Modelo Computacional para optimizar parámetros de construcción de una antena fotoconductora (PCA)

This work presents the outcome of a computational modelling, which studies the behavior of a terahertz photoconductive antenna. The parameter’s build has been changed to optimize the power and frequency of the terahertz pulse. So, the article will describe each parameter with their specific result a...

Full description

Autores:
Torres Urrea, Cristhian Orlando
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2019
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/7785
Acceso en línea:
https://hdl.handle.net/20.500.12494/7785
Palabra clave:
Terahertz Antenna
High-Frequency Structure
COMSOL Multiphysics
Geometry
TG 2016 ITE 7785
Terahertz Antenna
High-Frequency Structure
COMSOL Multiphysics
Geometry
Rights
openAccess
License
Atribución – No comercial – Sin Derivar
id COOPER2_cf5e3ab3f347300c184605b240929a67
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/7785
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.spa.fl_str_mv Modelo Computacional para optimizar parámetros de construcción de una antena fotoconductora (PCA)
title Modelo Computacional para optimizar parámetros de construcción de una antena fotoconductora (PCA)
spellingShingle Modelo Computacional para optimizar parámetros de construcción de una antena fotoconductora (PCA)
Terahertz Antenna
High-Frequency Structure
COMSOL Multiphysics
Geometry
TG 2016 ITE 7785
Terahertz Antenna
High-Frequency Structure
COMSOL Multiphysics
Geometry
title_short Modelo Computacional para optimizar parámetros de construcción de una antena fotoconductora (PCA)
title_full Modelo Computacional para optimizar parámetros de construcción de una antena fotoconductora (PCA)
title_fullStr Modelo Computacional para optimizar parámetros de construcción de una antena fotoconductora (PCA)
title_full_unstemmed Modelo Computacional para optimizar parámetros de construcción de una antena fotoconductora (PCA)
title_sort Modelo Computacional para optimizar parámetros de construcción de una antena fotoconductora (PCA)
dc.creator.fl_str_mv Torres Urrea, Cristhian Orlando
dc.contributor.advisor.none.fl_str_mv Suárez Mora, David Rolando
Criollo, Carlos
dc.contributor.author.none.fl_str_mv Torres Urrea, Cristhian Orlando
dc.subject.spa.fl_str_mv Terahertz Antenna
High-Frequency Structure
COMSOL Multiphysics
Geometry
topic Terahertz Antenna
High-Frequency Structure
COMSOL Multiphysics
Geometry
TG 2016 ITE 7785
Terahertz Antenna
High-Frequency Structure
COMSOL Multiphysics
Geometry
dc.subject.classification.none.fl_str_mv TG 2016 ITE 7785
dc.subject.other.spa.fl_str_mv Terahertz Antenna
High-Frequency Structure
COMSOL Multiphysics
Geometry
description This work presents the outcome of a computational modelling, which studies the behavior of a terahertz photoconductive antenna. The parameter’s build has been changed to optimize the power and frequency of the terahertz pulse. So, the article will describe each parameter with their specific result and how it changes to find the acceptable result. The commercially accessible finite element method COMSOL Multiphysics is implemented to unravel the correlation among each parameter. The input of model will be the geometry and material of antenna. The laser will be defined between three kinds of this.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-03-13T23:32:54Z
dc.date.available.none.fl_str_mv 2019-03-13T23:32:54Z
dc.date.issued.none.fl_str_mv 2019-03-05
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12494/7785
dc.identifier.bibliographicCitation.spa.fl_str_mv Torres Urrea, C.O. (2019). Modelo Computacional para optimizar parámetros de construcción de una antena fotoconductora (PCA) (tesis de pregrado). Universidad Cooperativa de Colombia, Bogotá.
url https://hdl.handle.net/20.500.12494/7785
identifier_str_mv Torres Urrea, C.O. (2019). Modelo Computacional para optimizar parámetros de construcción de una antena fotoconductora (PCA) (tesis de pregrado). Universidad Cooperativa de Colombia, Bogotá.
dc.relation.references.spa.fl_str_mv [1]J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B, vol. 72, no. 7, p. 075405, Aug. 2005.
[2]N. T. Yardimci and M. Jarrahi, “Nanostructure-Enhanced Photoconductive Terahertz Emission and Detection,” Small, p. 1802437, Aug. 2018.
[3]E. Moreno, M. F. Pantoja, F. G. Ruiz, J. B. Roldán, and S. G. García, “On the Numerical Modeling of Terahertz Photoconductive Antennas,” J. Infrared, Millimeter, Terahertz Waves, vol. 35, no. 5, pp. 432–444, May 2014.
[4]N. T. Yardimci, S.-H. Yang, C. W. Berry, and M. Jarrahi, “High- Power Terahertz Generation Using Large-Area Plasmonic Photoconductive Emitters,” IEEE Trans. Terahertz Sci. Technol., vol. 5, no. 2, pp. 223–229, Mar. 2015.
[5]S.-H. Yang, M. R. Hashemi, C. W. Berry, and M. Jarrahi, “7.5% Optical-to-Terahertz Conversion Efficiency Offered by Photoconductive Emitters With Three-Dimensional Plasmonic Contact Electrodes,” IEEE Trans. Terahertz Sci. Technol., vol. 4, no. 5, pp. 575–581, Sep. 2014.
[6]C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun., vol. 4, no. 1, p. 1622, Dec. 2013.
[7]Z. Piao, M. Tani, and K. Sakai, “Carrier Dynamics and Terahertz Radiation in Photoconductive Antennas,” Jpn. J. Appl. Phys., vol. 39, no. Part 1, No. 1, pp. 96–100, Jan. 2000.
[8]N. Khiabani, Y. Huang, Y.-C. Shen, and S. Boyes, “Theoretical Modeling of a Photoconductive Antenna in a Terahertz Pulsed System,” IEEE Trans. Antennas Propag., vol. 61, no. 4, pp. 1538– 1546, Apr. 2013.
[9]N. Burford and M. El-Shenawee, “Computational modeling of plasmonic thin-film terahertz photoconductive antennas,” J. Opt. Soc. Am. B, vol. 33, no. 4, p. 748, Apr. 2016.
[10]L. Duvillaret, F. Garet, J.-F. Roux, and J.-L. Coutaz, “Analytical modeling and optimization of terahertz time-domain spectroscopy experiments, using photoswitches as antennas,” IEEE J. Sel. Top. Quantum Electron., vol. 7, no. 4, pp. 615–623, 2001.
[11]K. Ioannidi, C. Christakis, S. Sautbekov, P. Frangos, and S. K. Atanov, “The Radiation Problem from a Vertical Hertzian Dipole Antenna above Flat and Lossy Ground: Novel Formulation in the Spectral Domain with Closed-Form Analytical Solution in the High Frequency Regime,” Int. J. Antennas Propag., vol. 2014, pp. 1–9, Aug. 2014.
[12]J. Ren, Z. Jiang, M. I. Bin Shams, P. Fay, and L. Liu, “PHOTO- INDUCED ELECTROMAGNETIC BAND GAP STRUCTURES FOR OPTICALLY TUNABLE MICROWAVE FILTERS,” Prog. Electromagn. Res., vol. 161, pp. 101–111, 2018.
[13]J. Zhang, M. Tuo, M. Liang, X. Wang, and H. Xin, “Contribution assessment of antenna structure and in-gap photocurrent in terahertz radiation of photoconductive antenna,” J. Appl. Phys., vol. 124, no. 5, p. 053107, Aug. 2018.
