Emisiones de dióxido de carbono relacionadas con las operaciones unitarias de la industria de la construcción. Revisión de literatura

Los problemas asociados al impacto ambiental negativo que causan las diferentes operaciones unitarias relacionadas con la industria de la construcción, han generado una alerta mundial creciente en el mundo, la cual ha conllevado a que la mayoría de los países, se preocupen por el estudio de las emis...

Full description

Autores:
Jaimes Burgos, Lina Maria
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2022
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/46207
Acceso en línea:
https://hdl.handle.net/20.500.12494/46207
Palabra clave:
Huella de carbono
Extracción de agregados
Industria cementera
Transporte de materias primas
Cambio climático
TG 2022 ICI 46207
Rights
openAccess
License
Atribución – No comercial – Sin Derivar
id COOPER2_cd72b3122b7ec30aedf82b103dbc62bf
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/46207
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.spa.fl_str_mv Emisiones de dióxido de carbono relacionadas con las operaciones unitarias de la industria de la construcción. Revisión de literatura
title Emisiones de dióxido de carbono relacionadas con las operaciones unitarias de la industria de la construcción. Revisión de literatura
spellingShingle Emisiones de dióxido de carbono relacionadas con las operaciones unitarias de la industria de la construcción. Revisión de literatura
Huella de carbono
Extracción de agregados
Industria cementera
Transporte de materias primas
Cambio climático
TG 2022 ICI 46207
title_short Emisiones de dióxido de carbono relacionadas con las operaciones unitarias de la industria de la construcción. Revisión de literatura
title_full Emisiones de dióxido de carbono relacionadas con las operaciones unitarias de la industria de la construcción. Revisión de literatura
title_fullStr Emisiones de dióxido de carbono relacionadas con las operaciones unitarias de la industria de la construcción. Revisión de literatura
title_full_unstemmed Emisiones de dióxido de carbono relacionadas con las operaciones unitarias de la industria de la construcción. Revisión de literatura
title_sort Emisiones de dióxido de carbono relacionadas con las operaciones unitarias de la industria de la construcción. Revisión de literatura
dc.creator.fl_str_mv Jaimes Burgos, Lina Maria
dc.contributor.advisor.none.fl_str_mv Arbeláez Pérez, Oscar Felipe
dc.contributor.author.none.fl_str_mv Jaimes Burgos, Lina Maria
dc.subject.spa.fl_str_mv Huella de carbono
Extracción de agregados
Industria cementera
Transporte de materias primas
Cambio climático
topic Huella de carbono
Extracción de agregados
Industria cementera
Transporte de materias primas
Cambio climático
TG 2022 ICI 46207
dc.subject.classification.spa.fl_str_mv TG 2022 ICI 46207
description Los problemas asociados al impacto ambiental negativo que causan las diferentes operaciones unitarias relacionadas con la industria de la construcción, han generado una alerta mundial creciente en el mundo, la cual ha conllevado a que la mayoría de los países, se preocupen por el estudio de las emisiones provenientes de las operaciones involucradas en la industria de la construcción, desde la cuna hasta la tumba. Esta revisión recopila la información de artículos reportados entre 2000 y 2022 que reportan las emisiones de dióxido de carbono en la extracción, el transporte y la producción de materiales de construcción. Se encontró que todas las etapas de extracción, trituración y transporte de los mismos, esta última y la elaboración del cemento son las de las de mayor generación de CO2. Sin embargo, existen pocos estudios que informen sobre un estimativo de emisiones globales totales por el trasporte de agregados. Se espera que esta revisión de literatura motive a incluir dentro de sus estudios a reportar las emisiones de CO2 durante cada una de las etapas del proceso constructivo.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-08-24T16:01:32Z
dc.date.available.none.fl_str_mv 2022-08-24T16:01:32Z
dc.date.issued.none.fl_str_mv 2022-08-18
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12494/46207
dc.identifier.bibliographicCitation.spa.fl_str_mv Jaimes Burgos, L. M. (2022). Emisiones de dióxido de carbono relacionadas con las operaciones unitarias de la industria de la construcción. Revisión de literatura. [Tesis de pregrado, Universidad Cooperativa de Colombia]. Repositorio Institucional Universidad Cooperativa de Colombia. chttps://repository.ucc.edu.co/handle/20.500.12494/46207
url https://hdl.handle.net/20.500.12494/46207
identifier_str_mv Jaimes Burgos, L. M. (2022). Emisiones de dióxido de carbono relacionadas con las operaciones unitarias de la industria de la construcción. Revisión de literatura. [Tesis de pregrado, Universidad Cooperativa de Colombia]. Repositorio Institucional Universidad Cooperativa de Colombia. chttps://repository.ucc.edu.co/handle/20.500.12494/46207
dc.relation.references.spa.fl_str_mv X.J. Li, Y. dan Zheng, Using LCA to research carbon footprint for precast concrete piles during the building construction stage: A China study, J. Clean. Prod. 245 (2020). https://doi.org/10.1016/j.jclepro.2019.118754.
I.C. Páez, A.C. Pinzón Vargas, L.O. Cortázar, S.P.R. Berrio, Scope and management of carbon footprint as a driving force of branding for companies implementing these environmental practices in Colombia, Estud. Gerenciales. 32 (2016) 278–289. https://doi.org/10.1016/j.estger.2016.08.004.
E. Rossi, A. Sales, Carbon footprint of coarse aggregate in Brazilian construction, Constr. Build. Mater. 72 (2014) 333–339. https://doi.org/10.1016/j.conbuildmat.2014.08.090.
S. Cheng, J. Lin, W. Ato, D. Yang, J. Liu, Carbon , water , land and material footprints of China ’ s high-speed railway construction, Transp. Res. Part D. 82 (2020) 102314. https://doi.org/10.1016/j.trd.2020.102314.
Terry Barker et al, AR4 Climate Change 2007: Mitigation of Climate Change — IPCC, Clim. Chang. (n.d.). https://www.ipcc.ch/report/ar4/wg3/ (accessed May 10, 2022).
IPCC. Special Report Global Warmign of 1.5°C. https://www.ipcc.ch/sr15/. 2019 2019, (accessed 23 March 2022)
V. Masson-Delmotte, P. Zhai, Y. Chen, L. Goldfarb, M.I. Gomis, J.B.R. Matthews, S. Berger, M. Huang, O. Yelekçi, R. Yu, B. Zhou, E. Lonnoy, T.K. Maycock, T. Waterfield, K. Leitzell, N. Caud, Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change Edited by, 2021. www.ipcc.ch.
IDEAM, Inventario Nacional y departamental de Gases Efecto Invernadero- Colombia. Tercera Comunicación Nacional de Cambio Climático. http://documentacion.ideam.gov.co/openbiblio/bvirtual/023634/INGEI.pdf 2016 (accessed May 17, 2022).
IDEAM, Resumen Ejecutivo Tercera Comunicación Nacional de Colombia a la Convención Marco de las Naciones Unidas sobre cambio climático (CMNUCC). http://www.ideam.gov.co; (accessed May 17, 2022).
Congreso de Colombia, Actualización de la Contribución Determinada a Nivel Nacional de Colombia (NDC). https://www.minambiente.gov.co/cambio-climatico-y-gestion-del-riesgo/documentos-oficiales-contribuciones-nacionalmente-determinadas/ (accessed August 11, 2022).
Congreso de Colombia, por medio de la cual se impulsa el desarrollo balo en carbono del país mediante el establecimiento de metas y medidas mínimas en materia de carbono neutralidad y resiliencia climática y se dictan otras disposiciones. https://dapre.presidencia.gov.co/normativa/normativa/ley%202169%20del%2022%20de%20diciembre%20de%202021.pdf (accessed Agos 11, 2022).
M.D. Kamitsou, D.G. Kanellopoulou, A. Christogerou, C. Kostagiannakopoulou, V. Kostopoulos, G.N. Angelopoulos, Valorization of FGD and Bauxite Residue in Sulfobelite Cement Production, Waste and Biomass Valorization. 11 (2020) 5445–5456. https://doi.org/10.1007/S12649-020-01055-9/FIGURES/14.
S. Prakasan, S. Palaniappan, R. Gettu, Study of Energy Use and CO2 Emissions in the Manufacturing of Clinker and Cement, J. Inst. Eng. Ser. A. 101 (2020) 221–232. https://doi.org/10.1007/S40030-019-00409-4/TABLES/12.
Y. Yang, L. Wang, Z. Cao, C. Mou, L. Shen, J. Zhao, Y. Fang, CO2 emissions from cement industry in China: A bottom-up estimation from factory to regional and national levels, J. Geogr. Sci. 2017 276. 27 (2017) 711–730. https://doi.org/10.1007/S11442-017-1402-8.
