharmacother. 131:110668. doi: 10.1016/j.biopha.2020.110668
TUzunova, K., Filipova, E., Pavlova, V., and Vekov, T. (2020). Insights into antiviral mechanisms of remdesivir, lopinavir/ritonavir and chloroquine/ hydroxychloroquine affecting the new SARS-CoV-2. Biomed. Pharmacother. 131:110668. doi: 10.1016/j.biopha.2020.110668
Villareal, V. A., Rodgers, M. A., Costello, D. A., and Yang, P. L. (2015). Targeting host lipid synthesis and metabolism to inhibit dengue and hepatitis C viruses. Antivir. Res. 124, 110–121. doi: 10.1016/j.antiviral.2015.10.013
V’kovski, P., Kratzel, A., Steiner, S., Stalder, H., and Thiel, V. (2021). Coronavirus biology and replication: implications for SARS-CoV-2. Biomed. Pharmacother. 19, 155–121. doi: 10.1038/s41579-020-00468-6 Wang, M., Cao, R., Zhang, L., Yang, X., Liu, J., X
Wang, H., Yuan, Z, Pavel, M. A., Jablonski, S. M., Jablonski, J., Hobson, R., et al., (2021). The role of high cholesterol in age-related COVID19 lethality. bioRxiv [Preprint]. doi: 10.1101/2020.05.09.086249
Wang, M., Cao, R., Zhang, L., Yang, X., Liu, J., Xu, M., et al. (2020). Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 30, 269–271. doi: 10.1038/ s41422-020-0282-0
Wang, Y., Zhang, D., du, G., du, R., Zhao, J., Jin, Y., et al. (2020). Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet 395, 1569–1578. doi: 10.1016/S0140-6736(20) 31022-9
WHO (2020a). COVID-19: cronología de la actuación de la OMS. Available at: https://www.who.int/es/news/item/27-04-2020-who-timeline---covid-19 (Accessed January, 2022).
WHO (2020b). WHO Coronavirus Disease (COVID-19) Dashboard. Available at: https://covid19.who.int/ (Accessed January, 2021).
Wolff, G., Melia, C. E., Snijder, E. J., and Bárcena, M. (2020). Double-membrane vesicles as platforms for viral replication. Trends Microbiol. 28, 1022–1033. doi: 10.1016/j.tim.2020.05.009
Wösten-van Asperen, R. M., Bos, A. P., Bem, R. A., Dierdorp, B. S., Dekker, T., van Goor, H., et al. (2013). Imbalance between pulmonary angiotensinconverting enzyme and angiotensin-converting enzyme 2 activity in acute respiratory distress syndrome. Pediatr. Crit. Care Med. 14, e438–e441. doi: 10.1097/PCC.0b013e3182a55735
Wurtz, N., Penant, G., Jardot, P., Duclos, N., and la Scola, B. (2021). Culture of SARS-CoV-2 in a panel of laboratory cell lines, permissivity, and differences in growth profile. EJCDEU 40, 477–484. doi: 10.1007/ s10096-020-04106-0
Yepes-Perez, A. F., Herrera-Calderón, O., Oliveros, C. A., Flórez-Álvarez, L., Zapata-Cardona, M. I., Yepes, L., et al. (2021). The Hydroalcoholic extract
Yuan, S., Chan, C. C. Y., Chik, K. K. H., Tsang, J. O. L., Liang, R., Cao, J., et al. (2020). Broad-Spectrum host-based antivirals targeting the interferon and lipogenesis pathways as potential treatment options for the pandemic coronavirus disease 2019 (COVID-19). Viruses 12:628. doi: 10.3390/ v12060628
Zapatero-Belinchón, F. J., et al. (2021). Fluvastatin mitigates SARS-CoV-2 infection in human lung cells. iScience 24:103469. doi: 10.1016/j.isci.2021. 103469
Zhang, Q., Chen, C. Z., Swaroop, M., Xu, M., Wang, L., Lee, J., et al. (2020). Heparan sulfate assists SARS-CoV-2 in cell entry and can be targeted by approved drugs in vitro. Cell Dis. 6:80. doi: 10.1038/s41421-020-00222-5
dc.rights.license.none.fl_str_mv Atribución
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.coverage.temporal.spa.fl_str_mv 13
dc.publisher.spa.fl_str_mv Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Programa de Medicina, Medellín y Envigado, Colombia, 00000
dc.publisher.program.spa.fl_str_mv Medicina
dc.publisher.place.spa.fl_str_mv Medellín
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/f7441486-babe-4131-890c-366a8f9e3998/download
https://repository.ucc.edu.co/bitstreams/648d10dc-ed05-4306-a8f0-67d0f2b999a4/download
https://repository.ucc.edu.co/bitstreams/afbd3188-ac71-4bc4-b45c-fb5b51935df2/download
https://repository.ucc.edu.co/bitstreams/0b94634a-975f-48e4-add7-12f7c942b97f/download
bitstream.checksum.fl_str_mv 93c6a2a9cb98625ec4fa1b31c88155a0
8a4605be74aa9ea9d79846c1fba20a33
e171505baddf792665a539622779d725
59a33f910fb8fc94513c2e4ff101532b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1811565079861133312
spelling Zapata-Cardona, María IFlórez-Álvarez, LizdanyHernández López, Juan Carlos Zapata Builes, WildemanGuerra-Sandoval, Ariadna LHincapié-García, JaimeRugeles, Maria T132022-06-03T15:15:20Z2022-06-03T15:15:20Z2022-03-1810.3389/fmicb.2022.721103. PMID: 35369500https://hdl.handle.net/20.500.12494/45190Zapata-Cardona MI, Flórez-Álvarez L, Zapata-Builes W, Guerra-Sandoval AL, Guerra-Almonacid CM, Hincapié-García J, Rugeles MT, Hernandez JC. Atorvastatin Effectively Inhibits Ancestral and Two Emerging Variants of SARS-CoV-2 in vitro. Front Microbiol. 2022 Mar 18;13:721103. doi: 10.3389/fmicb.2022.721103. PMID: 35369500; PMCID: PMC8972052.This article evaluated the in vitro antiviral effect of atorvastatin (ATV) against SARS-CoV-2 and identified the interaction affinity between this compound and two SARS-CoV-2 proteins. The antiviral activity of atorvastatin against this virus was evaluated by three different treatment strategies [(i) pre-post treatment, (ii) pre-infection treatment, and (iii) post-infection treatment] using Vero E6 and Caco-2 cells. The interaction of atorvastatin with RdRp (RNA-dependent RNA polymerase) and 3CL protease (3-chymotrypsin-like protease) was evaluated by molecular docking. The CC50s (half-maximal cytotoxic concentrations) obtained for ATV were 50.3 and 64.5 μM in Vero E6 and Caco-2, respectively. This compound showed antiviral activity against SARS-CoV-2 D614G strain in Vero E6 with median effective concentrations (EC50s) of 15.4, 12.1, and 11.1μM by pre-post, pre-infection, and post-infection treatments, respectively. ATV also inhibited Delta and Mu variants by pre-post treatment (EC50s of 16.8 and 21.1μM, respectively). In addition, ATV showed an antiviral effect against the D614G strain independent of the cell line (EC50 of 7.4μM in Caco-2). The interaction of atorvastatin with SARS-CoV-2 RdRp and 3CL protease yielded a binding affinity of −6.7kcal/mol and −7.5kcal/mol, respectively. Our study demonstrated the in vitro antiviral activity of atorvastatin against the ancestral SARS-CoV-2 D614G strain and two emerging variants (Delta and Mu), with an independent effect of the cell line. A favorable binding affinity between ATV and viral proteins by bioinformatics methods was found. Due to the extensive clinical experience of atorvastatin use, it could prove valuable in the treatment of COVID-19.https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000283088http://orcid.org/0000-0002-9200-5698https://scienti.colciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000011355juankhernandez@gmail.comUniversidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Programa de Medicina, Medellín y Envigado, Colombia, 00000MedicinaMedellínSARS-CoV-2antiviralmolecular dockingCOVID-19variantsAtorvastatin Effectively Inhibits Ancestral and Two Emerging Variants of SARS-CoV-2 in vitroArtículos Científicoshttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionAtribucióninfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Frontiers in MicrobiologyAbdelnabi, R. (2020). Atorvastatin as Adjunctive Therapy in COVID-19 (STATCO19). National Library of Medicine: United StatesAbdelnabi, R., Foo, C. S., de Jonghe, S., Maes, P., Weynand, B., and Neyts, J. (2021). Molnupiravir inhibits replication of the emerging SARS-CoV-2 variants of concern in a hamster infection model. J. Infect. Dis. 224, 749–753. doi: 10.1093/infdis/jiab361Acharya, A., Pandey, K., Thurman, M., Klug, E., Trivedi, J., Sharma, K., et al. (2021). Discovery and evaluation of entry inhibitors for SARS-CoV-2 and its emerging variants. J. Virol. 95, e01437–e01421. doi: 10.1128/ JVI.01437-21Ader, F., Bouscambert-Duchamp, M., Hites, M., Peiffer-Smadja, N., Poissy, J., Belhadi, D., et al. (2021). Remdesivir plus standard of care versus standard of care alone for the treatment of patients admitted to hospital with COVID-19 (DisCoVeRy): a phase 3, randomised, controlled, open-label trial. Lancet Infect. Dis. 22, 209–221. doi: 10.1016/S1473-3099(21)00485-0Ahmad, J., Ikram, S., Ahmad, F., Rehman, I. U., and Mushtaq, M. (2020). SARS-CoV-2 RNA dependent RNA polymerase (RdRp) – a drug repurposing study. Heliyon 6:e04502. doi: 10.1016/j.heliyon.2020.e04502Alexpandi, R., de Mesquita, J. F., Pandian, S. K., and Ravi, A. V. (2020). Quinolines-based SARS-CoV-2 3CLpro and RdRp inhibitors and spike-RBDACE2 inhibitor for drug-repurposing Against COVID-19: an in silico analysis. Front. Microbiol. 11:1796. doi: 10.3389/fmicb.2020.01796Al-Horani, R. A., Kar, S., and Aliter, K. F. (2020). Potential anti-COVID-19 therapeutics that block the early stage of the viral life cycle: structures, mechanisms, and clinical trials. Int. J. Mol. Sci. 21:5224. doi: 10.3390/ ijms21155224Baby, K., et al. (2020). Targeting SARS-CoV-2 RNA-dependent RNA polymerase: an in silico drug repurposing for COVID-19. F1000Res. 9:1166. doi: 10.12688/ f1000research.26359.1Bajimaya, S., Hayashi, T., Frankl, T., Bryk, P., Ward, B., and Takimoto, T. (2017). Cholesterol reducing agents inhibit assembly of type I parainfluenza viruses. Virology 501, 127–135. doi: 10.1016/j.virol.2016.11.011Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., et al. (2000). The Protein Data Bank. Nucleic Acids Res. 28, 235–242. doi: 10.1093/nar/28.1.235BIOVIA (2020), D.S. Discovery Studio Visualizer Software, Version 16.1 2017. Available at: https://discover.3ds.com/discovery-studio-visualizer-download [Aceesed December, 2020].Björkhem-Bergman, L., Lindh, J. D., and Bergman, P. (2011). What is a relevant statin concentration in cell experiments claiming pleiotropic effects? Br. J. Clin. Pharmacol. 72, 164–165. doi: 10.1111/j.1365-2125.2011.03907.xBlaess, M., Kaiser, L., Sauer, M., Csuk, R., and Deigner, H.-P. (2020). COVID-19/ SARS-CoV-2 Infection: Lysosomes and Lysosomotropism Implicate New Treatment Strategies and Personal Risks. Int. J. Mol. Sci. 21:4953. doi: 10.3390/ ijms21144953Boopathi, S., Poma, A. B., and Kolandaivel, P. (2020). Novel 2019 coronavirus structure, mechanism of action, antiviral drug promises and rule out against its treatment. J. Biomol. Struct. Dyn. 39, 1–10. doi: 10.1080/07391102.2020.1758788Bryan-Marrugo, O. L., Arellanos-Soto, D., Rojas-Martinez, A., Barrera-Saldaña, H., Ramos-Jimenez, J., Vidaltamayo, R., et al. (2016). The anti-dengue virus properties of statins may be associated with alterations in the cellular antiviral profile expression. Mol. Med. Rep. 14, 2155–2163. doi: 10.3892/mmr.2016.5519Calligari, P., Bobone, S., Ricci, G., and Bocedi, A. (2020). Molecular investigation of SARS-CoV-2 proteins and their interactions with antiviral drugs. Viruses 12:445. doi: 10.3390/v12040445Castiglione, V., Chiriacò, M., Emdin, M., Taddei, S., and Vergaro, G. (2020). Statin therapy in COVID-19 infection. Eur. Heart J. 6, 258–259. doi: 10.1093/ ehjcvp/pvaa042Choi, G. J., Kim, H. M., and Kang, H. (2020). The potential role of dyslipidemia in COVID-19 severity: an umbrella review of systematic reviews. J. Lipid Atheroscler. 9, 435–448. doi: 10.12997/jla.2020.9.3.435Clausen, T. M., et al., (2020). SARS-CoV-2 infection depends on cellular heparan sulfate and ACE2. bioRxiv [Preprint].ClinicalTrials.gov (2020). Intermediate-dose vs standard prophylactic anticoagulation and statin vs placebo in ICU patients with COVID-19 (INSPIRATION). National Library of Medicine: United StatesConzelmann, C., Gilg, A., Groß, R., Schütz, D., Preising, N., Ständker, L., et al. (2020). An enzyme-based immunodetection assay to quantify SARSCoV-2 infection. Antivir. Res. 181:104882. doi: 10.1016/j.antiviral.2020.10488Corman, V. M., Landt, O., Kaiser, M., Molenkamp, R., Meijer, A., Chu, D. K., et al. (2020). Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 25:2000045. doi: 10.2807/1560-7917.ES.2020.25.3.2000045da Silva Gomes Dias, S., Soares, V. C., Ferreira, A. C., Sacramento, C. Q., Fintelman-Rodrigues, N., Temerozo, J. R., et al. (2020). Lipid droplets fuel SARS-CoV-2 replication and production of inflammatory mediators. PLoS Pathog. 16:e1009127. doi: 10.1371/journal.ppat.1009127Delang, L., Paeshuyse, J., Vliegen, I., Leyssen, P., Obeid, S., Durantel, D., et al. (2009). Statins potentiate the in vitro anti-hepatitis C virus activity of selective hepatitis C virus inhibitors and delay or prevent resistance development. Hepatology 50, 6–16. doi: 10.1002/hep.22916Devaux, C. A., Rolain, J. M., Colson, P., and Raoult, D. (2020). New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? Int. J. Antimicrob. Agents 55:105938. doi: 10.1016/j. ijantimicag.2020.105938Díaz, F. J., Aguilar-Jiménez, W., Flórez-Álvarez, L., Valencia, G., Laiton-Donato, K., Franco-Muñoz, C., et al. (2020). Aislamiento y caracterización de una cepa temprana de SARS-CoV-2 durante la epidemia de 2020 en Medellín, Colombia. Biomédica 40, 148–158. doi: 10.7705/biomedica.5834Ding, S., Yu, B., and van Vuuren, A. J. (2021). Statins significantly repress rotavirus replication through downregulation of cholesterol synthesis. Gut Microbes 13:1955643. doi: 10.1080/19490976.2021.1955643Episcopio, D., Aminov, S., Benjamin, S., Germain, G., Datan, E., Landazuri, J., et al. (2019). Atorvastatin restricts the ability of influenza virus to generate lipid droplets and severely suppresses the replication of the virus. FASEB J. 33, 9516–9525. doi: 10.1096/fj.201900428RREsakandari, H., Nabi-Afjadi, M., Fakkari-Afjadi, J., Farahmandian, N., Miresmaeili, S. M., and Bahreini, E. (2020). A comprehensive review of COVID-19 characteristics. Biol. Proced. Online 22:19. doi: 10.1186/ s12575-020-00128-2Españo, E., Nam, J. H., Song, E. J., Song, D., Lee, C. K., and Kim, J. K. (2019). Lipophilic statins inhibit Zika virus production in Vero cells. Sci. Rep. 9, 11461–11461. doi: 10.1038/s41598-019-47956-1FDA (2020). Coronavirus (COVID-19) Update: FDA Authorizes Drug Combination for Treatment of COVID-19. Available at: https://www.fda.gov/news-events/ press-announcements/coronavirus-covid-19-update-fda-authorizes-drugcombination-treatment-covid-19 (Accessed January, 2021)FDA (2021a). FDA Approves First Treatment for COVID-19. Available at: https://www.fda.gov/news-events/press-announcements/fda-approves-firsttreatment-covid-19 (Accessed December, 2021)FDA (2021b). Coronavirus (COVID-19) Update: FDA Authorizes Drug Combination for Treatment of COVID-19. Available at: https://www.fda. gov/news-events/press-announcements/coronavirus-covid-19-update-fdaauthorizes-drug-combination-treatment-covid-19Fedson, D. S., Opal, S. M., and Rordam, O. M. (2020). Hiding in plain sight: an approach to treating patients with severe COVID-19 Infection. MBio 11, e00398–e00320. doi: 10.1128/mBio.00398-20Feng, B., Xu, L., Wang, H., Yan, X., Xue, J., Liu, F., et al. (2011). Atorvastatin exerts its anti-atherosclerotic effects by targeting the receptor for advanced glycation end products. Biochim. Biophys. Acta 1812, 1130–1137. doi: 10.1016/j. bbadis.2011.05.007Ganjali, S., Bianconi, V., Penson, P. E., Pirro, M., Banach, M., Watts, G. F., et al. (2020). Commentary: statins, COVID-19, and coronary artery disease: killing two birds with one stone. Metab. Clin. Exp. 113, 154375–154375. doi: 10.1016/j.metabol.2020.154375Gao, Y., Yan, L., Huang, Y., Liu, F., Zhao, Y., Cao, L., et al. (2020). Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science 368, 779–782. doi: 10.1126/science.abb7498González-Rayasa, J., Ana, R.-G., José, G.-G., José, G.-Y., José, H.-H., and, Rosa, del Carmen L.-S. (2020). COVID-19 and ACE -inhibitors and angiotensin receptor blockers-: The need to differentiate between early infection and acute lung injury. Rev. Colomb. de Cardiol. 27, 129–131. doi: 10.1016/j. rccar.2020.04.005Greenwood, J., Steinman, L., and Zamvil, S. S. (2006). Statin therapy and autoimmune disease: from protein prenylation to immunomodulation. Nat. Rev. Immunol. 6, 358–370. doi: 10.1038/nri1839Haidari, M., Ali, M., Casscells, S. W., and Madjid, M. (2007). Statins block influenza infection by down-regulating rho/rho kinase pathway. Circulation 116, 116–117. doi: 10.1161/circ.116.suppl_16.II_7Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., and Hutchison, G. R. (2012). Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Chemother. 4:17. doi: 10.1186/1758-2946-4-17Harisna, A. H., Nurdiansyah, R., Syaifie, P. H., Nugroho, D. W., Saputro, K. E., Firdayani, , et al. (2021). In silico investigation of potential inhibitors to main protease and spike protein of SARS-CoV-2 in propolis. Biochem. Biophys. Rep. 26:100969. doi: 10.1016/j.bbrep.2021.100969Isusi, E., Aspichueta, P., Liza, M., Hernández, M.́. L., Dı́az, C., Hernández, G., et al. (2000). Short- and long-term effects of atorvastatin, lovastatin and simvastatin on the cellular metabolism of cholesteryl esters and VLDL secretion in rat hepatocytes. Atherosclerosis 153, 283–294. doi: 10.1016/ S0021-9150(00)00407-XJendele, L., Krivak, R., Skoda, P., Novotny, M., and Hoksza, D. (2019). PrankWeb: a web server for ligand binding site prediction and visualization. Nucleic Acids Res. 47, W345–W349. doi: 10.1093/nar/gkz424Kalil, A. C., Patterson, T. F., Mehta, A. K., Tomashek, K. M., Wolfe, C. R., Ghazaryan, V., et al. (2020). Baricitinib plus Remdesivir for hospitalized adults with Covid-19. N. Engl. J. Med. 384, 795–807. doi: 10.1056/NEJMoa2031994Khateeb, J., Li, Y., and Zhang, H. (2021). Emerging SARS-CoV-2 variants of concern and potential intervention approaches. Crit. Care 25, 244–244. doi: 10.1186/s13054-021-03662-xKim, S. S., Peng, L. F., Lin, W., Choe, W.-H., Sakamoto, N., Kato, N., et al. (2007). A cell-based, high-throughput screen for small molecule regulators of hepatitis C virus replication. Gastroenterology 132, 311–320. doi: 10.1053/j. gastro.2006.10.032Klein, S., Cortese, M., Winter, S. L., Wachsmuth-Melm, M., Neufeldt, C. J., Cerikan, B., et al. (2020). SARS-CoV-2 structure and replication characterized by in situ cryo-electron tomography. Nat. Commun. 11:5885. doi: 10.1038/ s41467-020-19619-7Korber, B., Fischer, W. M., Gnanakaran, S., Yoon, H., Theiler, J., Abfalterer, W., et al. (2020). Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell 182, 812–827.e19. doi: 10.1016/j.cell.2020.06.043Koulgi, S., Jani, V., Uppuladinne, M. V. N., Sonavane, U., and Joshi, R. (2020). Remdesivir-bound and ligand-free simulations reveal the probable mechanism of inhibiting the RNA dependent RNA polymerase of severe acute respiratory syndrome coronavirus 2. RSC Adv. 10, 26792–26803. doi: 10.1039/D0RA04743KKow, C. S., and Hasan, S. S. (2020). Meta-analysis of effect of statins in patients with COVID-19. Am. J. Cardiol. 134, 153–155. doi: 10.1016/j. amjcard.2020.08.004Kumar, R., Mehta, D., Mishra, N., Nayak, D., and Sunil, S. (2020). Role of host-mediated post-translational modifications (PTMs) in RNA virus pathogenesis. Int. J. Mol. Sci. 22:323. doi: 10.3390/ijms22010323Kumar, Y., Singh, H., and Patel, C. N. (2020). In silico prediction of potential inhibitors for the main protease of SARS-CoV-2 using molecular docking and dynamics simulation based drug-repurposing. J. Infect. Public Health 13, 1210–1223. doi: 10.1016/j.jiph.2020.06.016Kwon, P. S., Oh, H., Kwon, S. J., Jin, W., Zhang, F., Fraser, K., et al. (2020). Sulfated polysaccharides effectively inhibit SARS-CoV-2 in vitro. Cell Dis. 6:50. doi: 10.1038/s41421-020-00192-8Li, Z., Li, X., Huang, Y. Y., Wu, Y., Liu, R., Zhou, L., et al. (2020). Identify potent SARS-CoV-2 main protease inhibitors via accelerated free energy perturbation-based virtual screening of existing drugs. Proc. Natl. Acad. Sci. 117, 27381–27387. doi: 10.1073/pnas.2010470117Lotfi, M., Hamblin, M. R., and Rezaei, N. (2020). COVID-19: transmission, prevention, and potential therapeutic opportunities. Clin. Chim. Acta 508, 254–266. doi: 10.1016/j.cca.2020.05.044Lu, Y., Liu, D. X., and Tam, J. P. (2008). Lipid rafts are involved in SARS-CoV entry into Vero E6 cells. Biochem. Biophys. Res. Commun. 369, 344–349. doi: 10.1016/j.bbrc.2008.02.023Marín-Palma, D., Tabares-Guevara, J. H., Zapata-Cardona, M. I., Flórez-Álvarez, L., Yepes, L. M., Rugeles, M. T., et al. (2021). Curcumin inhibits in vitro SARS-CoV-2 infection in vero E6 cells through multiple antiviral mechanisms. Molecules 26:6900. doi: 10.3390/molecules26226900Martínez-Gutierrez, M., Castellanos, J. E., and Gallego-Gómez, J. C. (2011). Statins reduce dengue virus production via decreased virion assembly. Intervirology 54, 202–216. doi: 10.1159/000321892Matsushita, K., Ding, N., Kou, M., Hu, X., Chen, M., Gao, Y., et al. (2020). The relationship of COVID-19 severity with cardiovascular disease and its traditional risk factors: a systematic review and meta-analysis. Glob. Heart 15, 64–64. doi: 10.5334/gh.814Mehrbod, P., Ideris, A., Omar, A. R., and Hair-Bejo, M. (2012). Evaluation of antiviral effect of atorvastatin on H1N1 infection in MDCK cells. Afr. J. Microbiol. Res. 6, 5715–5719. doi: 10.5897/AJMR12.1011Mendonça, L., Howe, A, Gilchrist, JB, Sun, D, Knight, ML, Zanetti-Domingues, LC, et al., (2020). SARS-CoV-2 assembly and egress pathway revealed by correlative multi-modal multi-scale Cryo-imaging. bioRxiv [Preprint].Mendoza, E. J., Manguiat, K., Wood, H., and Drebot, M. (2020). Two Detailed Plaque Assay Protocols for the Quantification of Infectious SARS-CoV-2. Curr. Protoc. Microbiol. 57:ecpmc105. doi: 10.1002/cpmc.105Minz, M. M., Bansal, M., and Kasliwal, R. R. (2020). Statins and SARS-CoV-2 disease: current concepts and possible benefits. Diabetes Metab. Syndr. 14, 2063–2067. doi: 10.1016/j.dsx.2020.10.021Mukherjee, S., Bhattacharyya, D., and Bhunia, A. (2020). Host-membrane interacting interface of the SARS coronavirus envelope protein: immense functional potential of C-terminal domain. Biophys. Chem. 266, 106452–106452. doi: 10.1016/j.bpc.2020.106452Mycroft-West, C. J., Su, D., Pagani, I., Rudd, T. R., Elli, S., Gandhi, N. S., et al. (2020). Heparin inhibits cellular invasion by SARS-CoV-2: structural dependence of the interaction of the spike S1 receptor-binding domain with heparin. Thromb. Haemost. 120, 1700–1715. doi: 10.1055/s-0040- 1721319Naik, V. R., Munikumar, M., Ramakrishna, U., Srujana, M., Goudar, G., Naresh, P., et al. (2020). Remdesivir (GS-5734) as a therapeutic option of 2019-nCOV main protease - in silico approach. J. Biomol. Struct. Dyn. 39, 4701–4714. doi: 10.1080/07391102.2020.1781694Nimgampalle, M., Devanathan, V., and Saxena, A. (2020). Screening of Chloroquine, Hydroxychloroquine and its derivatives for their binding affinity to multiple SARS-CoV-2 protein drug targets. J. Biomol. Struct. Dyn. 39, 4949–4961. doi: 10.1080/07391102.2020.1782265Otto, S. P., Day, T., Arino, J., Colijn, C., Dushoff, J., Li, M., et al. (2021). The origins and potential future of SARS-CoV-2 variants of concern in the evolving COVID-19 pandemic. Curr. Biol. 31, R918–R929. doi: 10.1016/j. cub.2021.06.049https://doi.org/10.3389/fmolb.2020.578964Pan, H., Peto, R., Henao-Restrepo, A. M., Preziosi, M. P., Sathiyamoorthy, V., Abdool Karim, Q., et al. (2021). Repurposed antiviral drugs for Covid-19 - interim WHO solidarity trial results. N. Engl. J. Med. 384, 497–511. doi: 10.1056/NEJMoa2023184Parquet, V., Henry, M., Wurtz, N., Dormoi, J., Briolant, S., Gil, M., et al. (2010). Atorvastatin as a potential anti-malarial drug: in vitro synergy in combinational therapy with quinine against plasmodium falciparum. Malar. J. 9:139. doi: 10.1186/1475-2875-9-139Pawlos, A., Niedzielski, M., Gorzelak-Pabiś, P., Broncel, M., and Woźniak, E. (2021). COVID-19: direct and indirect mechanisms of statins. Int. J. Mol. Sci. 22, 4177. doi: 10.3390/ijms22084177PFIZER (2010). Pfizer announces European Union approval of a new form of lipitor (atorvastatin) for use in children. Available at: https://www.pfizer. com/news/press-release/press-release-detail/pfizer_announces_european_ union_approval_of_a_new_form_of_lipitor_atorvastatin_for_use_in_children (Accessed January, 2021).Reiner, Ž., Hatamipour, M., Banach, M., Pirro, M., al-Rasadi, K., Jamialahmadi, T., et al. (2020). Statins and the COVID-19 main protease: in silico evidence on direct interaction. Arch. Med. Sci. 16, 490–496. doi: 10.5114/aoms.2020.94655Rudrapal, M., Khairnar, S., and Jadhav, A. (2020). Drug Repurposing (DR): An Emerging Approach in Drug Discovery. London: IntechOpen. Sabatino, J., de Rosa, S., di Salvo, G., and Indolfi, C. (2020). Impact of cardiovascular risk profile on COVID-19 outcome. A meta-analysis. PLoS One 15:e0237131. doi: 10.1371/journal.pone.0237131Sacco, M. D., Ma, C., Lagarias, P., Gao, A., Townsend, J. A., Meng, X., et al. (2020). Structure and inhibition of the SARS-CoV-2 main protease reveal strategy for developing dual inhibitors against Mspro and cathepsin L. Sci. Adv. 6:eabe0751. doi: 10.1126/sciadv.abe0751Sanders, D. W., et al., (2020). SARS-CoV-2 requires cholesterol for viral entry and pathological syncytia formation. bioRxiv [preprint].Schmidt, N. M., Wing, P. A. C., McKeating, J. A., and Maini, M. K. (2020). Cholesterol-modifying drugs in COVID-19. Oxf. open immunol. 1:iqaa001. doi: 10.1093/oxfimm/iqaa001Schöning-Stierand, K., Diedrich, K., Fährrolfes, R., Flachsenberg, F., Meyder, A., Nittinger, E., et al. (2020). ProteinsPlus: interactive analysis of protein–ligand binding interfaces. Nucleic Acids Res. 48, W48–W53. doi: 10.1093/nar/gkaa235Shrivastava-Ranjan, P., Flint, M., Bergeron, É., McElroy, A. K., Chatterjee, P., Albariño, C. G., et al. (2018). Statins Suppress Ebola Virus Infectivity by Interfering with Glycoprotein Processing. MBio 9, e00660–e00618. doi: 10.1128/mBio.00660-18Simabuco, F. M., Tamura, R. E., Pavan, I. C. B., Morale, M. G., and Ventura, A. M. (2021). Molecular mechanisms and pharmacological interventions in the replication cycle of human coronaviruses. Genet. Mol. Biol. 44:e20200212. doi: 10.1590/1678-4685-gmb-2020-0212Singh, D. D., Han, I., Choi, E. H., and Yadav, D. K. (2020). Recent advances in pathophysiology, drug development and future perspectives of SARSCoV-2. Front. Cell Dev. Biol. 8:580202. doi: 10.3389/fcell.2020.580202Su, H. X., Yao, S., Zhao, W. F., Li, M. J., Liu, J., Shang, W. J., et al. (2020). Anti-SARS-CoV-2 activities in vitro of Shuanghuanglian preparations and bioactive ingredients. Acta Pharmacol. Sin. 41, 1167–1177. doi: 10.1038/ s41401-020-0483-6Su, H. X., Yao, S., Zhao, W. F., Li, M. J., Liu, J., Shang, W. J., et al. (2020). Anti-SARS-CoV-2 activities in vitro of Shuanghuanglian preparations and bioactive ingredients. Acta Pharmacol. Sin. 41, 1167–1177. doi: 10.1038/ s41401-020-0483-6Tandon, R., Sharp, J. S., Zhang, F., Pomin, V. H., Ashpole, N. M., Mitra, D., et al. (2021). Effective inhibition of SARS-CoV-2 entry by heparin and enoxaparin derivatives. J. Virol. 95, e01987–e01920. doi: 10.1128/ JVI.01987-20Trott, O., and Olson, A. J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461. doi: 10.1002/jcc.21334Uzunova, K., Filipova, E., Pavlova, V., and Vekov, T. (2020). Insights into antiviral mechanisms of remdesivir, lopinavir/ritonavir and chloroquine/ hydroxychloroquine affecting the new SARS-CoV-2. Biomed. Pharmacother. 131:110668. doi: 10.1016/j.biopha.2020.110668TUzunova, K., Filipova, E., Pavlova, V., and Vekov, T. (2020). Insights into antiviral mechanisms of remdesivir, lopinavir/ritonavir and chloroquine/ hydroxychloroquine affecting the new SARS-CoV-2. Biomed. Pharmacother. 131:110668. doi: 10.1016/j.biopha.2020.110668Villareal, V. A., Rodgers, M. A., Costello, D. A., and Yang, P. L. (2015). Targeting host lipid synthesis and metabolism to inhibit dengue and hepatitis C viruses. Antivir. Res. 124, 110–121. doi: 10.1016/j.antiviral.2015.10.013V’kovski, P., Kratzel, A., Steiner, S., Stalder, H., and Thiel, V. (2021). Coronavirus biology and replication: implications for SARS-CoV-2. Biomed. Pharmacother. 19, 155–121. doi: 10.1038/s41579-020-00468-6 Wang, M., Cao, R., Zhang, L., Yang, X., Liu, J., XWang, H., Yuan, Z, Pavel, M. A., Jablonski, S. M., Jablonski, J., Hobson, R., et al., (2021). The role of high cholesterol in age-related COVID19 lethality. bioRxiv [Preprint]. doi: 10.1101/2020.05.09.086249Wang, M., Cao, R., Zhang, L., Yang, X., Liu, J., Xu, M., et al. (2020). Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 30, 269–271. doi: 10.1038/ s41422-020-0282-0Wang, Y., Zhang, D., du, G., du, R., Zhao, J., Jin, Y., et al. (2020). Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet 395, 1569–1578. doi: 10.1016/S0140-6736(20) 31022-9WHO (2020a). COVID-19: cronología de la actuación de la OMS. Available at: https://www.who.int/es/news/item/27-04-2020-who-timeline---covid-19 (Accessed January, 2022).WHO (2020b). WHO Coronavirus Disease (COVID-19) Dashboard. Available at: https://covid19.who.int/ (Accessed January, 2021).Wolff, G., Melia, C. E., Snijder, E. J., and Bárcena, M. (2020). Double-membrane vesicles as platforms for viral replication. Trends Microbiol. 28, 1022–1033. doi: 10.1016/j.tim.2020.05.009Wösten-van Asperen, R. M., Bos, A. P., Bem, R. A., Dierdorp, B. S., Dekker, T., van Goor, H., et al. (2013). Imbalance between pulmonary angiotensinconverting enzyme and angiotensin-converting enzyme 2 activity in acute respiratory distress syndrome. Pediatr. Crit. Care Med. 14, e438–e441. doi: 10.1097/PCC.0b013e3182a55735Wurtz, N., Penant, G., Jardot, P., Duclos, N., and la Scola, B. (2021). Culture of SARS-CoV-2 in a panel of laboratory cell lines, permissivity, and differences in growth profile. EJCDEU 40, 477–484. doi: 10.1007/ s10096-020-04106-0Yepes-Perez, A. F., Herrera-Calderón, O., Oliveros, C. A., Flórez-Álvarez, L., Zapata-Cardona, M. I., Yepes, L., et al. (2021). The Hydroalcoholic extractYuan, S., Chan, C. C. Y., Chik, K. K. H., Tsang, J. O. L., Liang, R., Cao, J., et al. (2020). Broad-Spectrum host-based antivirals targeting the interferon and lipogenesis pathways as potential treatment options for the pandemic coronavirus disease 2019 (COVID-19). Viruses 12:628. doi: 10.3390/ v12060628Zapatero-Belinchón, F. J., et al. (2021). Fluvastatin mitigates SARS-CoV-2 infection in human lung cells. iScience 24:103469. doi: 10.1016/j.isci.2021. 103469Zhang, Q., Chen, C. Z., Swaroop, M., Xu, M., Wang, L., Lee, J., et al. (2020). Heparan sulfate assists SARS-CoV-2 in cell entry and can be targeted by approved drugs in vitro. Cell Dis. 6:80. doi: 10.1038/s41421-020-00222-5PublicationORIGINALATV SARS 2022.pdfATV SARS 2022.pdfapplication/pdf1994444https://repository.ucc.edu.co/bitstreams/f7441486-babe-4131-890c-366a8f9e3998/download93c6a2a9cb98625ec4fa1b31c88155a0MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repository.ucc.edu.co/bitstreams/648d10dc-ed05-4306-a8f0-67d0f2b999a4/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILATV SARS 2022.pdf.jpgATV SARS 2022.pdf.jpgGenerated Thumbnailimage/jpeg5844https://repository.ucc.edu.co/bitstreams/afbd3188-ac71-4bc4-b45c-fb5b51935df2/downloade171505baddf792665a539622779d725MD53TEXTATV SARS 2022.pdf.txtATV SARS 2022.pdf.txtExtracted texttext/plain88022https://repository.ucc.edu.co/bitstreams/0b94634a-975f-48e4-add7-12f7c942b97f/download59a33f910fb8fc94513c2e4ff101532bMD5420.500.12494/45190oai:repository.ucc.edu.co:20.500.12494/451902024-08-20 16:23:43.575open.accesshttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=