dc.rights.license.none.fl_str_mv Atribución – No comercial – Sin Derivar
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución – No comercial – Sin Derivar
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería de Telecomunicaciones, Bogotá
dc.publisher.program.spa.fl_str_mv Ingeniería de Telecomunicaciones
dc.publisher.place.spa.fl_str_mv Bogotá
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/45737414-5aed-4f8d-9395-e7f1a74446b0/download
https://repository.ucc.edu.co/bitstreams/3ed2c5d5-9013-4e7a-847c-74fd67f006fb/download
https://repository.ucc.edu.co/bitstreams/477582f3-973f-4623-afd9-46f364f057af/download
https://repository.ucc.edu.co/bitstreams/f6d2de48-80e7-424b-9fdf-5279ffe84cd8/download
https://repository.ucc.edu.co/bitstreams/96e56dbe-d9f0-4784-8cc5-226d70a3a552/download
https://repository.ucc.edu.co/bitstreams/9dd1cfb5-be12-44b0-add5-85406691e4ea/download
https://repository.ucc.edu.co/bitstreams/558e8080-11f3-4632-ae87-5728c4b6456c/download
bitstream.checksum.fl_str_mv 3bce4f7ab09dfc588f126e1e36e98a45
ec8354c973f1b8e4d4870dd84ae80dc3
2228e977ebea8966e27929f43e39cb67
1a1b7e1f15901b46047f745847fee6ae
0f5cc8e895e21cfe389976d0e790b6e4
6144034d6159b1fbf3ff5182a9521b1b
bf06cc3023d619951f8777b329564346
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1814246553582305280
spelling Suárez Mora, David RolandoCriollo, CarlosTorres Urrea, Cristhian Orlando2019-03-13T23:32:54Z2019-03-13T23:32:54Z2019-03-05https://hdl.handle.net/20.500.12494/7785Torres Urrea, C.O. (2019). Modelo Computacional para optimizar parámetros de construcción de una antena fotoconductora (PCA) (tesis de pregrado). Universidad Cooperativa de Colombia, Bogotá.This work presents the outcome of a computational modelling, which studies the behavior of a terahertz photoconductive antenna. The parameter’s build has been changed to optimize the power and frequency of the terahertz pulse. So, the article will describe each parameter with their specific result and how it changes to find the acceptable result. The commercially accessible finite element method COMSOL Multiphysics is implemented to unravel the correlation among each parameter. The input of model will be the geometry and material of antenna. The laser will be defined between three kinds of this.This work presents the outcome of a computational modelling, which studies the behavior of a terahertz photoconductive antenna. The parameter’s build has been changed to optimize the power and frequency of the terahertz pulse. So, the article will describe each parameter with their specific result and how it changes to find the acceptable result. The commercially accessible finite element method COMSOL Multiphysics is implemented to unravel the correlation among each parameter. The input of model will be the geometry and material of antenna. The laser will be defined between three kinds of this.cristhian.torresu@campusucc.edu.coUniversidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería de Telecomunicaciones, BogotáIngeniería de TelecomunicacionesBogotáTerahertz AntennaHigh-Frequency StructureCOMSOL MultiphysicsGeometryTG 2016 ITE 7785Terahertz AntennaHigh-Frequency StructureCOMSOL MultiphysicsGeometryModelo Computacional para optimizar parámetros de construcción de una antena fotoconductora (PCA)Trabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionAtribución – No comercial – Sin Derivarinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2[1]J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B, vol. 72, no. 7, p. 075405, Aug. 2005.[2]N. T. Yardimci and M. Jarrahi, “Nanostructure-Enhanced Photoconductive Terahertz Emission and Detection,” Small, p. 1802437, Aug. 2018.[3]E. Moreno, M. F. Pantoja, F. G. Ruiz, J. B. Roldán, and S. G. García, “On the Numerical Modeling of Terahertz Photoconductive Antennas,” J. Infrared, Millimeter, Terahertz Waves, vol. 35, no. 5, pp. 432–444, May 2014.[4]N. T. Yardimci, S.-H. Yang, C. W. Berry, and M. Jarrahi, “High- Power Terahertz Generation Using Large-Area Plasmonic Photoconductive Emitters,” IEEE Trans. Terahertz Sci. Technol., vol. 5, no. 2, pp. 223–229, Mar. 2015.[5]S.-H. Yang, M. R. Hashemi, C. W. Berry, and M. Jarrahi, “7.5% Optical-to-Terahertz Conversion Efficiency Offered by Photoconductive Emitters With Three-Dimensional Plasmonic Contact Electrodes,” IEEE Trans. Terahertz Sci. Technol., vol. 4, no. 5, pp. 575–581, Sep. 2014.[6]C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun., vol. 4, no. 1, p. 1622, Dec. 2013.[7]Z. Piao, M. Tani, and K. Sakai, “Carrier Dynamics and Terahertz Radiation in Photoconductive Antennas,” Jpn. J. Appl. Phys., vol. 39, no. Part 1, No. 1, pp. 96–100, Jan. 2000.[8]N. Khiabani, Y. Huang, Y.-C. Shen, and S. Boyes, “Theoretical Modeling of a Photoconductive Antenna in a Terahertz Pulsed System,” IEEE Trans. Antennas Propag., vol. 61, no. 4, pp. 1538– 1546, Apr. 2013.[9]N. Burford and M. El-Shenawee, “Computational modeling of plasmonic thin-film terahertz photoconductive antennas,” J. Opt. Soc. Am. B, vol. 33, no. 4, p. 748, Apr. 2016.[10]L. Duvillaret, F. Garet, J.-F. Roux, and J.-L. Coutaz, “Analytical modeling and optimization of terahertz time-domain spectroscopy experiments, using photoswitches as antennas,” IEEE J. Sel. Top. Quantum Electron., vol. 7, no. 4, pp. 615–623, 2001.[11]K. Ioannidi, C. Christakis, S. Sautbekov, P. Frangos, and S. K. Atanov, “The Radiation Problem from a Vertical Hertzian Dipole Antenna above Flat and Lossy Ground: Novel Formulation in the Spectral Domain with Closed-Form Analytical Solution in the High Frequency Regime,” Int. J. Antennas Propag., vol. 2014, pp. 1–9, Aug. 2014.[12]J. Ren, Z. Jiang, M. I. Bin Shams, P. Fay, and L. Liu, “PHOTO- INDUCED ELECTROMAGNETIC BAND GAP STRUCTURES FOR OPTICALLY TUNABLE MICROWAVE FILTERS,” Prog. Electromagn. Res., vol. 161, pp. 101–111, 2018.[13]J. Zhang, M. Tuo, M. Liang, X. Wang, and H. Xin, “Contribution assessment of antenna structure and in-gap photocurrent in terahertz radiation of photoconductive antenna,” J. Appl. Phys., vol. 124, no. 5, p. 053107, Aug. 2018.PublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/45737414-5aed-4f8d-9395-e7f1a74446b0/download3bce4f7ab09dfc588f126e1e36e98a45MD53TEXT2019_Torres_Modelo_Optimización_Antena.pdf.txt2019_Torres_Modelo_Optimización_Antena.pdf.txtExtracted texttext/plain21730https://repository.ucc.edu.co/bitstreams/3ed2c5d5-9013-4e7a-847c-74fd67f006fb/downloadec8354c973f1b8e4d4870dd84ae80dc3MD542019_Torres_Modelo_Optimización_Antena_FormatoLicenciadeUso.pdf.txt2019_Torres_Modelo_Optimización_Antena_FormatoLicenciadeUso.pdf.txtExtracted texttext/plain3https://repository.ucc.edu.co/bitstreams/477582f3-973f-4623-afd9-46f364f057af/download2228e977ebea8966e27929f43e39cb67MD55ORIGINAL2019_Torres_Modelo_Optimización_Antena.pdf2019_Torres_Modelo_Optimización_Antena.pdfTrabajo de grado pregradoapplication/pdf435919https://repository.ucc.edu.co/bitstreams/f6d2de48-80e7-424b-9fdf-5279ffe84cd8/download1a1b7e1f15901b46047f745847fee6aeMD512019_Torres_Modelo_Optimización_Antena_FormatoLicenciadeUso.pdf2019_Torres_Modelo_Optimización_Antena_FormatoLicenciadeUso.pdfFormato Licencia de Usoapplication/pdf149572https://repository.ucc.edu.co/bitstreams/96e56dbe-d9f0-4784-8cc5-226d70a3a552/download0f5cc8e895e21cfe389976d0e790b6e4MD52THUMBNAIL2019_Torres_Modelo_Optimización_Antena.pdf.jpg2019_Torres_Modelo_Optimización_Antena.pdf.jpgGenerated Thumbnailimage/jpeg6582https://repository.ucc.edu.co/bitstreams/9dd1cfb5-be12-44b0-add5-85406691e4ea/download6144034d6159b1fbf3ff5182a9521b1bMD562019_Torres_Modelo_Optimización_Antena_FormatoLicenciadeUso.pdf.jpg2019_Torres_Modelo_Optimización_Antena_FormatoLicenciadeUso.pdf.jpgGenerated Thumbnailimage/jpeg4906https://repository.ucc.edu.co/bitstreams/558e8080-11f3-4632-ae87-5728c4b6456c/downloadbf06cc3023d619951f8777b329564346MD5720.500.12494/7785oai:repository.ucc.edu.co:20.500.12494/77852024-08-10 22:15:08.65open.accesshttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo=