Modelo Computacional para optimizar parámetros de construcción de una antena fotoconductora (PCA)
This work presents the outcome of a computational modelling, which studies the behavior of a terahertz photoconductive antenna. The parameter’s build has been changed to optimize the power and frequency of the terahertz pulse. So, the article will describe each parameter with their specific result a...
- Autores:
-
Torres Urrea, Cristhian Orlando
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2019
- Institución:
- Universidad Cooperativa de Colombia
- Repositorio:
- Repositorio UCC
- Idioma:
- OAI Identifier:
- oai:repository.ucc.edu.co:20.500.12494/7785
- Acceso en línea:
- https://hdl.handle.net/20.500.12494/7785
- Palabra clave:
- Terahertz Antenna
High-Frequency Structure
COMSOL Multiphysics
Geometry
TG 2016 ITE 7785
Terahertz Antenna
High-Frequency Structure
COMSOL Multiphysics
Geometry
- Rights
- openAccess
- License
- Atribución – No comercial – Sin Derivar
id |
COOPER2_cf5e3ab3f347300c184605b240929a67 |
---|---|
oai_identifier_str |
oai:repository.ucc.edu.co:20.500.12494/7785 |
network_acronym_str |
COOPER2 |
network_name_str |
Repositorio UCC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Modelo Computacional para optimizar parámetros de construcción de una antena fotoconductora (PCA) |
title |
Modelo Computacional para optimizar parámetros de construcción de una antena fotoconductora (PCA) |
spellingShingle |
Modelo Computacional para optimizar parámetros de construcción de una antena fotoconductora (PCA) Terahertz Antenna High-Frequency Structure COMSOL Multiphysics Geometry TG 2016 ITE 7785 Terahertz Antenna High-Frequency Structure COMSOL Multiphysics Geometry |
title_short |
Modelo Computacional para optimizar parámetros de construcción de una antena fotoconductora (PCA) |
title_full |
Modelo Computacional para optimizar parámetros de construcción de una antena fotoconductora (PCA) |
title_fullStr |
Modelo Computacional para optimizar parámetros de construcción de una antena fotoconductora (PCA) |
title_full_unstemmed |
Modelo Computacional para optimizar parámetros de construcción de una antena fotoconductora (PCA) |
title_sort |
Modelo Computacional para optimizar parámetros de construcción de una antena fotoconductora (PCA) |
dc.creator.fl_str_mv |
Torres Urrea, Cristhian Orlando |
dc.contributor.advisor.none.fl_str_mv |
Suárez Mora, David Rolando Criollo, Carlos |
dc.contributor.author.none.fl_str_mv |
Torres Urrea, Cristhian Orlando |
dc.subject.spa.fl_str_mv |
Terahertz Antenna High-Frequency Structure COMSOL Multiphysics Geometry |
topic |
Terahertz Antenna High-Frequency Structure COMSOL Multiphysics Geometry TG 2016 ITE 7785 Terahertz Antenna High-Frequency Structure COMSOL Multiphysics Geometry |
dc.subject.classification.none.fl_str_mv |
TG 2016 ITE 7785 |
dc.subject.other.spa.fl_str_mv |
Terahertz Antenna High-Frequency Structure COMSOL Multiphysics Geometry |
description |
This work presents the outcome of a computational modelling, which studies the behavior of a terahertz photoconductive antenna. The parameter’s build has been changed to optimize the power and frequency of the terahertz pulse. So, the article will describe each parameter with their specific result and how it changes to find the acceptable result. The commercially accessible finite element method COMSOL Multiphysics is implemented to unravel the correlation among each parameter. The input of model will be the geometry and material of antenna. The laser will be defined between three kinds of this. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2019-03-13T23:32:54Z |
dc.date.available.none.fl_str_mv |
2019-03-13T23:32:54Z |
dc.date.issued.none.fl_str_mv |
2019-03-05 |
dc.type.none.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12494/7785 |
dc.identifier.bibliographicCitation.spa.fl_str_mv |
Torres Urrea, C.O. (2019). Modelo Computacional para optimizar parámetros de construcción de una antena fotoconductora (PCA) (tesis de pregrado). Universidad Cooperativa de Colombia, Bogotá. |
url |
https://hdl.handle.net/20.500.12494/7785 |
identifier_str_mv |
Torres Urrea, C.O. (2019). Modelo Computacional para optimizar parámetros de construcción de una antena fotoconductora (PCA) (tesis de pregrado). Universidad Cooperativa de Colombia, Bogotá. |
dc.relation.references.spa.fl_str_mv |
[1]J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B, vol. 72, no. 7, p. 075405, Aug. 2005. [2]N. T. Yardimci and M. Jarrahi, “Nanostructure-Enhanced Photoconductive Terahertz Emission and Detection,” Small, p. 1802437, Aug. 2018. [3]E. Moreno, M. F. Pantoja, F. G. Ruiz, J. B. Roldán, and S. G. García, “On the Numerical Modeling of Terahertz Photoconductive Antennas,” J. Infrared, Millimeter, Terahertz Waves, vol. 35, no. 5, pp. 432–444, May 2014. [4]N. T. Yardimci, S.-H. Yang, C. W. Berry, and M. Jarrahi, “High- Power Terahertz Generation Using Large-Area Plasmonic Photoconductive Emitters,” IEEE Trans. Terahertz Sci. Technol., vol. 5, no. 2, pp. 223–229, Mar. 2015. [5]S.-H. Yang, M. R. Hashemi, C. W. Berry, and M. Jarrahi, “7.5% Optical-to-Terahertz Conversion Efficiency Offered by Photoconductive Emitters With Three-Dimensional Plasmonic Contact Electrodes,” IEEE Trans. Terahertz Sci. Technol., vol. 4, no. 5, pp. 575–581, Sep. 2014. [6]C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun., vol. 4, no. 1, p. 1622, Dec. 2013. [7]Z. Piao, M. Tani, and K. Sakai, “Carrier Dynamics and Terahertz Radiation in Photoconductive Antennas,” Jpn. J. Appl. Phys., vol. 39, no. Part 1, No. 1, pp. 96–100, Jan. 2000. [8]N. Khiabani, Y. Huang, Y.-C. Shen, and S. Boyes, “Theoretical Modeling of a Photoconductive Antenna in a Terahertz Pulsed System,” IEEE Trans. Antennas Propag., vol. 61, no. 4, pp. 1538– 1546, Apr. 2013. [9]N. Burford and M. El-Shenawee, “Computational modeling of plasmonic thin-film terahertz photoconductive antennas,” J. Opt. Soc. Am. B, vol. 33, no. 4, p. 748, Apr. 2016. [10]L. Duvillaret, F. Garet, J.-F. Roux, and J.-L. Coutaz, “Analytical modeling and optimization of terahertz time-domain spectroscopy experiments, using photoswitches as antennas,” IEEE J. Sel. Top. Quantum Electron., vol. 7, no. 4, pp. 615–623, 2001. [11]K. Ioannidi, C. Christakis, S. Sautbekov, P. Frangos, and S. K. Atanov, “The Radiation Problem from a Vertical Hertzian Dipole Antenna above Flat and Lossy Ground: Novel Formulation in the Spectral Domain with Closed-Form Analytical Solution in the High Frequency Regime,” Int. J. Antennas Propag., vol. 2014, pp. 1–9, Aug. 2014. [12]J. Ren, Z. Jiang, M. I. Bin Shams, P. Fay, and L. Liu, “PHOTO- INDUCED ELECTROMAGNETIC BAND GAP STRUCTURES FOR OPTICALLY TUNABLE MICROWAVE FILTERS,” Prog. Electromagn. Res., vol. 161, pp. 101–111, 2018. [13]J. Zhang, M. Tuo, M. Liang, X. Wang, and H. Xin, “Contribution assessment of antenna structure and in-gap photocurrent in terahertz radiation of photoconductive antenna,” J. Appl. Phys., vol. 124, no. 5, p. 053107, Aug. 2018. |
dc.rights.license.none.fl_str_mv |
Atribución – No comercial – Sin Derivar |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución – No comercial – Sin Derivar http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería de Telecomunicaciones, Bogotá |
dc.publisher.program.spa.fl_str_mv |
Ingeniería de Telecomunicaciones |
dc.publisher.place.spa.fl_str_mv |
Bogotá |
institution |
Universidad Cooperativa de Colombia |
bitstream.url.fl_str_mv |
https://repository.ucc.edu.co/bitstreams/45737414-5aed-4f8d-9395-e7f1a74446b0/download https://repository.ucc.edu.co/bitstreams/3ed2c5d5-9013-4e7a-847c-74fd67f006fb/download https://repository.ucc.edu.co/bitstreams/477582f3-973f-4623-afd9-46f364f057af/download https://repository.ucc.edu.co/bitstreams/f6d2de48-80e7-424b-9fdf-5279ffe84cd8/download https://repository.ucc.edu.co/bitstreams/96e56dbe-d9f0-4784-8cc5-226d70a3a552/download https://repository.ucc.edu.co/bitstreams/9dd1cfb5-be12-44b0-add5-85406691e4ea/download https://repository.ucc.edu.co/bitstreams/558e8080-11f3-4632-ae87-5728c4b6456c/download |
bitstream.checksum.fl_str_mv |
3bce4f7ab09dfc588f126e1e36e98a45 ec8354c973f1b8e4d4870dd84ae80dc3 2228e977ebea8966e27929f43e39cb67 1a1b7e1f15901b46047f745847fee6ae 0f5cc8e895e21cfe389976d0e790b6e4 6144034d6159b1fbf3ff5182a9521b1b bf06cc3023d619951f8777b329564346 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Cooperativa de Colombia |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1814246553582305280 |
spelling |
Suárez Mora, David RolandoCriollo, CarlosTorres Urrea, Cristhian Orlando2019-03-13T23:32:54Z2019-03-13T23:32:54Z2019-03-05https://hdl.handle.net/20.500.12494/7785Torres Urrea, C.O. (2019). Modelo Computacional para optimizar parámetros de construcción de una antena fotoconductora (PCA) (tesis de pregrado). Universidad Cooperativa de Colombia, Bogotá.This work presents the outcome of a computational modelling, which studies the behavior of a terahertz photoconductive antenna. The parameter’s build has been changed to optimize the power and frequency of the terahertz pulse. So, the article will describe each parameter with their specific result and how it changes to find the acceptable result. The commercially accessible finite element method COMSOL Multiphysics is implemented to unravel the correlation among each parameter. The input of model will be the geometry and material of antenna. The laser will be defined between three kinds of this.This work presents the outcome of a computational modelling, which studies the behavior of a terahertz photoconductive antenna. The parameter’s build has been changed to optimize the power and frequency of the terahertz pulse. So, the article will describe each parameter with their specific result and how it changes to find the acceptable result. The commercially accessible finite element method COMSOL Multiphysics is implemented to unravel the correlation among each parameter. The input of model will be the geometry and material of antenna. The laser will be defined between three kinds of this.cristhian.torresu@campusucc.edu.coUniversidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería de Telecomunicaciones, BogotáIngeniería de TelecomunicacionesBogotáTerahertz AntennaHigh-Frequency StructureCOMSOL MultiphysicsGeometryTG 2016 ITE 7785Terahertz AntennaHigh-Frequency StructureCOMSOL MultiphysicsGeometryModelo Computacional para optimizar parámetros de construcción de una antena fotoconductora (PCA)Trabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionAtribución – No comercial – Sin Derivarinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2[1]J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B, vol. 72, no. 7, p. 075405, Aug. 2005.[2]N. T. Yardimci and M. Jarrahi, “Nanostructure-Enhanced Photoconductive Terahertz Emission and Detection,” Small, p. 1802437, Aug. 2018.[3]E. Moreno, M. F. Pantoja, F. G. Ruiz, J. B. Roldán, and S. G. García, “On the Numerical Modeling of Terahertz Photoconductive Antennas,” J. Infrared, Millimeter, Terahertz Waves, vol. 35, no. 5, pp. 432–444, May 2014.[4]N. T. Yardimci, S.-H. Yang, C. W. Berry, and M. Jarrahi, “High- Power Terahertz Generation Using Large-Area Plasmonic Photoconductive Emitters,” IEEE Trans. Terahertz Sci. Technol., vol. 5, no. 2, pp. 223–229, Mar. 2015.[5]S.-H. Yang, M. R. Hashemi, C. W. Berry, and M. Jarrahi, “7.5% Optical-to-Terahertz Conversion Efficiency Offered by Photoconductive Emitters With Three-Dimensional Plasmonic Contact Electrodes,” IEEE Trans. Terahertz Sci. Technol., vol. 4, no. 5, pp. 575–581, Sep. 2014.[6]C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun., vol. 4, no. 1, p. 1622, Dec. 2013.[7]Z. Piao, M. Tani, and K. Sakai, “Carrier Dynamics and Terahertz Radiation in Photoconductive Antennas,” Jpn. J. Appl. Phys., vol. 39, no. Part 1, No. 1, pp. 96–100, Jan. 2000.[8]N. Khiabani, Y. Huang, Y.-C. Shen, and S. Boyes, “Theoretical Modeling of a Photoconductive Antenna in a Terahertz Pulsed System,” IEEE Trans. Antennas Propag., vol. 61, no. 4, pp. 1538– 1546, Apr. 2013.[9]N. Burford and M. El-Shenawee, “Computational modeling of plasmonic thin-film terahertz photoconductive antennas,” J. Opt. Soc. Am. B, vol. 33, no. 4, p. 748, Apr. 2016.[10]L. Duvillaret, F. Garet, J.-F. Roux, and J.-L. Coutaz, “Analytical modeling and optimization of terahertz time-domain spectroscopy experiments, using photoswitches as antennas,” IEEE J. Sel. Top. Quantum Electron., vol. 7, no. 4, pp. 615–623, 2001.[11]K. Ioannidi, C. Christakis, S. Sautbekov, P. Frangos, and S. K. Atanov, “The Radiation Problem from a Vertical Hertzian Dipole Antenna above Flat and Lossy Ground: Novel Formulation in the Spectral Domain with Closed-Form Analytical Solution in the High Frequency Regime,” Int. J. Antennas Propag., vol. 2014, pp. 1–9, Aug. 2014.[12]J. Ren, Z. Jiang, M. I. Bin Shams, P. Fay, and L. Liu, “PHOTO- INDUCED ELECTROMAGNETIC BAND GAP STRUCTURES FOR OPTICALLY TUNABLE MICROWAVE FILTERS,” Prog. Electromagn. Res., vol. 161, pp. 101–111, 2018.[13]J. Zhang, M. Tuo, M. Liang, X. Wang, and H. Xin, “Contribution assessment of antenna structure and in-gap photocurrent in terahertz radiation of photoconductive antenna,” J. Appl. Phys., vol. 124, no. 5, p. 053107, Aug. 2018.PublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/45737414-5aed-4f8d-9395-e7f1a74446b0/download3bce4f7ab09dfc588f126e1e36e98a45MD53TEXT2019_Torres_Modelo_Optimización_Antena.pdf.txt2019_Torres_Modelo_Optimización_Antena.pdf.txtExtracted texttext/plain21730https://repository.ucc.edu.co/bitstreams/3ed2c5d5-9013-4e7a-847c-74fd67f006fb/downloadec8354c973f1b8e4d4870dd84ae80dc3MD542019_Torres_Modelo_Optimización_Antena_FormatoLicenciadeUso.pdf.txt2019_Torres_Modelo_Optimización_Antena_FormatoLicenciadeUso.pdf.txtExtracted texttext/plain3https://repository.ucc.edu.co/bitstreams/477582f3-973f-4623-afd9-46f364f057af/download2228e977ebea8966e27929f43e39cb67MD55ORIGINAL2019_Torres_Modelo_Optimización_Antena.pdf2019_Torres_Modelo_Optimización_Antena.pdfTrabajo de grado pregradoapplication/pdf435919https://repository.ucc.edu.co/bitstreams/f6d2de48-80e7-424b-9fdf-5279ffe84cd8/download1a1b7e1f15901b46047f745847fee6aeMD512019_Torres_Modelo_Optimización_Antena_FormatoLicenciadeUso.pdf2019_Torres_Modelo_Optimización_Antena_FormatoLicenciadeUso.pdfFormato Licencia de Usoapplication/pdf149572https://repository.ucc.edu.co/bitstreams/96e56dbe-d9f0-4784-8cc5-226d70a3a552/download0f5cc8e895e21cfe389976d0e790b6e4MD52THUMBNAIL2019_Torres_Modelo_Optimización_Antena.pdf.jpg2019_Torres_Modelo_Optimización_Antena.pdf.jpgGenerated Thumbnailimage/jpeg6582https://repository.ucc.edu.co/bitstreams/9dd1cfb5-be12-44b0-add5-85406691e4ea/download6144034d6159b1fbf3ff5182a9521b1bMD562019_Torres_Modelo_Optimización_Antena_FormatoLicenciadeUso.pdf.jpg2019_Torres_Modelo_Optimización_Antena_FormatoLicenciadeUso.pdf.jpgGenerated Thumbnailimage/jpeg4906https://repository.ucc.edu.co/bitstreams/558e8080-11f3-4632-ae87-5728c4b6456c/downloadbf06cc3023d619951f8777b329564346MD5720.500.12494/7785oai:repository.ucc.edu.co:20.500.12494/77852024-08-10 22:15:08.65open.accesshttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo= |