B. Estanqueiro, J. Dinis Silvestre, J. de Brito, M. Duarte Pinheiro, Environmental life cycle assessment of coarse natural and recycled aggregates for concrete, Eur. J. Environ. Civ. Eng. 22 (2018) 429–449. https://doi.org/10.1080/19648189.2016.1197161.
M. Tamura, K. Watanabe, Y. Nachi, Environmental impact evaluation for transportation of building materials into Tokyo district, Int. J. Sustain. Build. Technol. Urban Dev. 2 (2011) 80–86. https://doi.org/10.5390/SUSB.2011.2.1.080.
J. Blachowski, Spatial analysis of the mining and transport of rock minerals (aggregates) in the context of regional development, Environ. Earth Sci. 71 (2014) 1327–1338. https://doi.org/10.1007/S12665-013-2539-0/FIGURES/8.
C. Zuo, M. Birkin, G. Clarke, F. McEvoy, A. Bloodworth, Reducing carbon emissions related to the transportation of aggregates: Is road or rail the solution?, Transp. Res. Part A Policy Pract. 117 (2018) 26–38. https://doi.org/10.1016/j.tra.2018.08.006.
A. Álvarez, A. Ravelo, Edificación sustentable y emisiones de CO2: análisis del transporte de arena en Tijuana y Tecate, B.C., Rev. Ciencias Tecnológicas. 3 (2020) 63–70. https://doi.org/10.37636/recit.v316370.
L. Moretti, S. Caro, Critical analysis of the Life Cycle Assessment of the Italian cement industry, J. Clean. Prod. 152 (2017) 198–210. https://doi.org/10.1016/j.jclepro.2017.03.136.
F.N. Stafford, F. Raupp-Pereira, J.A. Labrincha, D. Hotza, Life cycle assessment of the production of cement: A Brazilian case study, J. Clean. Prod. 137 (2016) 1293–1299. https://doi.org/10.1016/j.jclepro.2016.07.050.
P. Markewitz, L. Zhao, M. Ryssel, G. Moumin, Y. Wang, C. Sattler, M. Robinius, D. Stolten, Carbon capture for CO2 emission reduction in the cement industry in Germany, Energies. 12 (2019). 2-25 https://doi.org/10.3390/en12122432.
I. Vázquez-Rowe, K. Ziegler-Rodriguez, J. Laso, I. Quispe, R. Aldaco, R. Kahhat, Production of cement in Peru: Understanding carbon-related environmental impacts and their policy implications, Resour. Conserv. Recycl. 142 (2019) 283–292. https://doi.org/10.1016/j.resconrec.2018.12.017.
A. León, V. Guillén, Energía contenida y emisiones de CO2 en el proceso de fabricación del cemento en Ecuador, Ambient. Construído. 20 (2020) 611–625. https://doi.org/10.1590/s1678-86212020000300448.
A. Emilio, H. Barreto, M. María, J. Correa, A. Ortiz Muñoz, C. Montes De Correa, Cement plant gaseous pollutant emission reduction technologies, Revista Ingeniería e Investigación 28 (2008) 41-45
PNUMA, Sand and Sustainability: 10 Strategic Recommendations to Avert a Crisis. https://www.unep.org/resources/report/sand-and-sustainability-10-strategic-recommendations-avert-crisis (accessed May 4, 2022).
Y. Kim, E. Worrell, CO2 Emission Trends in the Cement Industry: An International Comparison, Mitig. Adapt. Strateg. Glob. Chang. 2002 72. 7 (2002) 115–133. https://doi.org/10.1023/A:1022857829028.
V. V. Klimenko, D.S. Beznosova, A.G. Tereshin, Does the Kyoto Protocol have a future?, Therm. Eng. 2006 535. 53 (2006) 335–342. https://doi.org/10.1134/S0040601506050016.
N. Höhne, T. Kuramochi, C. Warnecke, F. Röser, H. Fekete, M. Hagemann, T. Day, R. Tewari, M. Kurdziel, S. Sterl, S. Gonzales, The Paris Agreement: resolving the inconsistency between global goals and national contributions, Clim. Policy. 17 (2017) 16–32. https://doi.org/10.1080/14693062.2016.1218320/SUPPL_FILE/TCPO_A_1218320_SM2106.DOCX.
K.A.U. Zaman, K. Kalirajan, V. Anbumozhi, Identifying Countries for Regional Cooperation in Low Carbon Growth: A Geo-environmental Impact Index, Int. J. Environ. Res. 14 (2020) 29–41. https://doi.org/10.1007/S41742-019-00233-5/TABLES/6.
IPCC, Decision-/CMA.3 Glasgow Climate Pact, https://www.un.org/en/climatechange/cop26(accessed August 11, 2022).
UNEP 2014, Annual Report | https://www.unep.org/resources/annual-report/unep-2014-annual-report (accessed May 13, 2022).
S.W. Danielsen, E. Kuznetsova, Environmental impact and sustainability in aggregate production and use, in: Eng. Geol. Soc. Territ. - Vol. 5 Urban Geol. Sustain. Plan. Landsc. Exploit., Springer International Publishing, 2015: pp. 41–44. https://doi.org/10.1007/978-3-319-09048-1_7.
M. Bendixen, J. Best, C. Hackney, L.L. Iversen, Time is running out for sand, Nat. 2021 5717763. 571 (2019) 29–31. https://doi.org/10.1038/d41586-019-02042-4.
A. Torres, J. Brandt, K. Lear, J. Liu, A looming tragedy of the sand commons, Science (80-. ). 357 (2017) 970–971. https://doi.org/10.1126/SCIENCE.AAO0503.
P. Peduzzi, Sand, rarer than one thinks, Environ. Dev. 11 (2014) 208–218. https://doi.org/10.1016/j.envdev.2014.04.001.
S. Da, P. Le Billon, Sand mining: Stopping the grind of unregulated supply chains, Extr. Ind. Soc. (2022) 101070. https://doi.org/10.1016/j.exis.2022.101070.
Universidad nacional de Colombia facultad de minas, Manual de agregados para el hormigón. https://xdoc.mx/documents/manual-de-agregados-para-el-hormigon-5e7678b804245 (accessed May 03, 2022).
L. Gudissa, T.K. Raghuvanshi, M. Meten, Y.C. Chemeda, A GIS-AHP Based Approach for Optimal Quarry Site Location Around Harer and Dire-Dawa Towns, Eastern Ethiopia, Semant. Sch. (2020). https://doi.org/10.21203/RS.3.RS-58834/V1.
F.A. Rodrigues, I. Joekes, Cement industry: Sustainability, challenges and perspectives, Environ. Chem. Lett. 9 (2011) 151–166. https://doi.org/10.1007/S10311-010-0302-2/FIGURES/6.
S.A. Abdul-Wahab, G.A. Al-Rawas, S. Ali, H. Al-Dhamri, Assessment of greenhouse CO2 emissions associated with the cement manufacturing process, http://bibliograficas.ucc.edu.Co:2076/10.1080/15275922.2016.1177752. 17 (2016) 338–354. https://doi.org/10.1080/15275922.2016.1177752. 17 (2016) 338-354 http://dx.doi.org/10.1080/15275922.2016.1177752
N.C. Onat, M. Kucukvar, Carbon footprint of construction industry: A global review and supply chain analysis, Renew. Sustain. Energy Rev. 124 (2020) 109783. https://doi.org/10.1016/J.RSER.2020.109783.
F. Basquiroto de Souza, X. Yao, W. Gao, W. Duan, Graphene opens pathways to a carbon-neutral cement industry, Sci. Bull. 67 (2022) 5–8. https://doi.org/10.1016/J.SCIB.2021.08.018.
J.S.J. van Deventer, C.E. White, R.J. Myers, A Roadmap for Production of Cement and Concrete with Low-CO2 Emissions, Waste Biomass Valorization 2020 129. 12 (2020) 4745–4775. https://doi.org/10.1007/S12649-020-01180-5.
R.M. Andrew, Global CO2 emissions from cement production, 1928-2018, Earth Syst. Sci. Data. 11 (2019) 1675–1710. https://doi.org/10.5194/essd-11-1675-2019.
M.B. Ali, R. Saidur, M.S. Hossain, A review on emission analysis in cement industries, Renew. Sustain. Energy Rev. 15 (2011) 2252–2261. https://doi.org/10.1016/j.rser.2011.02.014.
D. Adiguzel, Optimisation of pre-blending process for raw materials in quarrying, Int. J. Mining, Reclam. Environ. 34 (2020) 519–530. https://doi.org/10.1080/17480930.2019.1700009.
B. Edwards, The Insatiable demand for sand: deceptively abundant, the basic raw material for glass and concrete can’t keep up with demand, 52 (2015) 60 https://doi.org/10.5089/9781475537161.022.a015.
PNUMA, Sand and sustainability: finding new solutions for environmental governance of global sand resources, https://www.unep.org/news-and-stories/press-release/rising-demand-sand-calls-resource-governance (accessed May 17, 2022).
H.U. Sverdrup, D. Koca, · Peter Schlyter, A Simple System Dynamics Model for the Global Production Rate of Sand, Gravel, Crushed Rock and Stone, Market Prices and Long-Term Supply Embedded into the WORLD6 Model, Biophys. Econ. Resour. Qual. 2 (2017) 8. https://doi.org/10.1007/s41247-017-0023-2.
J.I. Escavy, M.J. Herrero, F. Lopez-Acevedo, L. Trigos, The progressive distancing of aggregate quarries from the demand areas: Magnitude, causes, and impact on CO2 emissions in Madrid Region (1995–2018), Resour. Policy. 75 (2022) 102506. https://doi.org/10.1016/J.RESOURPOL.2021.102506.
Z. Zhang, B. Wang, Research on the life-cycle CO2 emission of China’s construction sector, Energy Build. 112 (2016) 244–255. https://doi.org/10.1016/j.enbuild.2015.12.026.
E. Giannakis, D. Serghides, S. Dimitriou, G. Zittis, Land transport CO2 emissions and climate change: evidence from Cyprus, Int. J. Sustain. Energy. 39 (2020) 634–647. https://doi.org/10.1080/14786451.2020.1743704.
D.G. Carmichael, B.J. Bartlett, A.S. Kaboli, Surface mining operations: coincident unit cost and emissions, Int. J. Mining, Reclam. Environ. 28 (2014) 47–65. https://doi.org/10.1080/17480930.2013.772699.
C.J.V. Rodríguez, G.P.M. Ortega, J.C.B. Madera, M.J.C. Cruz, Evaluación de la Huella de Carbono en la Producción de Materiales Agregados para la Construcción en el Municipio de Toluviejo - Colombia, in: Proc. LACCEI Int. Multi-Conference Eng. Educ. Technol., Latin American and Caribbean Consortium of Engineering Institutions, 2018. https://doi.org/10.18687/LACCEI2018.1.1.18.
P. Visintin, T. Xie, B. Bennett, A large-scale life-cycle assessment of recycled aggregate concrete: The influence of functional unit, emissions allocation and carbon dioxide uptake, J. Clean. Prod. 248 (2020). https://doi.org/10.1016/j.jclepro.2019.119243.
H.H. Ghayeb, H.A. Razak, N.H.R. Sulong, Evaluation of the CO2 emissions of an innovative composite precast concrete structure building frame, J. Clean. Prod. 242 (2020). https://doi.org/10.1016/j.jclepro.2019.118567.
M. Dan Gavriletea, Environmental impacts of sand exploitation. Analysis of sand market, Sustain. 9 (2017). https://doi.org/10.3390/su9071118.
M. Jiang, P. Behrens, Y. Yang, Z. Tang, D. Chen, Y. Yu, L. Liu, P. Gong, S. Zhu, W. Zhou, B. Zhu, A. Tukker, Different Material Footprint Trends between China and the World in 2007-2012 Explained by Construction- and Manufacturing-associated Investment, One Earth. 5 (2022) 109–119. https://doi.org/10.1016/J.ONEEAR.2021.12.011.
R. Přikryl, Geomaterials as construction aggregates: a state-of-the-art, Bull. Eng. Geol. Environ. 80 (2021) 8831–8845. https://doi.org/10.1007/S10064-021-02488-9/FIGURES/4.
A. Bisht, Sand futures: Post-growth alternatives for mineral aggregate consumption and distribution in the global south, Ecol. Econ. 191 (2022). https://doi.org/10.1016/j.ecolecon.2021.107233.
J. Blachowski, A. Buczyńska, Analysis of rock raw materials transport and its implications for regional development and planning. Case study of lower Silesia (Poland), Sustain. 12 (2020). https://doi.org/10.3390/SU12083165.
N. Budownictwo Inżynieryjne, Forecast of demand and production of aggregates in Poland in the years 2012-2020 (+ 2), Mod. Eng. Constr. (2012). https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-BGPK-3656-4175/c/30_produkcja_kruszyw_2012_2020_6_2012.pdf (accessed May 8, 2022).
T. Brown, F. McEvoy, J. Ward, Aggregates in England-Economic contribution and environmental cost of indigenous supply, Resour. Policy. 36 (2011) 295–303. https://doi.org/10.1016/j.resourpol.2011.07.001.
A.J. Bloodworth, P.W. Scott, F.M. McEvoy, Digging the backyard: Mining and quarrying in the UK and their impact on future land use, Land Use Policy. 26 (2009). https://doi.org/10.1016/j.landusepol.2009.08.022.
J.P. Ríos Ocampo, Y. Olaya Morales, G.J. Rivera León, Proyección de la demanda de materiales de construcción en Colombia por medio de análisis de flujos de materiales y dinámica de sistemas, Rev. Ing. Univ. Medellín. 16 (2017) 75–95. https://doi.org/10.22395/rium.v16n31a4.
J.M. Durán, G.A. Raad, G. Barco López, A.M. Bustamante, Agencia Nacional de Minería, n.d. https://www.anm.gov.co/sites/default/files/DocumentosAnm/guia-materiales-de-arrastre.pdf
V.V. Posada, G.F. Sepúlveda, Extracción de recursos minerales en el oriente antioqueño: sostenibilidad y repercusión en el medio ambiente, Boletín Cienc. La Tierra. 31 (2012) 97-106.
V.V. Posada, G.F. Sepúlveda, Diagnóstico minero y económico del departamento de antioquia,Boletín Cienc. La Tierra. 33 (2013) 125–134.
E. Benhelal, E. Shamsaei, M.I. Rashid, Challenges against CO2 abatement strategies in cement industry: A review, J. Environ. Sci. (China). 104 (2021) 84–101. https://doi.org/10.1016/j.jes.2020.11.020.
J. Wei, K. Cen, Y. Geng, China’s cement demand and CO 2 emissions toward 2030: from the perspective of socioeconomic, technology and population, Environ. Sci. Pollut. Res. 26 (2019) 6409–6423. https://doi.org/10.1007/S11356-018-04081-2/FIGURES/10.
L. Hanle, K. Jayaraman, J.S.-W.D. Environmental, undefined 2004, CO2 emissions profile of the US cement industry, Epa.Gov. (2004). https://www3.epa.gov/ttn/chief/conference/ei13/ghg/hanle.pdf (accessed April 24, 2022).
A. Kapur, H.G. Van Oss, G. Keoleian, S.E. Kesler, A. Kendall, The contemporary cement cycle of the United States, J. Mater. Cycles Waste Manag. 11 (2009) 155–165. https://doi.org/10.1007/s10163-008-0229-x.
U.C. Mishra, S. Sarsaiya, A. Gupta, A systematic review on the impact of cement industries on the natural environment, Environ. Sci. Pollut. Res. 29 (2022) 18440–18451. https://doi.org/10.1007/S11356-022-18672-7/FIGURES/4.
J. Borghetti Soares, M. Tiomno Tolmasquim, Energy efficiency and reduction of Co2 emissions through 2015: The Brazilian cement industry, Mitig. Adapt. Strateg. Glob. Chang. 2000 53. 5 (2000) 297–318. https://doi.org/10.1023/A:1009621514625.
M. Ahmed, I. Bashar, S.T. Alam, A.I. Wasi, I. Jerin, S. Khatun, M. Rahman, An overview of Asian cement industry: Environmental impacts, research methodologies and mitigation measures, Sustain. Prod. Consum. 28 (2021) 1018–1039. https://doi.org/10.1016/j.spc.2021.07.024.
N. Ansari, A. Seifi, A system dynamics model for analyzing energy consumption and CO2 emission in Iranian cement industry under various production and export scenarios, Energy Policy. 58 (2013) 75–89. https://doi.org/10.1016/j.enpol.2013.02.042.
Z. Jokar, A. Mokhtar, Policy making in the cement industry for CO2 mitigation on the pathway of sustainable development- A system dynamics approach, J. Clean. Prod. 201 (2018) 142–155. https://doi.org/10.1016/J.JCLEPRO.2018.07.286.
H.V. Oral, H. Saygin, Simulating the future energy consumption and greenhouse gas emissions of Turkish cement industry up to 2030 in a global context, Mitig. Adapt. Strateg. Glob. Chang. 24 (2019) 1461–1482. https://doi.org/10.1007/S11027-019-09855-8/FIGURES/12.
S. Thakuri, S.B. Khatri, S. Thapa, Enflamed CO2 emissions from cement production in Nepal, Environ. Sci. Pollut. Res. 28 (2021) 68762–68772. https://doi.org/10.1007/S11356-021-15347-7/FIGURES/7.
J. Deja, A. Uliasz-Bochenczyk, E. Mokrzycki, CO2 emissions from Polish cement industry, Int. J. Greenh. Gas Control. 4 (2010) 583–588. https://doi.org/10.1016/j.ijggc.2010.02.002.
IDEAM, Primer informe bienal de actualización de Colombia. https://www.ideam.gov.co (accessed May 17, 2022).
W. Chen, S. Yang, X. Zhang, N.D. Jordan, J. Huang, Embodied energy and carbon emissions of building materials in China, Build. Environ. 207 (2022) 108434. https://doi.org/10.1016/J.BUILDENV.2021.108434.
C. Zuo, M. Birkin, G. Clarke, F. McEvoy, A. Bloodworth, Modelling the transportation of primary aggregates in England and Wales: Exploring initiatives to reduce CO2 emissions, Land Use Policy. 34 (2013) 112–124. https://doi.org/10.1016/J.LANDUSEPOL.2013.02.010.
N. Sengupta, S. Roy, H. Guha, Assessing embodied GHG emission reduction potential of cost-effective technologies for construction of residential buildings of Economically Weaker Section in India, Asian J. Civ. Eng. 19 (2018) 139–156. https://doi.org/10.1007/S42107-018-0013-8/TABLES/16.
M. Ghanbari, A.M. Abbasi, M. Ravanshadnia, Production of natural and recycled aggregates: the environmental impacts of energy consumption and CO2 emissions, J. Mater. Cycles Waste Manag. 20 (2018) 810–822. https://doi.org/10.1007/s10163-017-0640-2.
A. Bascetin, D. Adiguzel, S. Tuylu, The investigation of CO2 emissions for different rock units in the production of aggregate, Environ. Earth Sci. 76 (2017) 1–7. https://doi.org/10.1007/S12665-017-6602-0/FIGURES/4.
D. Ioannidou, G. Meylan, G. Sonnemann, G. Habert, Is gravel becoming scarce? Evaluating the local criticality of construction aggregates, Resour. Conserv. Recycl. 126 (2017) 25–33. https://doi.org/10.1016/J.RESCONREC.2017.07.016.
R. Kajaste, M. Hurme, Cement industry greenhouse gas emissions – management options and abatement cost, J. Clean. Prod. 112 (2016) 4041–4052. https://doi.org/10.1016/J.JCLEPRO.2015.07.055.
M. Fry, Cement, carbon dioxide, and the “necessity” narrative: A case study of Mexico, Geoforum. 49 (2013) 127–138. https://doi.org/10.1016/j.geoforum.2013.06.003.
C. Zheng, H. Zhang, X. Cai, L. Chen, M. Liu, H. Lin, X. Wang, Characteristics of CO2 and atmospheric pollutant emissions from China’s cement industry: A life-cycle perspective, J. Clean. Prod. 282 (2021). https://doi.org/10.1016/j.jclepro.2020.124533.
W. Yang, Z. Qi, Quantification of CO2 emissions of macro-infrastructure in China with simplified life cycle assessment, Nat. Hazards. 82 (2016) 545–569. https://doi.org/10.1007/S11069-016-2197-0/FIGURES/14.
W. Chen, W. Liu, Y. Geng, S. Ohnishi, L. Sun, W. Han, X. Tian, S. Zhong, Life cycle based emergy analysis on China’s cement production, J. Clean. Prod. 131 (2016) 272–279. https://doi.org/10.1016/j.jclepro.2016.05.036.
L. Chen, C. Su-Ping, W. Zhi-Hong, G. Xian-Zheng, M. Xian-Ce, L. Yu, CO2 emissions from typical cement plants in China, J. Shanghai Jiaotong Univ. 2012 173. 17 (2012) 341–344. https://doi.org/10.1007/S12204-012-1283-Z.
W. Shen, L. Cao, Q. Li, W. Zhang, G. Wang, C. Li, Quantifying CO2 emissions from China’s cement industry, Renew. Sustain. Energy Rev. 50 (2015) 1004–1012. https://doi.org/10.1016/j.rser.2015.05.031.
S. Wang, C. Li, The impact of urbanization on CO2 emissions in China: an empirical study using 1980–2014 provincial data, Environ. Sci. Pollut. Res. 25 (2018) 2457–2465. https://doi.org/10.1007/S11356-017-0662-2/TABLES/5.
G. Richards, I.E. Agranovski, Air emission from the co-combustion of alternative derived fuels within cement plants: Gaseous pollutants, J. Air Waste Manag. Assoc. 65 (2015) 186–196. https://doi.org/10.1080/10962247.2014.984084.
J. Cagiao, B. Gómez, J.L. Doménech, S.G. Mainar, H.G. Lanza, Calculation of the corporate carbon footprint of the cement industry by the application of MC3 methodology, Ecol. Indic. 11 (2011) 1526–1540. https://doi.org/10.1016/j.ecolind.2011.02.013.
R.I. Cruz Juarez, S. Finnegan, The environmental impact of cement production in Europe: A holistic review of existing EPDs, Clean. Environ. Syst. 3 (2021) 100053. https://doi.org/10.1016/J.CESYS.2021.100053.
L. Barcelo, J. Kline, G. Walenta, E. Gartner, Cement and carbon emissions, Mater. Struct. Constr. 47 (2014) 1055–1065. https://doi.org/10.1617/S11527-013-0114-5/TABLES/5.
N. Pardo, J.A. Moya, A. Mercier, Prospective on the energy efficiency and CO2 emissions in the EU cement industry, Energy. 36 (2011) 3244–3254. https://doi.org/10.1016/j.energy.2011.03.016.
P.W. Griffin, G.P. Hammond, J.B. Norman, Prospects for emissions reduction in the UK cement sector, Proc. Inst. Civ. Eng. Energy. 167 (2014) 152–161. https://doi.org/10.1680/ener.14.00007.
K. Kawai, M. Osako, Reduction of natural resource consumption in cement production in Japan by waste utilization, J. Mater. Cycles Waste Manag. 14 (2012) 94–101. https://doi.org/10.1007/S10163-012-0042-4/FIGURES/6.
J. Wei, K. Cen, Y. Geng, Evaluation and mitigation of cement CO2 emissions: projection of emission scenarios toward 2030 in China and proposal of the roadmap to a low-carbon world by 2050, Mitig. Adapt. Strateg. Glob. Chang. 24 (2019) 301–328. https://doi.org/10.1007/S11027-018-9813-0/FIGURES/15.
S.A. Miller, V.M. John, S.A. Pacca, A. Horvath, Carbon dioxide reduction potential in the global cement industry by 2050, Cem. Concr. Res. 114 (2018) 115–124. https://doi.org/10.1016/J.CEMCONRES.2017.08.026.
A.P. Fantilli, O. Mancinelli, B. Chiaia, The carbon footprint of normal and high-strength concrete used in low-rise and high-rise buildings, Case Stud. Constr. Mater. 11 (2019) e00296. https://doi.org/10.1016/J.CSCM.2019.E00296.
R. Baidya, S.K. Ghosh, Low carbon cement manufacturing in India by co-processing of alternative fuel and raw materials, Energy Sources, Part A Recover. Util. Environ. Eff. 41 (2019) 2561–2572. https://doi.org/10.1080/15567036.2018.1555630.
dc.rights.license.none.fl_str_mv Atribución – No comercial – Sin Derivar
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución – No comercial – Sin Derivar
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 34 p.
dc.publisher.spa.fl_str_mv Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Civil, Medellín y Envigado
dc.publisher.program.spa.fl_str_mv Ingeniería Civil
dc.publisher.place.spa.fl_str_mv Medellín
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/454c0629-61db-4f0e-91cc-b8b0cb6a3f14/download
https://repository.ucc.edu.co/bitstreams/5313f601-4f40-41dd-99d8-3f76038fe876/download
https://repository.ucc.edu.co/bitstreams/85cae56a-f6f7-4fd5-9446-62e45f2ad879/download
https://repository.ucc.edu.co/bitstreams/9383364a-380a-4727-9436-7131f70f9f7d/download
https://repository.ucc.edu.co/bitstreams/772e29b4-734f-46c2-a713-458bd5ed704c/download
https://repository.ucc.edu.co/bitstreams/115542dc-9158-4c8f-a2bd-8d33840b8f52/download
https://repository.ucc.edu.co/bitstreams/cc1fb592-dc6c-4191-8e16-fc21829e6666/download
https://repository.ucc.edu.co/bitstreams/49f1a52c-9d33-4ea0-92bf-1ac1f61f84eb/download
https://repository.ucc.edu.co/bitstreams/78f99f01-6475-45be-ad56-dad743e0d432/download
https://repository.ucc.edu.co/bitstreams/d1c52f6d-c587-4159-8a81-3b248c22f8ee/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
133a64e278cd80d102783509c4cdf57e
2f85ffe8a81536d40ae6652a512c14f0
2528d23c2c3e05803c6f69382b0c0c9b
aaff4e633e968f441d9ce6a26e98e87c
863259e42943dc803064c313afa89668
3c538f56c194c43b6bd412dabecd572c
8b8f3404d8f726a546404b8afabc7ec1
c446b263178f530b63b0560e4daddcfa
7a08b1772a2c9e20633f98eb8f0ecd1d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808789254787039232
spelling Arbeláez Pérez, Oscar FelipeJaimes Burgos, Lina Maria2022-08-24T16:01:32Z2022-08-24T16:01:32Z2022-08-18https://hdl.handle.net/20.500.12494/46207Jaimes Burgos, L. M. (2022). Emisiones de dióxido de carbono relacionadas con las operaciones unitarias de la industria de la construcción. Revisión de literatura. [Tesis de pregrado, Universidad Cooperativa de Colombia]. Repositorio Institucional Universidad Cooperativa de Colombia. chttps://repository.ucc.edu.co/handle/20.500.12494/46207Los problemas asociados al impacto ambiental negativo que causan las diferentes operaciones unitarias relacionadas con la industria de la construcción, han generado una alerta mundial creciente en el mundo, la cual ha conllevado a que la mayoría de los países, se preocupen por el estudio de las emisiones provenientes de las operaciones involucradas en la industria de la construcción, desde la cuna hasta la tumba. Esta revisión recopila la información de artículos reportados entre 2000 y 2022 que reportan las emisiones de dióxido de carbono en la extracción, el transporte y la producción de materiales de construcción. Se encontró que todas las etapas de extracción, trituración y transporte de los mismos, esta última y la elaboración del cemento son las de las de mayor generación de CO2. Sin embargo, existen pocos estudios que informen sobre un estimativo de emisiones globales totales por el trasporte de agregados. Se espera que esta revisión de literatura motive a incluir dentro de sus estudios a reportar las emisiones de CO2 durante cada una de las etapas del proceso constructivo.lina.jaimesb@campusucc.edu.co34 p.Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Civil, Medellín y EnvigadoIngeniería CivilMedellínHuella de carbonoExtracción de agregadosIndustria cementeraTransporte de materias primasCambio climáticoTG 2022 ICI 46207Emisiones de dióxido de carbono relacionadas con las operaciones unitarias de la industria de la construcción. Revisión de literaturaTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionAtribución – No comercial – Sin Derivarinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2X.J. Li, Y. dan Zheng, Using LCA to research carbon footprint for precast concrete piles during the building construction stage: A China study, J. Clean. Prod. 245 (2020). https://doi.org/10.1016/j.jclepro.2019.118754.I.C. Páez, A.C. Pinzón Vargas, L.O. Cortázar, S.P.R. Berrio, Scope and management of carbon footprint as a driving force of branding for companies implementing these environmental practices in Colombia, Estud. Gerenciales. 32 (2016) 278–289. https://doi.org/10.1016/j.estger.2016.08.004.E. Rossi, A. Sales, Carbon footprint of coarse aggregate in Brazilian construction, Constr. Build. Mater. 72 (2014) 333–339. https://doi.org/10.1016/j.conbuildmat.2014.08.090.S. Cheng, J. Lin, W. Ato, D. Yang, J. Liu, Carbon , water , land and material footprints of China ’ s high-speed railway construction, Transp. Res. Part D. 82 (2020) 102314. https://doi.org/10.1016/j.trd.2020.102314.Terry Barker et al, AR4 Climate Change 2007: Mitigation of Climate Change — IPCC, Clim. Chang. (n.d.). https://www.ipcc.ch/report/ar4/wg3/ (accessed May 10, 2022).IPCC. Special Report Global Warmign of 1.5°C. https://www.ipcc.ch/sr15/. 2019 2019, (accessed 23 March 2022)V. Masson-Delmotte, P. Zhai, Y. Chen, L. Goldfarb, M.I. Gomis, J.B.R. Matthews, S. Berger, M. Huang, O. Yelekçi, R. Yu, B. Zhou, E. Lonnoy, T.K. Maycock, T. Waterfield, K. Leitzell, N. Caud, Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change Edited by, 2021. www.ipcc.ch.IDEAM, Inventario Nacional y departamental de Gases Efecto Invernadero- Colombia. Tercera Comunicación Nacional de Cambio Climático. http://documentacion.ideam.gov.co/openbiblio/bvirtual/023634/INGEI.pdf 2016 (accessed May 17, 2022).IDEAM, Resumen Ejecutivo Tercera Comunicación Nacional de Colombia a la Convención Marco de las Naciones Unidas sobre cambio climático (CMNUCC). http://www.ideam.gov.co; (accessed May 17, 2022).Congreso de Colombia, Actualización de la Contribución Determinada a Nivel Nacional de Colombia (NDC). https://www.minambiente.gov.co/cambio-climatico-y-gestion-del-riesgo/documentos-oficiales-contribuciones-nacionalmente-determinadas/ (accessed August 11, 2022).Congreso de Colombia, por medio de la cual se impulsa el desarrollo balo en carbono del país mediante el establecimiento de metas y medidas mínimas en materia de carbono neutralidad y resiliencia climática y se dictan otras disposiciones. https://dapre.presidencia.gov.co/normativa/normativa/ley%202169%20del%2022%20de%20diciembre%20de%202021.pdf (accessed Agos 11, 2022).M.D. Kamitsou, D.G. Kanellopoulou, A. Christogerou, C. Kostagiannakopoulou, V. Kostopoulos, G.N. Angelopoulos, Valorization of FGD and Bauxite Residue in Sulfobelite Cement Production, Waste and Biomass Valorization. 11 (2020) 5445–5456. https://doi.org/10.1007/S12649-020-01055-9/FIGURES/14.S. Prakasan, S. Palaniappan, R. Gettu, Study of Energy Use and CO2 Emissions in the Manufacturing of Clinker and Cement, J. Inst. Eng. Ser. A. 101 (2020) 221–232. https://doi.org/10.1007/S40030-019-00409-4/TABLES/12.Y. Yang, L. Wang, Z. Cao, C. Mou, L. Shen, J. Zhao, Y. Fang, CO2 emissions from cement industry in China: A bottom-up estimation from factory to regional and national levels, J. Geogr. Sci. 2017 276. 27 (2017) 711–730. https://doi.org/10.1007/S11442-017-1402-8.B. Estanqueiro, J. Dinis Silvestre, J. de Brito, M. Duarte Pinheiro, Environmental life cycle assessment of coarse natural and recycled aggregates for concrete, Eur. J. Environ. Civ. Eng. 22 (2018) 429–449. https://doi.org/10.1080/19648189.2016.1197161.M. Tamura, K. Watanabe, Y. Nachi, Environmental impact evaluation for transportation of building materials into Tokyo district, Int. J. Sustain. Build. Technol. Urban Dev. 2 (2011) 80–86. https://doi.org/10.5390/SUSB.2011.2.1.080.J. Blachowski, Spatial analysis of the mining and transport of rock minerals (aggregates) in the context of regional development, Environ. Earth Sci. 71 (2014) 1327–1338. https://doi.org/10.1007/S12665-013-2539-0/FIGURES/8.C. Zuo, M. Birkin, G. Clarke, F. McEvoy, A. Bloodworth, Reducing carbon emissions related to the transportation of aggregates: Is road or rail the solution?, Transp. Res. Part A Policy Pract. 117 (2018) 26–38. https://doi.org/10.1016/j.tra.2018.08.006.A. Álvarez, A. Ravelo, Edificación sustentable y emisiones de CO2: análisis del transporte de arena en Tijuana y Tecate, B.C., Rev. Ciencias Tecnológicas. 3 (2020) 63–70. https://doi.org/10.37636/recit.v316370.L. Moretti, S. Caro, Critical analysis of the Life Cycle Assessment of the Italian cement industry, J. Clean. Prod. 152 (2017) 198–210. https://doi.org/10.1016/j.jclepro.2017.03.136.F.N. Stafford, F. Raupp-Pereira, J.A. Labrincha, D. Hotza, Life cycle assessment of the production of cement: A Brazilian case study, J. Clean. Prod. 137 (2016) 1293–1299. https://doi.org/10.1016/j.jclepro.2016.07.050.P. Markewitz, L. Zhao, M. Ryssel, G. Moumin, Y. Wang, C. Sattler, M. Robinius, D. Stolten, Carbon capture for CO2 emission reduction in the cement industry in Germany, Energies. 12 (2019). 2-25 https://doi.org/10.3390/en12122432.I. Vázquez-Rowe, K. Ziegler-Rodriguez, J. Laso, I. Quispe, R. Aldaco, R. Kahhat, Production of cement in Peru: Understanding carbon-related environmental impacts and their policy implications, Resour. Conserv. Recycl. 142 (2019) 283–292. https://doi.org/10.1016/j.resconrec.2018.12.017.A. León, V. Guillén, Energía contenida y emisiones de CO2 en el proceso de fabricación del cemento en Ecuador, Ambient. Construído. 20 (2020) 611–625. https://doi.org/10.1590/s1678-86212020000300448.A. Emilio, H. Barreto, M. María, J. Correa, A. Ortiz Muñoz, C. Montes De Correa, Cement plant gaseous pollutant emission reduction technologies, Revista Ingeniería e Investigación 28 (2008) 41-45PNUMA, Sand and Sustainability: 10 Strategic Recommendations to Avert a Crisis. https://www.unep.org/resources/report/sand-and-sustainability-10-strategic-recommendations-avert-crisis (accessed May 4, 2022).Y. Kim, E. Worrell, CO2 Emission Trends in the Cement Industry: An International Comparison, Mitig. Adapt. Strateg. Glob. Chang. 2002 72. 7 (2002) 115–133. https://doi.org/10.1023/A:1022857829028.V. V. Klimenko, D.S. Beznosova, A.G. Tereshin, Does the Kyoto Protocol have a future?, Therm. Eng. 2006 535. 53 (2006) 335–342. https://doi.org/10.1134/S0040601506050016.N. Höhne, T. Kuramochi, C. Warnecke, F. Röser, H. Fekete, M. Hagemann, T. Day, R. Tewari, M. Kurdziel, S. Sterl, S. Gonzales, The Paris Agreement: resolving the inconsistency between global goals and national contributions, Clim. Policy. 17 (2017) 16–32. https://doi.org/10.1080/14693062.2016.1218320/SUPPL_FILE/TCPO_A_1218320_SM2106.DOCX.K.A.U. Zaman, K. Kalirajan, V. Anbumozhi, Identifying Countries for Regional Cooperation in Low Carbon Growth: A Geo-environmental Impact Index, Int. J. Environ. Res. 14 (2020) 29–41. https://doi.org/10.1007/S41742-019-00233-5/TABLES/6.IPCC, Decision-/CMA.3 Glasgow Climate Pact, https://www.un.org/en/climatechange/cop26(accessed August 11, 2022).UNEP 2014, Annual Report | https://www.unep.org/resources/annual-report/unep-2014-annual-report (accessed May 13, 2022).S.W. Danielsen, E. Kuznetsova, Environmental impact and sustainability in aggregate production and use, in: Eng. Geol. Soc. Territ. - Vol. 5 Urban Geol. Sustain. Plan. Landsc. Exploit., Springer International Publishing, 2015: pp. 41–44. https://doi.org/10.1007/978-3-319-09048-1_7.M. Bendixen, J. Best, C. Hackney, L.L. Iversen, Time is running out for sand, Nat. 2021 5717763. 571 (2019) 29–31. https://doi.org/10.1038/d41586-019-02042-4.A. Torres, J. Brandt, K. Lear, J. Liu, A looming tragedy of the sand commons, Science (80-. ). 357 (2017) 970–971. https://doi.org/10.1126/SCIENCE.AAO0503.P. Peduzzi, Sand, rarer than one thinks, Environ. Dev. 11 (2014) 208–218. https://doi.org/10.1016/j.envdev.2014.04.001.S. Da, P. Le Billon, Sand mining: Stopping the grind of unregulated supply chains, Extr. Ind. Soc. (2022) 101070. https://doi.org/10.1016/j.exis.2022.101070.Universidad nacional de Colombia facultad de minas, Manual de agregados para el hormigón. https://xdoc.mx/documents/manual-de-agregados-para-el-hormigon-5e7678b804245 (accessed May 03, 2022).L. Gudissa, T.K. Raghuvanshi, M. Meten, Y.C. Chemeda, A GIS-AHP Based Approach for Optimal Quarry Site Location Around Harer and Dire-Dawa Towns, Eastern Ethiopia, Semant. Sch. (2020). https://doi.org/10.21203/RS.3.RS-58834/V1.F.A. Rodrigues, I. Joekes, Cement industry: Sustainability, challenges and perspectives, Environ. Chem. Lett. 9 (2011) 151–166. https://doi.org/10.1007/S10311-010-0302-2/FIGURES/6.S.A. Abdul-Wahab, G.A. Al-Rawas, S. Ali, H. Al-Dhamri, Assessment of greenhouse CO2 emissions associated with the cement manufacturing process, http://bibliograficas.ucc.edu.Co:2076/10.1080/15275922.2016.1177752. 17 (2016) 338–354. https://doi.org/10.1080/15275922.2016.1177752. 17 (2016) 338-354 http://dx.doi.org/10.1080/15275922.2016.1177752N.C. Onat, M. Kucukvar, Carbon footprint of construction industry: A global review and supply chain analysis, Renew. Sustain. Energy Rev. 124 (2020) 109783. https://doi.org/10.1016/J.RSER.2020.109783.F. Basquiroto de Souza, X. Yao, W. Gao, W. Duan, Graphene opens pathways to a carbon-neutral cement industry, Sci. Bull. 67 (2022) 5–8. https://doi.org/10.1016/J.SCIB.2021.08.018.J.S.J. van Deventer, C.E. White, R.J. Myers, A Roadmap for Production of Cement and Concrete with Low-CO2 Emissions, Waste Biomass Valorization 2020 129. 12 (2020) 4745–4775. https://doi.org/10.1007/S12649-020-01180-5.R.M. Andrew, Global CO2 emissions from cement production, 1928-2018, Earth Syst. Sci. Data. 11 (2019) 1675–1710. https://doi.org/10.5194/essd-11-1675-2019.M.B. Ali, R. Saidur, M.S. Hossain, A review on emission analysis in cement industries, Renew. Sustain. Energy Rev. 15 (2011) 2252–2261. https://doi.org/10.1016/j.rser.2011.02.014.D. Adiguzel, Optimisation of pre-blending process for raw materials in quarrying, Int. J. Mining, Reclam. Environ. 34 (2020) 519–530. https://doi.org/10.1080/17480930.2019.1700009.B. Edwards, The Insatiable demand for sand: deceptively abundant, the basic raw material for glass and concrete can’t keep up with demand, 52 (2015) 60 https://doi.org/10.5089/9781475537161.022.a015.PNUMA, Sand and sustainability: finding new solutions for environmental governance of global sand resources, https://www.unep.org/news-and-stories/press-release/rising-demand-sand-calls-resource-governance (accessed May 17, 2022).H.U. Sverdrup, D. Koca, · Peter Schlyter, A Simple System Dynamics Model for the Global Production Rate of Sand, Gravel, Crushed Rock and Stone, Market Prices and Long-Term Supply Embedded into the WORLD6 Model, Biophys. Econ. Resour. Qual. 2 (2017) 8. https://doi.org/10.1007/s41247-017-0023-2.J.I. Escavy, M.J. Herrero, F. Lopez-Acevedo, L. Trigos, The progressive distancing of aggregate quarries from the demand areas: Magnitude, causes, and impact on CO2 emissions in Madrid Region (1995–2018), Resour. Policy. 75 (2022) 102506. https://doi.org/10.1016/J.RESOURPOL.2021.102506.Z. Zhang, B. Wang, Research on the life-cycle CO2 emission of China’s construction sector, Energy Build. 112 (2016) 244–255. https://doi.org/10.1016/j.enbuild.2015.12.026.E. Giannakis, D. Serghides, S. Dimitriou, G. Zittis, Land transport CO2 emissions and climate change: evidence from Cyprus, Int. J. Sustain. Energy. 39 (2020) 634–647. https://doi.org/10.1080/14786451.2020.1743704.D.G. Carmichael, B.J. Bartlett, A.S. Kaboli, Surface mining operations: coincident unit cost and emissions, Int. J. Mining, Reclam. Environ. 28 (2014) 47–65. https://doi.org/10.1080/17480930.2013.772699.C.J.V. Rodríguez, G.P.M. Ortega, J.C.B. Madera, M.J.C. Cruz, Evaluación de la Huella de Carbono en la Producción de Materiales Agregados para la Construcción en el Municipio de Toluviejo - Colombia, in: Proc. LACCEI Int. Multi-Conference Eng. Educ. Technol., Latin American and Caribbean Consortium of Engineering Institutions, 2018. https://doi.org/10.18687/LACCEI2018.1.1.18.P. Visintin, T. Xie, B. Bennett, A large-scale life-cycle assessment of recycled aggregate concrete: The influence of functional unit, emissions allocation and carbon dioxide uptake, J. Clean. Prod. 248 (2020). https://doi.org/10.1016/j.jclepro.2019.119243.H.H. Ghayeb, H.A. Razak, N.H.R. Sulong, Evaluation of the CO2 emissions of an innovative composite precast concrete structure building frame, J. Clean. Prod. 242 (2020). https://doi.org/10.1016/j.jclepro.2019.118567.M. Dan Gavriletea, Environmental impacts of sand exploitation. Analysis of sand market, Sustain. 9 (2017). https://doi.org/10.3390/su9071118.M. Jiang, P. Behrens, Y. Yang, Z. Tang, D. Chen, Y. Yu, L. Liu, P. Gong, S. Zhu, W. Zhou, B. Zhu, A. Tukker, Different Material Footprint Trends between China and the World in 2007-2012 Explained by Construction- and Manufacturing-associated Investment, One Earth. 5 (2022) 109–119. https://doi.org/10.1016/J.ONEEAR.2021.12.011.R. Přikryl, Geomaterials as construction aggregates: a state-of-the-art, Bull. Eng. Geol. Environ. 80 (2021) 8831–8845. https://doi.org/10.1007/S10064-021-02488-9/FIGURES/4.A. Bisht, Sand futures: Post-growth alternatives for mineral aggregate consumption and distribution in the global south, Ecol. Econ. 191 (2022). https://doi.org/10.1016/j.ecolecon.2021.107233.J. Blachowski, A. Buczyńska, Analysis of rock raw materials transport and its implications for regional development and planning. Case study of lower Silesia (Poland), Sustain. 12 (2020). https://doi.org/10.3390/SU12083165.N. Budownictwo Inżynieryjne, Forecast of demand and production of aggregates in Poland in the years 2012-2020 (+ 2), Mod. Eng. Constr. (2012). https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-BGPK-3656-4175/c/30_produkcja_kruszyw_2012_2020_6_2012.pdf (accessed May 8, 2022).T. Brown, F. McEvoy, J. Ward, Aggregates in England-Economic contribution and environmental cost of indigenous supply, Resour. Policy. 36 (2011) 295–303. https://doi.org/10.1016/j.resourpol.2011.07.001.A.J. Bloodworth, P.W. Scott, F.M. McEvoy, Digging the backyard: Mining and quarrying in the UK and their impact on future land use, Land Use Policy. 26 (2009). https://doi.org/10.1016/j.landusepol.2009.08.022.J.P. Ríos Ocampo, Y. Olaya Morales, G.J. Rivera León, Proyección de la demanda de materiales de construcción en Colombia por medio de análisis de flujos de materiales y dinámica de sistemas, Rev. Ing. Univ. Medellín. 16 (2017) 75–95. https://doi.org/10.22395/rium.v16n31a4.J.M. Durán, G.A. Raad, G. Barco López, A.M. Bustamante, Agencia Nacional de Minería, n.d. https://www.anm.gov.co/sites/default/files/DocumentosAnm/guia-materiales-de-arrastre.pdfV.V. Posada, G.F. Sepúlveda, Extracción de recursos minerales en el oriente antioqueño: sostenibilidad y repercusión en el medio ambiente, Boletín Cienc. La Tierra. 31 (2012) 97-106.V.V. Posada, G.F. Sepúlveda, Diagnóstico minero y económico del departamento de antioquia,Boletín Cienc. La Tierra. 33 (2013) 125–134.E. Benhelal, E. Shamsaei, M.I. Rashid, Challenges against CO2 abatement strategies in cement industry: A review, J. Environ. Sci. (China). 104 (2021) 84–101. https://doi.org/10.1016/j.jes.2020.11.020.J. Wei, K. Cen, Y. Geng, China’s cement demand and CO 2 emissions toward 2030: from the perspective of socioeconomic, technology and population, Environ. Sci. Pollut. Res. 26 (2019) 6409–6423. https://doi.org/10.1007/S11356-018-04081-2/FIGURES/10.L. Hanle, K. Jayaraman, J.S.-W.D. Environmental, undefined 2004, CO2 emissions profile of the US cement industry, Epa.Gov. (2004). https://www3.epa.gov/ttn/chief/conference/ei13/ghg/hanle.pdf (accessed April 24, 2022).A. Kapur, H.G. Van Oss, G. Keoleian, S.E. Kesler, A. Kendall, The contemporary cement cycle of the United States, J. Mater. Cycles Waste Manag. 11 (2009) 155–165. https://doi.org/10.1007/s10163-008-0229-x.U.C. Mishra, S. Sarsaiya, A. Gupta, A systematic review on the impact of cement industries on the natural environment, Environ. Sci. Pollut. Res. 29 (2022) 18440–18451. https://doi.org/10.1007/S11356-022-18672-7/FIGURES/4.J. Borghetti Soares, M. Tiomno Tolmasquim, Energy efficiency and reduction of Co2 emissions through 2015: The Brazilian cement industry, Mitig. Adapt. Strateg. Glob. Chang. 2000 53. 5 (2000) 297–318. https://doi.org/10.1023/A:1009621514625.M. Ahmed, I. Bashar, S.T. Alam, A.I. Wasi, I. Jerin, S. Khatun, M. Rahman, An overview of Asian cement industry: Environmental impacts, research methodologies and mitigation measures, Sustain. Prod. Consum. 28 (2021) 1018–1039. https://doi.org/10.1016/j.spc.2021.07.024.N. Ansari, A. Seifi, A system dynamics model for analyzing energy consumption and CO2 emission in Iranian cement industry under various production and export scenarios, Energy Policy. 58 (2013) 75–89. https://doi.org/10.1016/j.enpol.2013.02.042.Z. Jokar, A. Mokhtar, Policy making in the cement industry for CO2 mitigation on the pathway of sustainable development- A system dynamics approach, J. Clean. Prod. 201 (2018) 142–155. https://doi.org/10.1016/J.JCLEPRO.2018.07.286.H.V. Oral, H. Saygin, Simulating the future energy consumption and greenhouse gas emissions of Turkish cement industry up to 2030 in a global context, Mitig. Adapt. Strateg. Glob. Chang. 24 (2019) 1461–1482. https://doi.org/10.1007/S11027-019-09855-8/FIGURES/12.S. Thakuri, S.B. Khatri, S. Thapa, Enflamed CO2 emissions from cement production in Nepal, Environ. Sci. Pollut. Res. 28 (2021) 68762–68772. https://doi.org/10.1007/S11356-021-15347-7/FIGURES/7.J. Deja, A. Uliasz-Bochenczyk, E. Mokrzycki, CO2 emissions from Polish cement industry, Int. J. Greenh. Gas Control. 4 (2010) 583–588. https://doi.org/10.1016/j.ijggc.2010.02.002.IDEAM, Primer informe bienal de actualización de Colombia. https://www.ideam.gov.co (accessed May 17, 2022).W. Chen, S. Yang, X. Zhang, N.D. Jordan, J. Huang, Embodied energy and carbon emissions of building materials in China, Build. Environ. 207 (2022) 108434. https://doi.org/10.1016/J.BUILDENV.2021.108434.C. Zuo, M. Birkin, G. Clarke, F. McEvoy, A. Bloodworth, Modelling the transportation of primary aggregates in England and Wales: Exploring initiatives to reduce CO2 emissions, Land Use Policy. 34 (2013) 112–124. https://doi.org/10.1016/J.LANDUSEPOL.2013.02.010.N. Sengupta, S. Roy, H. Guha, Assessing embodied GHG emission reduction potential of cost-effective technologies for construction of residential buildings of Economically Weaker Section in India, Asian J. Civ. Eng. 19 (2018) 139–156. https://doi.org/10.1007/S42107-018-0013-8/TABLES/16.M. Ghanbari, A.M. Abbasi, M. Ravanshadnia, Production of natural and recycled aggregates: the environmental impacts of energy consumption and CO2 emissions, J. Mater. Cycles Waste Manag. 20 (2018) 810–822. https://doi.org/10.1007/s10163-017-0640-2.A. Bascetin, D. Adiguzel, S. Tuylu, The investigation of CO2 emissions for different rock units in the production of aggregate, Environ. Earth Sci. 76 (2017) 1–7. https://doi.org/10.1007/S12665-017-6602-0/FIGURES/4.D. Ioannidou, G. Meylan, G. Sonnemann, G. Habert, Is gravel becoming scarce? Evaluating the local criticality of construction aggregates, Resour. Conserv. Recycl. 126 (2017) 25–33. https://doi.org/10.1016/J.RESCONREC.2017.07.016.R. Kajaste, M. Hurme, Cement industry greenhouse gas emissions – management options and abatement cost, J. Clean. Prod. 112 (2016) 4041–4052. https://doi.org/10.1016/J.JCLEPRO.2015.07.055.M. Fry, Cement, carbon dioxide, and the “necessity” narrative: A case study of Mexico, Geoforum. 49 (2013) 127–138. https://doi.org/10.1016/j.geoforum.2013.06.003.C. Zheng, H. Zhang, X. Cai, L. Chen, M. Liu, H. Lin, X. Wang, Characteristics of CO2 and atmospheric pollutant emissions from China’s cement industry: A life-cycle perspective, J. Clean. Prod. 282 (2021). https://doi.org/10.1016/j.jclepro.2020.124533.W. Yang, Z. Qi, Quantification of CO2 emissions of macro-infrastructure in China with simplified life cycle assessment, Nat. Hazards. 82 (2016) 545–569. https://doi.org/10.1007/S11069-016-2197-0/FIGURES/14.W. Chen, W. Liu, Y. Geng, S. Ohnishi, L. Sun, W. Han, X. Tian, S. Zhong, Life cycle based emergy analysis on China’s cement production, J. Clean. Prod. 131 (2016) 272–279. https://doi.org/10.1016/j.jclepro.2016.05.036.L. Chen, C. Su-Ping, W. Zhi-Hong, G. Xian-Zheng, M. Xian-Ce, L. Yu, CO2 emissions from typical cement plants in China, J. Shanghai Jiaotong Univ. 2012 173. 17 (2012) 341–344. https://doi.org/10.1007/S12204-012-1283-Z.W. Shen, L. Cao, Q. Li, W. Zhang, G. Wang, C. Li, Quantifying CO2 emissions from China’s cement industry, Renew. Sustain. Energy Rev. 50 (2015) 1004–1012. https://doi.org/10.1016/j.rser.2015.05.031.S. Wang, C. Li, The impact of urbanization on CO2 emissions in China: an empirical study using 1980–2014 provincial data, Environ. Sci. Pollut. Res. 25 (2018) 2457–2465. https://doi.org/10.1007/S11356-017-0662-2/TABLES/5.G. Richards, I.E. Agranovski, Air emission from the co-combustion of alternative derived fuels within cement plants: Gaseous pollutants, J. Air Waste Manag. Assoc. 65 (2015) 186–196. https://doi.org/10.1080/10962247.2014.984084.J. Cagiao, B. Gómez, J.L. Doménech, S.G. Mainar, H.G. Lanza, Calculation of the corporate carbon footprint of the cement industry by the application of MC3 methodology, Ecol. Indic. 11 (2011) 1526–1540. https://doi.org/10.1016/j.ecolind.2011.02.013.R.I. Cruz Juarez, S. Finnegan, The environmental impact of cement production in Europe: A holistic review of existing EPDs, Clean. Environ. Syst. 3 (2021) 100053. https://doi.org/10.1016/J.CESYS.2021.100053.L. Barcelo, J. Kline, G. Walenta, E. Gartner, Cement and carbon emissions, Mater. Struct. Constr. 47 (2014) 1055–1065. https://doi.org/10.1617/S11527-013-0114-5/TABLES/5.N. Pardo, J.A. Moya, A. Mercier, Prospective on the energy efficiency and CO2 emissions in the EU cement industry, Energy. 36 (2011) 3244–3254. https://doi.org/10.1016/j.energy.2011.03.016.P.W. Griffin, G.P. Hammond, J.B. Norman, Prospects for emissions reduction in the UK cement sector, Proc. Inst. Civ. Eng. Energy. 167 (2014) 152–161. https://doi.org/10.1680/ener.14.00007.K. Kawai, M. Osako, Reduction of natural resource consumption in cement production in Japan by waste utilization, J. Mater. Cycles Waste Manag. 14 (2012) 94–101. https://doi.org/10.1007/S10163-012-0042-4/FIGURES/6.J. Wei, K. Cen, Y. Geng, Evaluation and mitigation of cement CO2 emissions: projection of emission scenarios toward 2030 in China and proposal of the roadmap to a low-carbon world by 2050, Mitig. Adapt. Strateg. Glob. Chang. 24 (2019) 301–328. https://doi.org/10.1007/S11027-018-9813-0/FIGURES/15.S.A. Miller, V.M. John, S.A. Pacca, A. Horvath, Carbon dioxide reduction potential in the global cement industry by 2050, Cem. Concr. Res. 114 (2018) 115–124. https://doi.org/10.1016/J.CEMCONRES.2017.08.026.A.P. Fantilli, O. Mancinelli, B. Chiaia, The carbon footprint of normal and high-strength concrete used in low-rise and high-rise buildings, Case Stud. Constr. Mater. 11 (2019) e00296. https://doi.org/10.1016/J.CSCM.2019.E00296.R. Baidya, S.K. Ghosh, Low carbon cement manufacturing in India by co-processing of alternative fuel and raw materials, Energy Sources, Part A Recover. Util. Environ. Eff. 41 (2019) 2561–2572. https://doi.org/10.1080/15567036.2018.1555630.PublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repository.ucc.edu.co/bitstreams/454c0629-61db-4f0e-91cc-b8b0cb6a3f14/download8a4605be74aa9ea9d79846c1fba20a33MD54ORIGINAL2022-JaimesBurgos_Emsiones_Dioxido_Carbono_LicenciaUso.pdf2022-JaimesBurgos_Emsiones_Dioxido_Carbono_LicenciaUso.pdfLicencia de usoapplication/pdf203664https://repository.ucc.edu.co/bitstreams/5313f601-4f40-41dd-99d8-3f76038fe876/download133a64e278cd80d102783509c4cdf57eMD512022-JaimesBurgos_Emsiones_Dioxido_Carbono.pdf2022-JaimesBurgos_Emsiones_Dioxido_Carbono.pdfTrabajo de gradoapplication/pdf385627https://repository.ucc.edu.co/bitstreams/85cae56a-f6f7-4fd5-9446-62e45f2ad879/download2f85ffe8a81536d40ae6652a512c14f0MD522022-JaimesBurgos_Emsiones_Dioxido_Carbono_Acta.pdf2022-JaimesBurgos_Emsiones_Dioxido_Carbono_Acta.pdfActa de sustentaciónapplication/pdf78349https://repository.ucc.edu.co/bitstreams/9383364a-380a-4727-9436-7131f70f9f7d/download2528d23c2c3e05803c6f69382b0c0c9bMD53THUMBNAIL2022-JaimesBurgos_Emsiones_Dioxido_Carbono_LicenciaUso.pdf.jpg2022-JaimesBurgos_Emsiones_Dioxido_Carbono_LicenciaUso.pdf.jpgGenerated Thumbnailimage/jpeg5162https://repository.ucc.edu.co/bitstreams/772e29b4-734f-46c2-a713-458bd5ed704c/downloadaaff4e633e968f441d9ce6a26e98e87cMD552022-JaimesBurgos_Emsiones_Dioxido_Carbono.pdf.jpg2022-JaimesBurgos_Emsiones_Dioxido_Carbono.pdf.jpgGenerated Thumbnailimage/jpeg3130https://repository.ucc.edu.co/bitstreams/115542dc-9158-4c8f-a2bd-8d33840b8f52/download863259e42943dc803064c313afa89668MD562022-JaimesBurgos_Emsiones_Dioxido_Carbono_Acta.pdf.jpg2022-JaimesBurgos_Emsiones_Dioxido_Carbono_Acta.pdf.jpgGenerated Thumbnailimage/jpeg4975https://repository.ucc.edu.co/bitstreams/cc1fb592-dc6c-4191-8e16-fc21829e6666/download3c538f56c194c43b6bd412dabecd572cMD57TEXT2022-JaimesBurgos_Emsiones_Dioxido_Carbono_LicenciaUso.pdf.txt2022-JaimesBurgos_Emsiones_Dioxido_Carbono_LicenciaUso.pdf.txtExtracted texttext/plain5879https://repository.ucc.edu.co/bitstreams/49f1a52c-9d33-4ea0-92bf-1ac1f61f84eb/download8b8f3404d8f726a546404b8afabc7ec1MD582022-JaimesBurgos_Emsiones_Dioxido_Carbono.pdf.txt2022-JaimesBurgos_Emsiones_Dioxido_Carbono.pdf.txtExtracted texttext/plain73040https://repository.ucc.edu.co/bitstreams/78f99f01-6475-45be-ad56-dad743e0d432/downloadc446b263178f530b63b0560e4daddcfaMD592022-JaimesBurgos_Emsiones_Dioxido_Carbono_Acta.pdf.txt2022-JaimesBurgos_Emsiones_Dioxido_Carbono_Acta.pdf.txtExtracted texttext/plain1837https://repository.ucc.edu.co/bitstreams/d1c52f6d-c587-4159-8a81-3b248c22f8ee/download7a08b1772a2c9e20633f98eb8f0ecd1dMD51020.500.12494/46207oai:repository.ucc.edu.co:20.500.12494/462072024-08-10 22:02:48.156open.accesshttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=