Hydrogen production by dark fermentation process: Effect of initial organic load

El tratamiento de la biomasa residual a través del proceso de fermentación oscura (DF) se presenta como un proceso sostenible. alternativa, donde se produce biohidrógeno, que tiene un alto potencial energético, y subproductos de base biológica. En consecuencia, este trabajo tuvo como objetivo determ...

Full description

Autores:
Rangel, Carol
Sastoque, Jeisson
Calderon, Juan
Mosquera, Jhessica
Velásquez Perilla, Pablo Elías
Cabeza Rojas, Iván Orlando
Acevedo Pabón, Paola Andrea
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/17481
Acceso en línea:
https://doi.org/10.3303/CET2079023
https://hdl.handle.net/20.500.12494/17481
Palabra clave:
Biohidrógeno
Fermentación oscura
Termófilo
Mesófilo
Carga orgánica
Dark Fermentation
Organic Load
Biohydrogen
Rights
openAccess
License
Atribución – No comercial – Sin Derivar
id COOPER2_d0359f35eee62e3f57254ede9b600935
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/17481
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.spa.fl_str_mv Hydrogen production by dark fermentation process: Effect of initial organic load
title Hydrogen production by dark fermentation process: Effect of initial organic load
spellingShingle Hydrogen production by dark fermentation process: Effect of initial organic load
Biohidrógeno
Fermentación oscura
Termófilo
Mesófilo
Carga orgánica
Dark Fermentation
Organic Load
Biohydrogen
title_short Hydrogen production by dark fermentation process: Effect of initial organic load
title_full Hydrogen production by dark fermentation process: Effect of initial organic load
title_fullStr Hydrogen production by dark fermentation process: Effect of initial organic load
title_full_unstemmed Hydrogen production by dark fermentation process: Effect of initial organic load
title_sort Hydrogen production by dark fermentation process: Effect of initial organic load
dc.creator.fl_str_mv Rangel, Carol
Sastoque, Jeisson
Calderon, Juan
Mosquera, Jhessica
Velásquez Perilla, Pablo Elías
Cabeza Rojas, Iván Orlando
Acevedo Pabón, Paola Andrea
dc.contributor.author.none.fl_str_mv Rangel, Carol
Sastoque, Jeisson
Calderon, Juan
Mosquera, Jhessica
Velásquez Perilla, Pablo Elías
Cabeza Rojas, Iván Orlando
Acevedo Pabón, Paola Andrea
dc.subject.spa.fl_str_mv Biohidrógeno
Fermentación oscura
Termófilo
Mesófilo
Carga orgánica
topic Biohidrógeno
Fermentación oscura
Termófilo
Mesófilo
Carga orgánica
Dark Fermentation
Organic Load
Biohydrogen
dc.subject.other.spa.fl_str_mv Dark Fermentation
Organic Load
Biohydrogen
description El tratamiento de la biomasa residual a través del proceso de fermentación oscura (DF) se presenta como un proceso sostenible. alternativa, donde se produce biohidrógeno, que tiene un alto potencial energético, y subproductos de base biológica. En consecuencia, este trabajo tuvo como objetivo determinar la carga orgánica máxima para la producción de bio-hidrógeno, de biomasa residual disponible en Colombia. Se construyó un diseño experimental para determinar el Potencial de hidrógeno bioquímico (BHP) de mezclas compuestas de tres sustratos: estiércol de cerdo (PM), cacao mucílago (CCM) y mucílago de café (CFM). El diseño manejó dos variables independientes, la orgánica carga (10 gVS / l, 20 gVS / l, 30 gVS / l, 40 g VS / ly 50 gVS / l), que se determinaron de acuerdo con el caracterización fisicoquímica de los sustratos, y el S / X evaluado en dos niveles 1: 1 y 1: 2. los Los experimentos se llevaron a cabo en condiciones mesofílicas (± 35 ° C), una relación C / N de 35 y se fijó un pH de 5,5. Como resultado, se evaluaron cinco mezclas, más cinco objetivos. Los reactores eran erlenmeyers de 250 ml, sellado herméticamente, calentado y agitado en un plato caliente. Las pruebas se permitieron ejecutar hasta la detección de CH4; El monitoreo diario con un analizador de gases portátil Biogas 5000® hizo esto. Tras la determinación de la Características fisicoquímicas del efluente, sólidos totales (TS), sólidos volátiles (VS), proteínas y químicos. Se analizaron DQO de demanda de oxígeno para cada uno de los reactores. Los resultados muestran que la carga orgánica de 10gSV / L y el S / X de 1 tiene la tasa de producción más alta con 232 ml de H2, con una producción de grasa volátil ácidos (VFA) de 4040 mg DQO / L, y un porcentaje de eliminación de VS del 84%. La eliminación de VS y VFA permite sugiriendo procesos secundarios asociados con esquemas de biorefinería, para una eliminación más significativa de sólidos volátiles y la obtención de otros subproductos de valor agregado
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-04-28T21:13:37Z
dc.date.available.none.fl_str_mv 2020-04-28T21:13:37Z
dc.date.issued.none.fl_str_mv 2020-04-01
dc.type.none.fl_str_mv Artículo
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 22839216
dc.identifier.uri.spa.fl_str_mv https://doi.org/10.3303/CET2079023
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12494/17481
dc.identifier.bibliographicCitation.spa.fl_str_mv Rangel, C., Sastoque, J., Calderon, J., Mosquera, J., Velasquez, P., Cabeza, I., & Acevedo, P. (2020). Hydrogen Production by Dark Fermentation Process: Effect of Initial Organic Load. Chemical Engineering Transactions, 79, 133-138. https://doi.org/10.3303/CET2079023
identifier_str_mv 22839216
Rangel, C., Sastoque, J., Calderon, J., Mosquera, J., Velasquez, P., Cabeza, I., & Acevedo, P. (2020). Hydrogen Production by Dark Fermentation Process: Effect of Initial Organic Load. Chemical Engineering Transactions, 79, 133-138. https://doi.org/10.3303/CET2079023
url https://doi.org/10.3303/CET2079023
https://hdl.handle.net/20.500.12494/17481
dc.relation.isversionof.spa.fl_str_mv https://www.cetjournal.it/index.php/cet/article/view/CET2079023
dc.relation.conferenceplace.spa.fl_str_mv Italia
dc.relation.ispartofjournal.spa.fl_str_mv Chemical Engineering Transactions
dc.relation.references.spa.fl_str_mv Alibardi, L., Cossu, R., 2016. Effects of carbohydrate, protein and lipid content of organic waste on hydrogen production and fermentation products. Waste Management 47, 69–77
Argun, H., Dao, S., 2017. Bio-hydrogen production from waste peach pulp by dark fermentation: Effect of inoculum addition. International Journal of Hydrogen Energy 42, 2569–2574.
Argun, H., Kargi, F., Kapdan, I.K., Oztekin, R., 2008. Biohydrogen production by dark fermentation of wheat powder solution: Effects of C/N and C/P ratio on hydrogen yield and formation rate. International Journal of Hydrogen Energy 33, 1813–1819
Atasoy, M., Owusu-Agyeman, I., Plaza, E., Cetecioglu, Z., 2018. Bio-based volatile fatty acid production and recovery from waste streams: Current status and future challenges. Bioresource Technology 268, 773– 786.
Chanakya, H.N., De Alwis, A.A.P., 2004. Environmental Issues and Management in Primary Coffee Processing. Process Safety and Environmental Protection 82, 291–300
Dahiya, S., Sarkar, O., Swamy, Y.V., Venkata Mohan, S., 2015. Acidogenic fermentation of food waste for volatile fatty acid production with co-generation of biohydrogen. Bioresource Technology 182, 103–113
Fedecacao - Federación Nacional de Cacaoteros, n.d. Histórico de la Producción Nacional 2008-2018 URL https://www.fedecacao.com.co/portal/index.php/es/ (accessed 28.10.19).
Federación Nacional de Biocombustibles de Colombia. Boletín informativo No. 191, Bogotá D.C, Colombia, n.d. fedebicombustibles.com. URL https://www.fedebiocombustibles.com/nota-web-id-3082.htm (accessed 24.09.19).
García-Cáceres, R.G., Perdomo, A., Ortiz, O., Beltrán, P., López, K., 2014. Characterization of the supply and value chains of Colombian cocoa. DYNA 81, 30–40.
Gómez, X., Cuetos, M.J., Prieto, J.I., Morán, A., 2009. Bio-hydrogen production from waste fermentation: Mixing and static conditions. Renewable Energy 34, 970–975.
Guo, L., Lu, M., Li, Q., Zhang, J., She, Z., 2015. A comparison of different pretreatments on hydrogen fermentation from waste sludge by fluorescence excitation-emission matrix with regional integration analysis. International Journal of Hydrogen Energy 40, 197–208.
Hallenbeck, P.C., Benemann, J.R., 2002. Biological hydrogen production; fundamentals and limiting processes. International Journal of Hydrogen Energy, BIOHYDROGEN 2002 27, 1185–1193.
Hernandez M., Gonzalez A.J., Suarez F., Ochoa C., Candela A.M., Cabeza I., 2018. Assessment of the biohydrogen production potential of different organic residues in colombia: cocoa waste, pig manure and coffee mucilage. Chemical Engineering Transactions 65, 247–252
Hernández, M., Rodríguez, M., 2013. Hydrogen production by anaerobic digestion of pig manure: Effect of operating conditions. Renewable Energy 53, 187–192.
Hernández, M.A., Rodríguez Susa, M., Andres, Y., 2014. Use of coffee mucilage as a new substrate for hydrogen production in anaerobic co-digestion with swine manure. Bioresource Technology, Special Issue on Advance Biological Treatment Technologies for Sustainable Waste Management (ICSWHK2013) 168, 112–118.
Herrero Garcia N., Strazzera G., Frison N., Bolzonella D., 2018. Volatile fatty acids production via acidogenic fermentation of household food waste. Chemical Engineering Transactions 64, 103–108.
Informe Gerente General, n.d. Bogotá: Federación Nacional de Cafeteros de Colombia <https://www.federaciondecafeteros.org/static/files/Periodico_IGG2018.pdf> Consultado 12.07.2019.
Instituto Colombiano Agropecuario - ICA [WWW Document], n.d. Censo Pecuario Nacional 2019, Instituto Colombiano Agropecuario, Colombia. URL https://www.ica.gov.co/ (accessed 26.10.19).
Kanchanasuta, S., Haosagul, S., Pisutpaisal, N., 2016. Metabolic Flux Analysis of Hydrogen Production from Rice Starch by Anaerobic Sludge under Varying Organic Loading. 1 49, 409–414.
Kanchanasuta, S., Kittipongpattana, K., Pisutpaisal, N., 2017. Improvement of Biohydrogen Fermentation by Co-digestion of Crude Glycerol with Palm Oil Decanter Cake. 1 57, 1963–1968.
Killeen, T.J., Schroth, G., Turner, W., Harvey, C.A., Steininger, M.K., Dragisic, C., Mittermeier, R.A., 2011. Stabilizing the agricultural frontier: Leveraging REDD with biofuels for sustainable development. Biomass and Bioenergy, Land use impacts of bioenergy. Selected papers from the IEA Bioenergy Task 38 Meetings in Helsinki, 2009 and Brussels, 2010 35, 4815–4823.
Kongjan, P., Inchan, S., Chanthong, S., Jariyaboon, R., Reungsang, A., O-Thong, S., 2019. Hydrogen production from xylose by moderate thermophilic mixed cultures using granules and biofilm up-flow anaerobic reactors. International Journal of Hydrogen Energy, 2017 Asia Biohydrogen and Biorefinery Symposium 44, 3317–3324.
Levin, D.B., Pitt, L., Love, M., 2004. Biohydrogen production: prospects and limitations to practical application. International Journal of Hydrogen Energy 29, 173–185.
Liu, Y., Yu, P., Song, X., Qu, Y., 2008. Hydrogen production from cellulose by co-culture of Clostridium thermocellum JN4 and Thermoanaerobacterium thermosaccharolyticum GD17. International Journal of Hydrogen Energy, 2nd World Congress of Young Scientists on Hydrogen Energy Systems 33, 2927–2933
Noike, T., 2002. Inhibition of hydrogen fermentation of organic wastes by lactic acid bacteria. International Journal of Hydrogen Energy 27, 1367–1371.
Perfetti, J.J., Botero, J., Oviedo, S., Forero, D., Higuera, S., Correa, M., García, J., Fedesarrollo, Eafit, U., 2017. Política comercial agrícola: nivel, costos y efectos de la protección en Colombia.
Prasertsan, P., O-Thong, S., Birkeland, N.-K., 2009. Optimization and microbial community analysis for production of biohydrogen from palm oil mill effluent by thermophilic fermentative process. International Journal of Hydrogen Energy, IWBT 2008 34, 7448–7459.
Reddy, M.V., Chandrasekhar, K., Mohan, S.V., 2011. Influence of carbohydrates and proteins concentration on fermentative hydrogen production using canteen based waste under acidophilic microenvironment. Journal of Biotechnology 155, 387–395.
Srirugsa, T., Prasertsan, S., Theppaya, T., Leevijit, T., Prasertsan, P., 2019. Appropriate mixing speeds of Rushton turbine for biohydrogen production from palm oil mill effluent in a continuous stirred tank reactor. Energy 179, 823–830.
Turhal, S., Turanbaev, M., Argun, H., 2019. Hydrogen production from melon and watermelon mixture by dark fermentation. International Journal of Hydrogen Energy, Selected Papers from the 3rd International Hydrogen Technologies Congress 44, 18811–18817
Wang, J., Yin, Y., 2019. Progress in microbiology for fermentative hydrogen production from organic wastes. Critical Reviews in Environmental Science and Technology 49, 825–865
Yang, G., Wang, J., 2017. Co-fermentation of sewage sludge with ryegrass for enhancing hydrogen production: Performance evaluation and kinetic analysis. Bioresource Technology 243, 1027–1036.
Yesil, H., Tugtas, A.E., Bayrakdar, A., Calli, B., 2014. Anaerobic fermentation of organic solid wastes: volatile fatty acid production and separation. Water Science and Technology 69, 2132–2138
dc.rights.license.none.fl_str_mv Atribución – No comercial – Sin Derivar
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución – No comercial – Sin Derivar
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 133-138 p.
dc.coverage.temporal.spa.fl_str_mv Vol. 79
dc.publisher.spa.fl_str_mv Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Industrial, Bogotá
dc.publisher.program.spa.fl_str_mv Ingeniería Industrial
dc.publisher.place.spa.fl_str_mv Bogotá
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/d83f0786-41e1-4851-a1d2-c920c88242cc/download
https://repository.ucc.edu.co/bitstreams/a6548b35-efc4-4621-a15b-7a355e3a7c3a/download
https://repository.ucc.edu.co/bitstreams/eb1f1332-b442-4aef-ada3-e0989b1dbbae/download
https://repository.ucc.edu.co/bitstreams/6feddc28-b244-4a0f-92c3-7859232dab68/download
bitstream.checksum.fl_str_mv 912e2eef8059920dc6b532e7baf20344
3bce4f7ab09dfc588f126e1e36e98a45
b80e5edcbc21a70691e785452075cfeb
791c1590b59931972cea1e2e4a417359
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808789211468267520
spelling Rangel, CarolSastoque, JeissonCalderon, JuanMosquera, JhessicaVelásquez Perilla, Pablo ElíasCabeza Rojas, Iván OrlandoAcevedo Pabón, Paola AndreaVol. 792020-04-28T21:13:37Z2020-04-28T21:13:37Z2020-04-0122839216https://doi.org/10.3303/CET2079023https://hdl.handle.net/20.500.12494/17481Rangel, C., Sastoque, J., Calderon, J., Mosquera, J., Velasquez, P., Cabeza, I., & Acevedo, P. (2020). Hydrogen Production by Dark Fermentation Process: Effect of Initial Organic Load. Chemical Engineering Transactions, 79, 133-138. https://doi.org/10.3303/CET2079023El tratamiento de la biomasa residual a través del proceso de fermentación oscura (DF) se presenta como un proceso sostenible. alternativa, donde se produce biohidrógeno, que tiene un alto potencial energético, y subproductos de base biológica. En consecuencia, este trabajo tuvo como objetivo determinar la carga orgánica máxima para la producción de bio-hidrógeno, de biomasa residual disponible en Colombia. Se construyó un diseño experimental para determinar el Potencial de hidrógeno bioquímico (BHP) de mezclas compuestas de tres sustratos: estiércol de cerdo (PM), cacao mucílago (CCM) y mucílago de café (CFM). El diseño manejó dos variables independientes, la orgánica carga (10 gVS / l, 20 gVS / l, 30 gVS / l, 40 g VS / ly 50 gVS / l), que se determinaron de acuerdo con el caracterización fisicoquímica de los sustratos, y el S / X evaluado en dos niveles 1: 1 y 1: 2. los Los experimentos se llevaron a cabo en condiciones mesofílicas (± 35 ° C), una relación C / N de 35 y se fijó un pH de 5,5. Como resultado, se evaluaron cinco mezclas, más cinco objetivos. Los reactores eran erlenmeyers de 250 ml, sellado herméticamente, calentado y agitado en un plato caliente. Las pruebas se permitieron ejecutar hasta la detección de CH4; El monitoreo diario con un analizador de gases portátil Biogas 5000® hizo esto. Tras la determinación de la Características fisicoquímicas del efluente, sólidos totales (TS), sólidos volátiles (VS), proteínas y químicos. Se analizaron DQO de demanda de oxígeno para cada uno de los reactores. Los resultados muestran que la carga orgánica de 10gSV / L y el S / X de 1 tiene la tasa de producción más alta con 232 ml de H2, con una producción de grasa volátil ácidos (VFA) de 4040 mg DQO / L, y un porcentaje de eliminación de VS del 84%. La eliminación de VS y VFA permite sugiriendo procesos secundarios asociados con esquemas de biorefinería, para una eliminación más significativa de sólidos volátiles y la obtención de otros subproductos de valor agregadoThe treatment of residual biomass through the dark fermentation (DF) process is presented as a sustainable alternative, where bio-hydrogen is produced, which has a high energy potential, and bio-based sub-products. Consequently, this work aimed to determine the maximum organic load for the production of bio-hydrogen, from residual biomass available in Colombia. An experimental design was constructed to determine the biochemical hydrogen potential (BHP) of mixtures composed of three substrates: pig manure (PM), cocoa mucilage (CCM), and coffee mucilage (CFM). The design managed two independent variables, the organic load (10 gVS/l, 20 gVS/l, 30 gVS/l, 40 g VS/l, and 50 gVS/l), which were determined according to the physicochemical characterization of the substrates, and the S/X evaluated on two levels 1:1 and 1:2. The experiments were carried under mesophilic conditions (±35°C), a C/N ratio of 35, and a pH of 5.5 was fixed. As a result, five mixtures were evaluated, plus five targets. The reactors were erlenmeyers of 250mL, hermetically sealed, heated, and stirred in a hot plate. The tests were allowed to run until the detection of CH4; daily monitoring with a Biogas 5000® portable gas analyser did this. Following the determination of the physicochemical characteristics of the effluent, total solids (TS), volatile solids (VS), proteins, and chemical oxygen demand COD were analysed for each of the reactors. The results show that the organic load of 10gSV/L and the S/X of 1 has the highest production rate with 232 mL of H2, with a production of volatile fatty acids (VFA) of 4040mg COD/L, and a VS removal percentage of 84%. The removal of VS and the VFA allows suggesting secondary processes associated with bio-refinery schemes, for a more significant elimination of volatile solids and the obtaining of other value-added by-productshttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000640751http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001028111https://orcid.org/0000-0002-1549-3819https://orcid.org/0000-0002-4405-6861https://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000002960paola.acevedop@ucc.edu.copablo.velasquez@campusucc.edu.co133-138 p.Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Industrial, BogotáIngeniería IndustrialBogotáhttps://www.cetjournal.it/index.php/cet/article/view/CET2079023ItaliaChemical Engineering TransactionsAlibardi, L., Cossu, R., 2016. Effects of carbohydrate, protein and lipid content of organic waste on hydrogen production and fermentation products. Waste Management 47, 69–77Argun, H., Dao, S., 2017. Bio-hydrogen production from waste peach pulp by dark fermentation: Effect of inoculum addition. International Journal of Hydrogen Energy 42, 2569–2574.Argun, H., Kargi, F., Kapdan, I.K., Oztekin, R., 2008. Biohydrogen production by dark fermentation of wheat powder solution: Effects of C/N and C/P ratio on hydrogen yield and formation rate. International Journal of Hydrogen Energy 33, 1813–1819Atasoy, M., Owusu-Agyeman, I., Plaza, E., Cetecioglu, Z., 2018. Bio-based volatile fatty acid production and recovery from waste streams: Current status and future challenges. Bioresource Technology 268, 773– 786.Chanakya, H.N., De Alwis, A.A.P., 2004. Environmental Issues and Management in Primary Coffee Processing. Process Safety and Environmental Protection 82, 291–300Dahiya, S., Sarkar, O., Swamy, Y.V., Venkata Mohan, S., 2015. Acidogenic fermentation of food waste for volatile fatty acid production with co-generation of biohydrogen. Bioresource Technology 182, 103–113Fedecacao - Federación Nacional de Cacaoteros, n.d. Histórico de la Producción Nacional 2008-2018 URL https://www.fedecacao.com.co/portal/index.php/es/ (accessed 28.10.19).Federación Nacional de Biocombustibles de Colombia. Boletín informativo No. 191, Bogotá D.C, Colombia, n.d. fedebicombustibles.com. URL https://www.fedebiocombustibles.com/nota-web-id-3082.htm (accessed 24.09.19).García-Cáceres, R.G., Perdomo, A., Ortiz, O., Beltrán, P., López, K., 2014. Characterization of the supply and value chains of Colombian cocoa. DYNA 81, 30–40.Gómez, X., Cuetos, M.J., Prieto, J.I., Morán, A., 2009. Bio-hydrogen production from waste fermentation: Mixing and static conditions. Renewable Energy 34, 970–975.Guo, L., Lu, M., Li, Q., Zhang, J., She, Z., 2015. A comparison of different pretreatments on hydrogen fermentation from waste sludge by fluorescence excitation-emission matrix with regional integration analysis. International Journal of Hydrogen Energy 40, 197–208.Hallenbeck, P.C., Benemann, J.R., 2002. Biological hydrogen production; fundamentals and limiting processes. International Journal of Hydrogen Energy, BIOHYDROGEN 2002 27, 1185–1193.Hernandez M., Gonzalez A.J., Suarez F., Ochoa C., Candela A.M., Cabeza I., 2018. Assessment of the biohydrogen production potential of different organic residues in colombia: cocoa waste, pig manure and coffee mucilage. Chemical Engineering Transactions 65, 247–252Hernández, M., Rodríguez, M., 2013. Hydrogen production by anaerobic digestion of pig manure: Effect of operating conditions. Renewable Energy 53, 187–192.Hernández, M.A., Rodríguez Susa, M., Andres, Y., 2014. Use of coffee mucilage as a new substrate for hydrogen production in anaerobic co-digestion with swine manure. Bioresource Technology, Special Issue on Advance Biological Treatment Technologies for Sustainable Waste Management (ICSWHK2013) 168, 112–118.Herrero Garcia N., Strazzera G., Frison N., Bolzonella D., 2018. Volatile fatty acids production via acidogenic fermentation of household food waste. Chemical Engineering Transactions 64, 103–108.Informe Gerente General, n.d. Bogotá: Federación Nacional de Cafeteros de Colombia <https://www.federaciondecafeteros.org/static/files/Periodico_IGG2018.pdf> Consultado 12.07.2019.Instituto Colombiano Agropecuario - ICA [WWW Document], n.d. Censo Pecuario Nacional 2019, Instituto Colombiano Agropecuario, Colombia. URL https://www.ica.gov.co/ (accessed 26.10.19).Kanchanasuta, S., Haosagul, S., Pisutpaisal, N., 2016. Metabolic Flux Analysis of Hydrogen Production from Rice Starch by Anaerobic Sludge under Varying Organic Loading. 1 49, 409–414.Kanchanasuta, S., Kittipongpattana, K., Pisutpaisal, N., 2017. Improvement of Biohydrogen Fermentation by Co-digestion of Crude Glycerol with Palm Oil Decanter Cake. 1 57, 1963–1968.Killeen, T.J., Schroth, G., Turner, W., Harvey, C.A., Steininger, M.K., Dragisic, C., Mittermeier, R.A., 2011. Stabilizing the agricultural frontier: Leveraging REDD with biofuels for sustainable development. Biomass and Bioenergy, Land use impacts of bioenergy. Selected papers from the IEA Bioenergy Task 38 Meetings in Helsinki, 2009 and Brussels, 2010 35, 4815–4823.Kongjan, P., Inchan, S., Chanthong, S., Jariyaboon, R., Reungsang, A., O-Thong, S., 2019. Hydrogen production from xylose by moderate thermophilic mixed cultures using granules and biofilm up-flow anaerobic reactors. International Journal of Hydrogen Energy, 2017 Asia Biohydrogen and Biorefinery Symposium 44, 3317–3324.Levin, D.B., Pitt, L., Love, M., 2004. Biohydrogen production: prospects and limitations to practical application. International Journal of Hydrogen Energy 29, 173–185.Liu, Y., Yu, P., Song, X., Qu, Y., 2008. Hydrogen production from cellulose by co-culture of Clostridium thermocellum JN4 and Thermoanaerobacterium thermosaccharolyticum GD17. International Journal of Hydrogen Energy, 2nd World Congress of Young Scientists on Hydrogen Energy Systems 33, 2927–2933Noike, T., 2002. Inhibition of hydrogen fermentation of organic wastes by lactic acid bacteria. International Journal of Hydrogen Energy 27, 1367–1371.Perfetti, J.J., Botero, J., Oviedo, S., Forero, D., Higuera, S., Correa, M., García, J., Fedesarrollo, Eafit, U., 2017. Política comercial agrícola: nivel, costos y efectos de la protección en Colombia.Prasertsan, P., O-Thong, S., Birkeland, N.-K., 2009. Optimization and microbial community analysis for production of biohydrogen from palm oil mill effluent by thermophilic fermentative process. International Journal of Hydrogen Energy, IWBT 2008 34, 7448–7459.Reddy, M.V., Chandrasekhar, K., Mohan, S.V., 2011. Influence of carbohydrates and proteins concentration on fermentative hydrogen production using canteen based waste under acidophilic microenvironment. Journal of Biotechnology 155, 387–395.Srirugsa, T., Prasertsan, S., Theppaya, T., Leevijit, T., Prasertsan, P., 2019. Appropriate mixing speeds of Rushton turbine for biohydrogen production from palm oil mill effluent in a continuous stirred tank reactor. Energy 179, 823–830.Turhal, S., Turanbaev, M., Argun, H., 2019. Hydrogen production from melon and watermelon mixture by dark fermentation. International Journal of Hydrogen Energy, Selected Papers from the 3rd International Hydrogen Technologies Congress 44, 18811–18817Wang, J., Yin, Y., 2019. Progress in microbiology for fermentative hydrogen production from organic wastes. Critical Reviews in Environmental Science and Technology 49, 825–865Yang, G., Wang, J., 2017. Co-fermentation of sewage sludge with ryegrass for enhancing hydrogen production: Performance evaluation and kinetic analysis. Bioresource Technology 243, 1027–1036.Yesil, H., Tugtas, A.E., Bayrakdar, A., Calli, B., 2014. Anaerobic fermentation of organic solid wastes: volatile fatty acid production and separation. Water Science and Technology 69, 2132–2138BiohidrógenoFermentación oscuraTermófiloMesófiloCarga orgánicaDark FermentationOrganic LoadBiohydrogenHydrogen production by dark fermentation process: Effect of initial organic loadArtículohttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribución – No comercial – Sin Derivarinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationORIGINALHydrogen Production by Dark Fermentation Process Effect of Initial Organic Load.pdfHydrogen Production by Dark Fermentation Process Effect of Initial Organic Load.pdfArticuloapplication/pdf569718https://repository.ucc.edu.co/bitstreams/d83f0786-41e1-4851-a1d2-c920c88242cc/download912e2eef8059920dc6b532e7baf20344MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/a6548b35-efc4-4621-a15b-7a355e3a7c3a/download3bce4f7ab09dfc588f126e1e36e98a45MD52THUMBNAILHydrogen Production by Dark Fermentation Process Effect of Initial Organic Load.pdf.jpgHydrogen Production by Dark Fermentation Process Effect of Initial Organic Load.pdf.jpgGenerated Thumbnailimage/jpeg5667https://repository.ucc.edu.co/bitstreams/eb1f1332-b442-4aef-ada3-e0989b1dbbae/downloadb80e5edcbc21a70691e785452075cfebMD53TEXTHydrogen Production by Dark Fermentation Process Effect of Initial Organic Load.pdf.txtHydrogen Production by Dark Fermentation Process Effect of Initial Organic Load.pdf.txtExtracted texttext/plain25416https://repository.ucc.edu.co/bitstreams/6feddc28-b244-4a0f-92c3-7859232dab68/download791c1590b59931972cea1e2e4a417359MD5420.500.12494/17481oai:repository.ucc.edu.co:20.500.12494/174812024-08-10 21:01:39.823restrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo=