Producción de acetinas (aditivos para combustibles) a partir de glicerol

La elevada producción de glicerol, un subproducto de bajo costo proveniente de la industria del biodiésel, ha supuesto una amenaza tanto para el medio ambiente como para la economía. La transformación de glicerol en productos de valor agregado contribuiría positivamente a la economía del biodiésel....

Full description

Autores:
Arbeláez Pérez, Oscar Felipe
González Martínez, Cristian David
Guzman Sanchez, Geovanni Alexis
Salazar Henao, David
Tipo de recurso:
Article of investigation
Fecha de publicación:
2021
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/46421
Acceso en línea:
https://hdl.handle.net/20.500.12494/46421
https://revistas.ucatolicaluisamigo.edu.co/index.php/lampsakos/article/view/3816
Palabra clave:
Energía renovable; Glicerol; Biodiésel; Glicerol; Monoacetina; Diacetina; Triacetina
Renewable energy; Crude glycerol; Biodiesel; Glycerol; Monoacetin; Diacetin; Triacetin
Rights
closedAccess
License
Atribución
id COOPER2_cd365fa3aa4b57e1e97ab7ec3904762b
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/46421
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.spa.fl_str_mv Producción de acetinas (aditivos para combustibles) a partir de glicerol
title Producción de acetinas (aditivos para combustibles) a partir de glicerol
spellingShingle Producción de acetinas (aditivos para combustibles) a partir de glicerol
Energía renovable; Glicerol; Biodiésel; Glicerol; Monoacetina; Diacetina; Triacetina
Renewable energy; Crude glycerol; Biodiesel; Glycerol; Monoacetin; Diacetin; Triacetin
title_short Producción de acetinas (aditivos para combustibles) a partir de glicerol
title_full Producción de acetinas (aditivos para combustibles) a partir de glicerol
title_fullStr Producción de acetinas (aditivos para combustibles) a partir de glicerol
title_full_unstemmed Producción de acetinas (aditivos para combustibles) a partir de glicerol
title_sort Producción de acetinas (aditivos para combustibles) a partir de glicerol
dc.creator.fl_str_mv Arbeláez Pérez, Oscar Felipe
González Martínez, Cristian David
Guzman Sanchez, Geovanni Alexis
Salazar Henao, David
dc.contributor.author.none.fl_str_mv Arbeláez Pérez, Oscar Felipe
González Martínez, Cristian David
Guzman Sanchez, Geovanni Alexis
Salazar Henao, David
dc.subject.spa.fl_str_mv Energía renovable; Glicerol; Biodiésel; Glicerol; Monoacetina; Diacetina; Triacetina
topic Energía renovable; Glicerol; Biodiésel; Glicerol; Monoacetina; Diacetina; Triacetina
Renewable energy; Crude glycerol; Biodiesel; Glycerol; Monoacetin; Diacetin; Triacetin
dc.subject.other.spa.fl_str_mv Renewable energy; Crude glycerol; Biodiesel; Glycerol; Monoacetin; Diacetin; Triacetin
description La elevada producción de glicerol, un subproducto de bajo costo proveniente de la industria del biodiésel, ha supuesto una amenaza tanto para el medio ambiente como para la economía. La transformación de glicerol en productos de valor agregado contribuiría positivamente a la economía del biodiésel. En este artículo de revisión se describen las rutas de valorización del glicerol y se presenta la esterificación como una de las más prometedoras para la transformación de glicerol en aditivos para combustibles; igualmente, se describen los resultados más relevantes entre 2010 y 2020 relacionados con las condiciones experimentales (temperatura, relación molar y tiempo de reacción), los catalizadores heterogéneos y la actividad catalítica (en términos de la conversión del glicerol y la selectividad) para la transformación de glicerol en acetinas (monoacetina, diacetina y triacetina). Se espera que esta revisión permita abordar esta técnica de valorización de manera rentable y ambientalmente sostenible
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-05-10
dc.date.accessioned.none.fl_str_mv 2022-09-17T19:24:49Z
dc.date.available.none.fl_str_mv 2022-09-17T19:24:49Z
dc.type.none.fl_str_mv Artículos Científicos
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 2145-4086
dc.identifier.uri.spa.fl_str_mv DOI: https://doi.org/10.21501/21454086.381
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12494/46421
dc.identifier.bibliographicCitation.spa.fl_str_mv https://revistas.ucatolicaluisamigo.edu.co/index.php/lampsakos/article/view/3816
identifier_str_mv 2145-4086
DOI: https://doi.org/10.21501/21454086.381
url https://hdl.handle.net/20.500.12494/46421
https://revistas.ucatolicaluisamigo.edu.co/index.php/lampsakos/article/view/3816
dc.relation.ispartofjournal.spa.fl_str_mv Lampsakos
dc.relation.references.spa.fl_str_mv [1]C. Agbim, F. Araya, K. M. Faust, and D. Harmon, “Subjective Versus Objective Energy Burden: A Look at Drivers of Different Metrics and Regional Variation of Energy Poor Populations”, Energy Policy, vol. 144, pp. 111616, 2020, doi: 10.1016/j.enpol.2020.111616. [2]C. Giorio, et al., “Sustainability of Using Vineyard Pruning Residues as an Energy Source: Combustion Performances and Environmental Impact”, Fuel, vol. 243, pp. 371-380, 2019, doi: 10.1016/j.fuel.2019.01.128. [3]A. Rempel and J. Gupta, “Conflicting Commitments? Examining Pension Funds, Fossil Fuel Assets and Climate Policy in the Organisation for Economic Co-operation and Development (OECD),” Energy Research & Social Science, vol. 69, pp. 101736, 2020, doi: 10.1016/j.erss.2020.101736. [4]N. Wood and K. Roelich, “Tensions, Capabilities, and Justice in Climate Change Mitigation of Fossil Fuels”, Energy Research & Social Science, vol. 52, pp. 114-122, 2019, doi: 10.1016/j.erss.2019.02.014. [5]L. Dai, et al., “A review on selective production of value-added chemicals via catalytic pyrolysis of lignocellulosic biomass”, Sci. Total Environ, vol. 749, p. 142386, 2020, doi: 10.1016/j.scitotenv.2020.142386. [6]M. N. Uddin, J. Taweekun, K. Techato, M. A. Rahman, M. Mofijur, and M. G. Rasul, “Sustainable Biomass as an Alternative Energy Source: Bangladesh Perspective”, Energy Procedia, vol. 160, pp. 648-654, 2019, doi: 10.1016/j.egypro.2019.02.217. [7]M. Ebadian, S. Van Dyk, J. Mac Millan, J. Saddier, "Biofuels Policies that Have Encouraged thier Production and Use: An International Perspective", Energy Policy, vol. 147. pp. 111906, 2020, doi: 10.1016/j.enpol.2020.111906. [8]D. Singh, D. Sharma, S. L. Soni, S. Sharma, P. Kumar Sharma, and A. Jhalani, “A Review on Feedstocks, Production Processes, and Yield for Different Generations of Biodiesel,” Fuel, vol. 262, pp. 116553, 2020, doi: 10.1016/j.fuel.2019.116553. [9]S. Puricelli, G. Cardellini, S. Casadei, D. Faedo, A. EM van der Oever and M. Grosso, “A Review on Biofuels for Light-duty Vehicles in Europe”, Renew. Sustain. Energy Rev., vol. 137, p. 110398, 2021, doi: 10.1016/j.rser.2020.110398. [10]F. Saladini, N. Patrizi, F. M. Pulselli, N. Marchettini, and S. Bastianoni, “Guidelines for Emergy Evaluation of First, Second and Third Generation Biofuels”, Renewable and Sustainable Energy Reviews, vol. 66, pp. 221-227, 2016, doi: 10.1016/j.rser.2016.07.073. [11]D. Singh, et al., “A Comprehensive Review of Physicochemical Properties, Production Process, Performance and Emissions Characteristics of 2nd Generation Biodiesel Feedstock: Jatropha Curcas”, Fuel, vol. 285, p. 119110, 2021, doi: 10.1016/j.fuel.2020.119110. [12]S. Tayari, R. Abedi, and A. Rahi, “Comparative Assessment of Engine Performance and Emissions Fueled with Three Different Biodiesel Generations”, Renewable Energy, vol. 147, pp. 1058-1069, 2020, doi: 10.1016/j.renene.2019.09.068. [13]M. L. Savaliya and B. Z. Dholakiya, “Journal of Industrial and Engineering Chemistry Eco-friendly Process for Preparation of Biodiesel from WFO Over MTSA-Si Catalyst: An Innovative Approach for the Utilization of Side Product”, Journal of Industrial and Engineering Chemistry, vol. 64, pp. 352-366, 2018, doi: 10.1016/j.jiec.2018.03.036. [14]A. Ghasemi and M. Moosavi-nasab, “Production of Second-generation Biodiesel Using Low-quality Date Fruits”, Biotechnol Reports, vol. 27, e00480, 2020, doi: 10.1016/j.btre.2020.e00480. [15]M. Mofijur, M. G. Rasul, N. M. S. Hassan, and M. N. Nabi, “Recent Development in the Production of Third Generation Biodiesel from Microalgae”, Energy Procedia, vol. 156, pp. 53-58, 2019, doi: 10.1016/j.egypro.2018.11.088. [16]D. Singh, D. Sharma, S. L. Soni, S. Sharma, and D. Kumari, “Chemical Compositions, Properties, and Standards for Different Generation Biodiesels: A Review,” Fuel, vol. 253, pp. 60-71, 2019, doi: 10.1016/j.fuel.2019.04.174. [17]S. Prabakaran, R. Manimaran, T. Mohanraj, and M. Ravikumar, “Performance Analysis and Emission Characteristics of VCR Diesel Engine Fuelled with Algae Biodiesel Blends”, Materials Today: Proceedings, vol. 45. pp. 2784-2788, 2020, doi: 10.1016/j.matpr.2020.08.348. [18]R. L. McCormick, M. S. Graboski, T. L. Alleman, A. M. Herring, and K. S. Tyson, “Impact of Biodiesel Source Material and Chemical Structure on Emissions of Criteria Pollutants from a Heavy-duty Engine,” Environ. Sci. Technol., vol. 35, no. 9, pp. 1742-1747, 2001, doi: 10.1021/es001636t. [19]S. Y. Chua et al., “Biodiesel Synthesis Using Natural Solid Catalyst Derived from Biomass Waste: A Review”, Journal of Industrial and Engineering Chemistry, vol. 81, pp. 41-60, 2020, doi: 10.1016/j.jiec.2019.09.022. [20]R. M Balan-Chan and I. Elizalde, “Algunos aspectos de producción de diésel verde a partir de materias primas de segunda generación y la tecnología del hidrotratamiento”, , Revista Internacional de Investigación e Innovación Tecnológica, no. 31, pp. 1-15, 2018. [21]M. Tabatabaei, M. Aghbashlo, and B. Naja, “Environmental Impact Assessment of the Mechanical Shaft Work Produced in a Diesel Engine Running on Diesel/biodiesel Blends Containing Glycerol-derived Triacetin”, Journal of Cleaner Production, vol. 223, pp. 466-486, 2019, doi: 10.1016/j.jclepro.2019.03.106. [22]C. Bing, J. Kansedo, Y. Hua, and K. Teong, “Biocatalysis and Agricultural Biotechnology Evaluation on Biodiesel Cold Flow Properties, Oxidative Stability and Enhancement Strategies: A Review”, Biocatalysis and Agricultural Biotechnology, vol. 24, p. 101514, 2020, doi: 10.1016/j.bcab.2020.101514. [23]P. Kumar Sharma, D. Sharma, S. Lal Soni, and A. Jhalani, “Characterization of the Nonroad Modified Diesel Engine Using a Novel Entropy-VIKOR Approach: Experimental Investigation and Numerical Simulation”, Journal of Energy Resources Technology, vol. 141, no. 8, 2019, doi: 10.1115/1.4042717. [24]B. Chidambaranathan, S. Gopinath, R. Aravindraj, A. Devaraj, S. Gokula Krishnan, and J. K. S. Jeevaananthan, “The Production of Biodiesel from Castor Oil as a Potential Feedstock and its Usage in Compression Ignition Engine: A Comprehensive Review,” Materials Today Proceedings, vol. 33, 2020, doi: 10.1016/j.matpr.2020.03.205. [25]M. M. K. Bhuiya, M. G. Rasul, M. M. K. Khan, N. Ashwath, and A. K. Azad, “Prospects of 2nd Generation Biodiesel as a Sustainable Fuel. Part: 1 Selection of Feedstocks, Oil Extraction Techniques and Conversion Technologies”, Renewable and Sustainable Energy Reviews, vol. 55, pp. 1109-1128, 2016, doi: 10.1016/j.rser.2015.04.163. [26]H. Kurji et al., “Combustion Characteristics of Biodiesel Saturated with Pyrolysis Oil for Power Generation in Gas Turbines”, Renewable Energy, vol. 99, no. x, pp. 443-451, 2016, doi: 10.1016/j.renene.2016.07.036. [27]S. K. Patidar and H. Raheman, “Performance and Durability Analysis of a Single-cylinder Direct Injection Diesel Engine Operated with Water Emulsified biodiesel-diesel fuel blend,” Fuel, vol. 273, p. 117779, 2020, doi: 10.1016/j.fuel.2020.117779. [28]O. Ogunkunle and N. A. Ahmed, “Performance Evaluation of a Diesel Engine Using Blends of Optimized Yields of Sand Apple (Parinari Polyandra) Oil Biodiesel”, Renewable Energy, vol. 134, pp. 1320-1331, 2019, doi: 10.1016/j.renene.2018.09.040. [29]H. M. Mahmudul, F. Y. Hagos, R. Mamat, A. A. Adam, W. F. W. Ishak, and R. Alenezi, “Production, Characterization and Performance of Biodiesel as an Alternative Fuel in Diesel Engines: A Review”, Renewable and Sustainable Energy Reviews, vol. 72, pp. 497-509, 2017, doi: 10.1016/j.rser.2017.01.001. [30]F. D. Pitt, A. M. Domingos, and A. A. C. Barros, “Purification of Residual Glycerol Recovered from Biodiesel Production”, South African Journal of Chemical Engineering, vol. 29, pp. 42-51, 2019, doi: 10.1016/j.sajce.2019.06.001. [31]B. Dou, Y. Song, C. Wang, H. Chen, and Y. Xu, “Hydrogen Production from Catalytic Steam Reforming of Biodiesel Byproduct Glycerol: Issues and Challenges”, Renewable and Sustainable Energy Reviews, vol. 30, pp. 950-960, 2014, doi: 10.1016/j.rser.2013.11.029. [32]F. Yang, M. A. Hanna, and R. Sun, “Value-Added Uses for Crude Glycerol—a byproduct of biodiesel production”, Biotechnology for Biofuels, vol. 5, no. 13, pp. 1-10, 2012, doi: 10.1186/1754-6834-5-13 . [33]J. Kaur, A. Kumar, M. Kumar, and P. Gera, “Valorisation of Crude Glycerol to Value-added Products : Perspectives of Process Technology, Economics and Environmental Issues”, Biotechnol. Reports, vol. 27, e00487, 2020, doi: 10.1016/j.btre.2020.e00487. [34]N. Vivek, et al., “Bioresource Technology Recent Advances in the Production of Value Added Chemicals and Lipids Utilizing Biodiesel Industry Generated Crude Glycerol as a Substrate – Metabolic Aspects, Challenges and Possibilities: An Overview”, Bioresource Technology, vol. 239, pp. 507-517, 2017, doi: 10.1016/j.biortech.2017.05.056. [35]M. S. Ardi, M. K. Aroua, and N. A. Hashim, “Progress, Prospect and Challenges in Glycerol Purification Process: A Review”, vol. 42, pp. 1164-1173, 2015, doi: 10.1016/j.rser.2014.10.091. [36]C. E. Demaman Oro, M. Bonato, J. V. Oliveira, M. V. Tres, M. L. Mignoni, and R. M. Dallago, “A New Approach for Salts Removal from Crude Glycerin Coming from Industrial Biodiesel Production Unit”, Journal of Environmental Chemical Engineering, vol. 7, no. 1, p. 102883, 2019, doi: 10.1016/j.jece.2019.102883. [37]M. R. Monteiro, C. L. Kugelmeier, R. S. Pinheiro, M. O. Batalha, and A. da Silva César, “Glycerol from Biodiesel Production: Technological Paths for Sustainability”, Renewable and Sustainable Energy Reviews, vol. 88, pp. 109-122, 2018, doi: 10.1016/j.rser.2018.02.019. [38]C. Miner and Dalton NN, “Glycerine: An Overview,” Chem Soc Monogr. 1953, vol. 117, no. 212, pp. 1–27, 1953. [39]J. M. Encinar, A. Pardal, N. Sánchez, and S. Nogales, “Biodiesel by Transesterification of Rapeseed Oil Using Ultrasound: A Kinetic Study of Base-catalysed Reactions”, Energies, vol. 11, no. 9, 2018, doi: 10.3390/en11092229. [40]A. Villa, N. Dimitratos, C. E. Chan-Thaw, C. Hammond, L. Prati, and G. J. Hutchings, “Glycerol Oxidation Using Gold-containing Catalysts,” Accounts of Chemical Research, vol. 48, no. 5, pp. 1403-1412, 2015, doi: 10.1021/ar500426g. [41]G. Jia, B. He, W. Ma, and Y. Sun, “Thermodynamic Analysis Based on Simultaneous Chemical and Phase Equilibrium for Dehydration of Glycerol with Methanol”, Energy, vol. 188, p. 116021, 2019, doi: 10.1016/j.energy.2019.116021. [42]P. M. Veiga, A. C. L. Gomes, C. O. Veloso, and C. A. Henriques, “Acid Zeolites for Glycerol Etherification with Ethyl Alcohol: Catalytic Activity and Catalyst Properties”, Applied Catalysis A: General, vol. 548, pp. 2-15, 2017, doi: 10.1016/j.apcata.2017.06.042. [43]N. A. Roslan, S. Z. Abidin, A. Ideris, and D. V. N. Vo, “A Review on Glycerol Reforming Processes Over Ni-Based Catalyst for Hydrogen and Syngas Productions”, International Journal of Hydrogen Energy, vol. 45, no. 36, pp. 18466-18489, 2020, doi: 10.1016/j.ijhydene.2019.08.211. [44]Z. Mufrodi, R. Rochmadi, S. Sutijan, and A. Budiman, “Synthesis Acetylation of Glycerol Using Batch Reactor and Continuous Reactive Distillation Column”, Engineering Journal, vol. 18, no. 2, pp. 29-39, 2014, doi: 10.4186/ej.2014.18.2.29. [45]J. Zhang and D. He, “Surface Properties of Cu/La2O3 and its Catalytic Performance in the Synthesis of Glycerol Carbonate and Monoacetin from Glycerol and Carbon Dioxide”, Journal of Colloid and Interface Science, vol. 419, pp. 31-38, 2014, doi: 10.1016/j.jcis.2013.12.049. [46]V. L. C. Gonçalves, B. P. Pinto, J. C. Silva, and C. J. A. Mota, “Acetylation of Glycerol Catalyzed by Different Solid Acids”, Catalysis Today, vol. 133-135, no. 1-4, pp. 673-677, 2008, doi: 10.1016/j.cattod.2007.12.037. [47]B. O. Dalla Costa, H. P. Decolatti, M. S. Legnoverde, and C. A. Querini, “Influence of Acidic Properties of Different Solid Acid Catalysts for Glycerol Acetylation”, Catalysis Today, vol. 289, pp. 222-230, 2017, doi: 10.1016/j.cattod.2016.09.015. [48]A. Mendoza et al., “Selective Production of Dihydroxyacetone and Glyceraldehyde by Photo-Assisted Oxidation of Glycerol”, Catalysis Today, vol. 358, pp. 149-154, 2020, doi: 10.1016/j.cattod.2019.09.035. [49]L. C. D. Coelho, N. M. L. Filho, R. P. V. Faria, A. F. P. Ferreira, A. M. Ribeiro, and A. E. Rodrigues, “Separation of Tartronic and Glyceric Acids by Simulated Moving Bed Chromatography,” Journal of Chromatography A, vol. 1563, pp. 62-70, 2018, doi: 10.1016/j.chroma.2018.05.052. [50]Y. Bin Choi, N. Nunotani, and N. Imanaka, “Glyceraldehyde Production from Glycerol Over Pt/Ceo2-Zro2-Fe2O3/SBA-16 Catalysts Around Room Temperature in Open Air System”, Materials Letters, vol. 278, no. 3, p. 128392, 2020, doi: 10.1016/j.matlet.2020.128392. [51]B. Ali, X. Lan, M. T. Arslan, S. Z. A. Gilani, H. Wang, and T. Wang, “Controlling the Selectivity and Deactivation Of H-ZSM-5 by Tuning B-Axis Channel Length for Glycerol Dehydration to Acrolein”, Journal of Industrial and Engineering Chemistry, vol. 88, pp. 127-136, 2020, doi: 10.1016/j.jiec.2020.03.037. [52]A. D. da Silva Ruy, R. M. de Brito Alves, T. L. Reis Hewer, D. de Aguiar Pontes, L. S. Gomes Teixeira, and L. A. Magalhães Pontes, “Catalysts for Glycerol Hydrogenolysis to 1,3-Propanediol: A Review of Chemical Routes and Market”, Catalysis Today, In Press, 2020, doi: 10.1016/j.cattod.2020.06.035. [53]R. X. Jiménez, A. F. Young, and H. L. S. Fernandes, “Propylene Glycol from Glycerol: Process Evaluation and Break-Even Price Determination”, Renewable Energy, vol. 158, pp. 181-191, 2020, doi: 10.1016/j.renene.2020.05.126. [54]G. Paniri, H. S. Ghaziaskar, and M. Rezayat, “Ternary Solubility of Mono and Di-Tert-Butyl Ethers of Glycerol in Supercritical Carbon Dioxide”, The Journal of Supercritical Fluids, vol. 55, no. 1, pp. 43-48, 2010, doi: 10.1016/j.supflu.2010.06.012. [55]R. Huang and E. Y. Kim, “Catalytic Synthesis of Glycerol Tert-Butyl Ethers as Fuel Additives from the Biodiesel By-Product Glycerol”, Journal of Chemistry, vol. 2015, e-763854, 2015. https://doi.org/10.1155/2015/763854 [56]X. Ding et al., “A Novel Route to Synthesis of Glycerol Dimethyl Ether from Epichlorohydrinwith High Selectivity”, Biomass and Bioenergy, vol. 70, pp. 400-406, 2014, doi: 10.1016/j.biombioe.2014.09.008. [57]S. Bagheri, N. M. Julkapli, and W. A. Yehye, “Catalytic Conversion of Biodiesel Derived Raw Glycerol to Value Added Products”, Renewable and Sustainable Energy Reviews, vol. 41, pp. 113-127, 2015, doi: 10.1016/j.rser.2014.08.031. [58]S. A. N. M. Rahim et al., “A Review of Recent Developments on Kinetics Parameters for Glycerol Electrochemical Conversion – A By-Product of Biodiesel”, Science of the Total Environment, vol. 705, p. 135137, 2020, doi: 10.1016/j.scitotenv.2019.135137. [59]C. Zhang, T. Wang, X. Liu, and Y. Ding, “Cu-Promoted Pt/Activated Carbon Catalyst for Glycerol Oxidation to Lactic Acid”, Journal of Molecular Catalysis A: Chemical, vol. 424, pp. 91-97, 2016, doi: 10.1016/j.molcata.2016.08.018. [60]A. Casas, J. R. Ruiz, M. J. Ramos, and Á. Pérez, “Effects of Triacetin on Biodiesel Quality”, Energy and Fuels, vol. 24, no. 8, pp. 4481-4489, 2010, doi: 10.1021/ef100406b. [61]M. Jafari et al., “Multivariate Analysis of Performance and Emission Parameters in a Diesel Engine Using Biodiesel and Oxygenated Additive”, Energy Conversion and Management, vol. 201, p. 112183, 2020, doi: 10.1016/j.enconman.2019.112183. [62]L. J. Konwar et al., “Shape Selectivity and Acidity Effects in Glycerol Acetylation with Acetic Anhydride: Selective Synthesis of Triacetin Over Y-Zeolite and Sulfonated Mesoporous Carbons”, Journal of Catalysis, vol. 329, pp. 237-247, 2015, doi: 10.1016/j.jcat.2015.05.021. [63]S. A. Rane, S. M. Pudi, and P. Biswas, “Esterification of Glycerol with Acetic Acid Over Highly Active and Stable Alumina-Based Catalysts: A Reaction Kinetics Study”, Chemical and Biochemical Engineering Quarterly, vol. 30, no. 1, pp. 33-45, 2016, doi: 10.15255/CABEQ.2014.2093. [64]N. Mansir, Y. H. Taufiq-yap, U. Rashid, and I. M. Lokman, “Investigation of Heterogeneous Solid Acid Catalyst Performance on Low Grade Feedstocks for Biodiesel Production: A Review”, Energy Conversion and Management, vol. 141, pp. 171-182, 2017, doi: 10.1016/j.enconman.2016.07.037. [65]S. Karnjanakom, P. Maneechakr, C. Samart, and G. Guan, “Ultrasound-Assisted Acetylation of Glycerol for Triacetin Production Over Green Catalyst: A Liquid Biofuel Candidate”, Energy Conversion and Management, vol. 173, pp. 262-270, 2018, doi: 10.1016/j.enconman.2018.07.086. [66]S. S. Kale et al., “Understanding the Role of Keggin Type Heteropolyacid Catalysts for Glycerol Acetylation Using Toluene as an Entrainer”, Applied Catalysis A: General, vol. 527, pp. 9-18, 2016, doi: 10.1016/j.apcata.2016.08.016. [67]J. Bonet, J. Costa, R. Sire, J. Reneaume, and A. Elena, “Revalorization of Glycerol: Comestible Oil from Biodiesel Synthesis”, Food and Bioproducts Processing, vol. 87, no. 3, pp. 171-178, 2009, doi: 10.1016/j.fbp.2009.06.003. [68]J. Sun, X. Tong, L. Yu, and J. Wan, “An Efficient and Sustainable Production of Triacetin from the Acetylation of Glycerol Using Magnetic Solid Acid Catalysts Under Mild Conditions”, Catalysis Today, vol. 264, pp. 115-122, 2016, doi: 10.1016/j.cattod.2015.07.011. [69]J. Liu, Z. Wang, Y. Sun, R. Jian, P. Jian, and D. Wang, “Selective Synthesis of Triacetin from Glycerol Catalyzed by HZSM-5/MCM-41 Micro/Mesoporous Molecular Sieve”, Chinese Journal of Chemical Engineering, vol. 27, no. 5, pp. 1073-1078, 2019, doi: 10.1016/j.cjche.2018.09.013. [70]S. Kale, S. B. Umbarkar, M. K. Dongare, R. Eckelt, U. Armbruster, and A. Martin, “Selective Formation of Triacetin by Glycerol Acetylation Using Acidic Ion-Exchange Resins as Catalyst and Toluene as an Entrainer”, Applied Catalysis A: General, vol. 490, pp. 10-16, 2015, doi: 10.1016/j.apcata.2014.10.059. [71]R. Jothi Ramalingam, T. Radhika, F. Adam, and T. H. Dolla, “Acetylation of Glycerol Over Bimetallic Ag–Cu Doped Rice Husk Silica Based Biomass Catalyst for Bio-Fuel Additives Application”, International Journal of Industrial Chemistry, vol. 7, no. 2, pp. 187-194, 2016, doi: 10.1007/s40090-016-0073-0. [72]U. I. Nda-Umar, I. Ramli, E. N. Muhamad, Y. H. Taufiq-Yap, and N. Azri, “Synthesis and Characterization of Sulfonated Carbon Catalysts Derived from Biomass Waste and Its Evaluation in Glycerol Acetylation”, Biomass Conversion and Biorefinery, 2020, doi: 10.1007/s13399-020-00784-0. [73]G. Dizoğlu and E. Sert, “Fuel Additive Synthesis by Acetylation of Glycerol Using Activated Carbon/Uio-66 Composite Materials”, Fuel, vol. 281, no. July, p. 118584, 2020, doi: 10.1016/j.fuel.2020.118584. [74]P. S. Reddy, P. Sudarsanam, G. Raju, and B. M. Reddy, “Synthesis of Bio-Additives: Acetylation of Glycerol Over Zirconia-Based Solid Acid Catalysts”, Catalysis Communications, vol. 11, no. 15, pp. 1224-1228, 2010, doi: 10.1016/j.catcom.2010.07.006. [75]I. Kim, J. Kim, and D. Lee, “A Comparative Study on Catalytic Properties of Solid Acid Catalysts for Glycerol Acetylation at Low Temperatures”, Applied Catalysis B: Environmental, vol. 148-149, pp. 295-303, 2014, doi: 10.1016/j.apcatb.2013.11.008. [76]V. V Bokade, “Synthesis of Oxygenated Fuel Additives Via Acetylation of Bio-Glycerol Over H2SO4 Modified Montmorillonite K10 Catalyst”, Progress in Petrochemical Science, vol. 1, no. 1, pp. 1-5, 2018, doi: 10.31031/pps.2018.01.000501. [77]M. S. Khayoon and B. H. Hameed, “Acetylation of Glycerol to Biofuel Additives Over Sulfated Activated Carbon Catalyst”, Bioresource Technology, vol. 102, no. 19, pp. 9229-9235, 2011, doi: 10.1016/j.biortech.2011.07035. [78]P. U. Okoye, A. Z. Abdullah, and B. H. Hameed, “Synthesis of Oxygenated Fuel Additives Via Glycerol Esterification with Acetic Acid Over Bio-Derived Carbon Catalyst”, Fuel, vol. 209, pp. 538-544, 2017, doi: 10.1016/j.fuel.2017.08.024. [79]A. B. S. Neto et al., “A Comparative Study on Porous Solid Acid Oxides as Catalysts in the Esterification of Glycerol with Acetic Acid”, Catalysis Today, vol. 349, no. November 2017, pp. 57-67, 2020, doi: 10.1016/j.cattod.2018.05.057. [80]L. N. Silva, V. L. C. Gonçalves, and C. J. A. Mota, “Catalytic Acetylation of Glycerol with Acetic Anhydride”, Catalysis Communications, vol. 11, no. 12, pp. 1036-1039, 2010. doi: 10.1016/j.catcom.2010.05.007.
dc.rights.license.none.fl_str_mv Atribución
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/closedAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_14cb
rights_invalid_str_mv Atribución
http://purl.org/coar/access_right/c_14cb
eu_rights_str_mv closedAccess
dc.format.extent.spa.fl_str_mv 38-58
dc.coverage.temporal.spa.fl_str_mv 25
dc.publisher.spa.fl_str_mv Universidad Catolice Luis Amigo
Universidad Cooperativa de Colombia
dc.publisher.program.spa.fl_str_mv Ingeniería mecanica
dc.publisher.place.spa.fl_str_mv Medellín
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/de643e43-a614-4ff6-9cfe-6fd216e38914/download
https://repository.ucc.edu.co/bitstreams/e81799f2-de02-4fae-945f-610d46e359e9/download
https://repository.ucc.edu.co/bitstreams/d4e4ed52-4a72-44c8-a008-ac90a00c67fa/download
https://repository.ucc.edu.co/bitstreams/28f4534a-8a54-49c6-af97-c29a85172e32/download
bitstream.checksum.fl_str_mv e4ecf00ae6240aedcfc4a2aefe19f21c
8a4605be74aa9ea9d79846c1fba20a33
19eb3d961906492d7c9fd16050cfec1f
99817dce544e9912add5dea8cae605fe
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1811564894217043968
spelling Arbeláez Pérez, Oscar FelipeGonzález Martínez, Cristian DavidGuzman Sanchez, Geovanni AlexisSalazar Henao, David252022-09-17T19:24:49Z2022-09-17T19:24:49Z2021-05-102145-4086DOI: https://doi.org/10.21501/21454086.381https://hdl.handle.net/20.500.12494/46421https://revistas.ucatolicaluisamigo.edu.co/index.php/lampsakos/article/view/3816La elevada producción de glicerol, un subproducto de bajo costo proveniente de la industria del biodiésel, ha supuesto una amenaza tanto para el medio ambiente como para la economía. La transformación de glicerol en productos de valor agregado contribuiría positivamente a la economía del biodiésel. En este artículo de revisión se describen las rutas de valorización del glicerol y se presenta la esterificación como una de las más prometedoras para la transformación de glicerol en aditivos para combustibles; igualmente, se describen los resultados más relevantes entre 2010 y 2020 relacionados con las condiciones experimentales (temperatura, relación molar y tiempo de reacción), los catalizadores heterogéneos y la actividad catalítica (en términos de la conversión del glicerol y la selectividad) para la transformación de glicerol en acetinas (monoacetina, diacetina y triacetina). Se espera que esta revisión permita abordar esta técnica de valorización de manera rentable y ambientalmente sostenibleThe high production of glycerol, a low-cost by-product, from the biodiesel industry, has posed a threat to both the environment and the economy. The transformation of glycerol into value-added products would contribute positively to the biodiesel economy. In this review article, the valorization routes of glycerol are described; esterification is presented as one of the most promising routes for the transformation of glycerol in additive fuels. This review describes the most relevant results between 2010 and 2020 related to experimental conditions (temperature, molar ratio, and reaction time), heterogeneous catalysts, and catalytic activity (in terms of glycerol conversion and acetins selectivity) for the transformation of glycerol into acetins. (monoacetin, diacetin and triacetin). It is hoped that this review will allow this valuation technique to be addressed in a profitable and environmentally sustainable mannerhttps://scienti.minciencias.gov.co/cvlac/EnProdArticulo/all.do?maxRows=15&articulos_all_tr_=true&articulos_all_p_=2&articulos_all_mr_=150000-0001-8592-53330000-0002-2176-71340000-0002-1226-10860000-0001-7644-8555https://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000005961oscar.arbelaez@campusucc.edu.cochristiand.gonzalez@campusucc.edu.cojeovanny.guzmans@campusucc.edu.codavid.salazarh@campusucc.edu.cohttps://scholar.google.com/citations?user=TmMf33gAAAAJ&hl=es38-58Universidad Catolice Luis AmigoUniversidad Cooperativa de ColombiaIngeniería mecanicaMedellínEnergía renovable; Glicerol; Biodiésel; Glicerol; Monoacetina; Diacetina; TriacetinaRenewable energy; Crude glycerol; Biodiesel; Glycerol; Monoacetin; Diacetin; TriacetinProducción de acetinas (aditivos para combustibles) a partir de glicerolArtículos Científicoshttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionAtribucióninfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbLampsakos[1]C. Agbim, F. Araya, K. M. Faust, and D. Harmon, “Subjective Versus Objective Energy Burden: A Look at Drivers of Different Metrics and Regional Variation of Energy Poor Populations”, Energy Policy, vol. 144, pp. 111616, 2020, doi: 10.1016/j.enpol.2020.111616. [2]C. Giorio, et al., “Sustainability of Using Vineyard Pruning Residues as an Energy Source: Combustion Performances and Environmental Impact”, Fuel, vol. 243, pp. 371-380, 2019, doi: 10.1016/j.fuel.2019.01.128. [3]A. Rempel and J. Gupta, “Conflicting Commitments? Examining Pension Funds, Fossil Fuel Assets and Climate Policy in the Organisation for Economic Co-operation and Development (OECD),” Energy Research & Social Science, vol. 69, pp. 101736, 2020, doi: 10.1016/j.erss.2020.101736. [4]N. Wood and K. Roelich, “Tensions, Capabilities, and Justice in Climate Change Mitigation of Fossil Fuels”, Energy Research & Social Science, vol. 52, pp. 114-122, 2019, doi: 10.1016/j.erss.2019.02.014. [5]L. Dai, et al., “A review on selective production of value-added chemicals via catalytic pyrolysis of lignocellulosic biomass”, Sci. Total Environ, vol. 749, p. 142386, 2020, doi: 10.1016/j.scitotenv.2020.142386. [6]M. N. Uddin, J. Taweekun, K. Techato, M. A. Rahman, M. Mofijur, and M. G. Rasul, “Sustainable Biomass as an Alternative Energy Source: Bangladesh Perspective”, Energy Procedia, vol. 160, pp. 648-654, 2019, doi: 10.1016/j.egypro.2019.02.217. [7]M. Ebadian, S. Van Dyk, J. Mac Millan, J. Saddier, "Biofuels Policies that Have Encouraged thier Production and Use: An International Perspective", Energy Policy, vol. 147. pp. 111906, 2020, doi: 10.1016/j.enpol.2020.111906. [8]D. Singh, D. Sharma, S. L. Soni, S. Sharma, P. Kumar Sharma, and A. Jhalani, “A Review on Feedstocks, Production Processes, and Yield for Different Generations of Biodiesel,” Fuel, vol. 262, pp. 116553, 2020, doi: 10.1016/j.fuel.2019.116553. [9]S. Puricelli, G. Cardellini, S. Casadei, D. Faedo, A. EM van der Oever and M. Grosso, “A Review on Biofuels for Light-duty Vehicles in Europe”, Renew. Sustain. Energy Rev., vol. 137, p. 110398, 2021, doi: 10.1016/j.rser.2020.110398. [10]F. Saladini, N. Patrizi, F. M. Pulselli, N. Marchettini, and S. Bastianoni, “Guidelines for Emergy Evaluation of First, Second and Third Generation Biofuels”, Renewable and Sustainable Energy Reviews, vol. 66, pp. 221-227, 2016, doi: 10.1016/j.rser.2016.07.073. [11]D. Singh, et al., “A Comprehensive Review of Physicochemical Properties, Production Process, Performance and Emissions Characteristics of 2nd Generation Biodiesel Feedstock: Jatropha Curcas”, Fuel, vol. 285, p. 119110, 2021, doi: 10.1016/j.fuel.2020.119110. [12]S. Tayari, R. Abedi, and A. Rahi, “Comparative Assessment of Engine Performance and Emissions Fueled with Three Different Biodiesel Generations”, Renewable Energy, vol. 147, pp. 1058-1069, 2020, doi: 10.1016/j.renene.2019.09.068. [13]M. L. Savaliya and B. Z. Dholakiya, “Journal of Industrial and Engineering Chemistry Eco-friendly Process for Preparation of Biodiesel from WFO Over MTSA-Si Catalyst: An Innovative Approach for the Utilization of Side Product”, Journal of Industrial and Engineering Chemistry, vol. 64, pp. 352-366, 2018, doi: 10.1016/j.jiec.2018.03.036. [14]A. Ghasemi and M. Moosavi-nasab, “Production of Second-generation Biodiesel Using Low-quality Date Fruits”, Biotechnol Reports, vol. 27, e00480, 2020, doi: 10.1016/j.btre.2020.e00480. [15]M. Mofijur, M. G. Rasul, N. M. S. Hassan, and M. N. Nabi, “Recent Development in the Production of Third Generation Biodiesel from Microalgae”, Energy Procedia, vol. 156, pp. 53-58, 2019, doi: 10.1016/j.egypro.2018.11.088. [16]D. Singh, D. Sharma, S. L. Soni, S. Sharma, and D. Kumari, “Chemical Compositions, Properties, and Standards for Different Generation Biodiesels: A Review,” Fuel, vol. 253, pp. 60-71, 2019, doi: 10.1016/j.fuel.2019.04.174. [17]S. Prabakaran, R. Manimaran, T. Mohanraj, and M. Ravikumar, “Performance Analysis and Emission Characteristics of VCR Diesel Engine Fuelled with Algae Biodiesel Blends”, Materials Today: Proceedings, vol. 45. pp. 2784-2788, 2020, doi: 10.1016/j.matpr.2020.08.348. [18]R. L. McCormick, M. S. Graboski, T. L. Alleman, A. M. Herring, and K. S. Tyson, “Impact of Biodiesel Source Material and Chemical Structure on Emissions of Criteria Pollutants from a Heavy-duty Engine,” Environ. Sci. Technol., vol. 35, no. 9, pp. 1742-1747, 2001, doi: 10.1021/es001636t. [19]S. Y. Chua et al., “Biodiesel Synthesis Using Natural Solid Catalyst Derived from Biomass Waste: A Review”, Journal of Industrial and Engineering Chemistry, vol. 81, pp. 41-60, 2020, doi: 10.1016/j.jiec.2019.09.022. [20]R. M Balan-Chan and I. Elizalde, “Algunos aspectos de producción de diésel verde a partir de materias primas de segunda generación y la tecnología del hidrotratamiento”, , Revista Internacional de Investigación e Innovación Tecnológica, no. 31, pp. 1-15, 2018. [21]M. Tabatabaei, M. Aghbashlo, and B. Naja, “Environmental Impact Assessment of the Mechanical Shaft Work Produced in a Diesel Engine Running on Diesel/biodiesel Blends Containing Glycerol-derived Triacetin”, Journal of Cleaner Production, vol. 223, pp. 466-486, 2019, doi: 10.1016/j.jclepro.2019.03.106. [22]C. Bing, J. Kansedo, Y. Hua, and K. Teong, “Biocatalysis and Agricultural Biotechnology Evaluation on Biodiesel Cold Flow Properties, Oxidative Stability and Enhancement Strategies: A Review”, Biocatalysis and Agricultural Biotechnology, vol. 24, p. 101514, 2020, doi: 10.1016/j.bcab.2020.101514. [23]P. Kumar Sharma, D. Sharma, S. Lal Soni, and A. Jhalani, “Characterization of the Nonroad Modified Diesel Engine Using a Novel Entropy-VIKOR Approach: Experimental Investigation and Numerical Simulation”, Journal of Energy Resources Technology, vol. 141, no. 8, 2019, doi: 10.1115/1.4042717. [24]B. Chidambaranathan, S. Gopinath, R. Aravindraj, A. Devaraj, S. Gokula Krishnan, and J. K. S. Jeevaananthan, “The Production of Biodiesel from Castor Oil as a Potential Feedstock and its Usage in Compression Ignition Engine: A Comprehensive Review,” Materials Today Proceedings, vol. 33, 2020, doi: 10.1016/j.matpr.2020.03.205. [25]M. M. K. Bhuiya, M. G. Rasul, M. M. K. Khan, N. Ashwath, and A. K. Azad, “Prospects of 2nd Generation Biodiesel as a Sustainable Fuel. Part: 1 Selection of Feedstocks, Oil Extraction Techniques and Conversion Technologies”, Renewable and Sustainable Energy Reviews, vol. 55, pp. 1109-1128, 2016, doi: 10.1016/j.rser.2015.04.163. [26]H. Kurji et al., “Combustion Characteristics of Biodiesel Saturated with Pyrolysis Oil for Power Generation in Gas Turbines”, Renewable Energy, vol. 99, no. x, pp. 443-451, 2016, doi: 10.1016/j.renene.2016.07.036. [27]S. K. Patidar and H. Raheman, “Performance and Durability Analysis of a Single-cylinder Direct Injection Diesel Engine Operated with Water Emulsified biodiesel-diesel fuel blend,” Fuel, vol. 273, p. 117779, 2020, doi: 10.1016/j.fuel.2020.117779. [28]O. Ogunkunle and N. A. Ahmed, “Performance Evaluation of a Diesel Engine Using Blends of Optimized Yields of Sand Apple (Parinari Polyandra) Oil Biodiesel”, Renewable Energy, vol. 134, pp. 1320-1331, 2019, doi: 10.1016/j.renene.2018.09.040. [29]H. M. Mahmudul, F. Y. Hagos, R. Mamat, A. A. Adam, W. F. W. Ishak, and R. Alenezi, “Production, Characterization and Performance of Biodiesel as an Alternative Fuel in Diesel Engines: A Review”, Renewable and Sustainable Energy Reviews, vol. 72, pp. 497-509, 2017, doi: 10.1016/j.rser.2017.01.001. [30]F. D. Pitt, A. M. Domingos, and A. A. C. Barros, “Purification of Residual Glycerol Recovered from Biodiesel Production”, South African Journal of Chemical Engineering, vol. 29, pp. 42-51, 2019, doi: 10.1016/j.sajce.2019.06.001. [31]B. Dou, Y. Song, C. Wang, H. Chen, and Y. Xu, “Hydrogen Production from Catalytic Steam Reforming of Biodiesel Byproduct Glycerol: Issues and Challenges”, Renewable and Sustainable Energy Reviews, vol. 30, pp. 950-960, 2014, doi: 10.1016/j.rser.2013.11.029. [32]F. Yang, M. A. Hanna, and R. Sun, “Value-Added Uses for Crude Glycerol—a byproduct of biodiesel production”, Biotechnology for Biofuels, vol. 5, no. 13, pp. 1-10, 2012, doi: 10.1186/1754-6834-5-13 . [33]J. Kaur, A. Kumar, M. Kumar, and P. Gera, “Valorisation of Crude Glycerol to Value-added Products : Perspectives of Process Technology, Economics and Environmental Issues”, Biotechnol. Reports, vol. 27, e00487, 2020, doi: 10.1016/j.btre.2020.e00487. [34]N. Vivek, et al., “Bioresource Technology Recent Advances in the Production of Value Added Chemicals and Lipids Utilizing Biodiesel Industry Generated Crude Glycerol as a Substrate – Metabolic Aspects, Challenges and Possibilities: An Overview”, Bioresource Technology, vol. 239, pp. 507-517, 2017, doi: 10.1016/j.biortech.2017.05.056. [35]M. S. Ardi, M. K. Aroua, and N. A. Hashim, “Progress, Prospect and Challenges in Glycerol Purification Process: A Review”, vol. 42, pp. 1164-1173, 2015, doi: 10.1016/j.rser.2014.10.091. [36]C. E. Demaman Oro, M. Bonato, J. V. Oliveira, M. V. Tres, M. L. Mignoni, and R. M. Dallago, “A New Approach for Salts Removal from Crude Glycerin Coming from Industrial Biodiesel Production Unit”, Journal of Environmental Chemical Engineering, vol. 7, no. 1, p. 102883, 2019, doi: 10.1016/j.jece.2019.102883. [37]M. R. Monteiro, C. L. Kugelmeier, R. S. Pinheiro, M. O. Batalha, and A. da Silva César, “Glycerol from Biodiesel Production: Technological Paths for Sustainability”, Renewable and Sustainable Energy Reviews, vol. 88, pp. 109-122, 2018, doi: 10.1016/j.rser.2018.02.019. [38]C. Miner and Dalton NN, “Glycerine: An Overview,” Chem Soc Monogr. 1953, vol. 117, no. 212, pp. 1–27, 1953. [39]J. M. Encinar, A. Pardal, N. Sánchez, and S. Nogales, “Biodiesel by Transesterification of Rapeseed Oil Using Ultrasound: A Kinetic Study of Base-catalysed Reactions”, Energies, vol. 11, no. 9, 2018, doi: 10.3390/en11092229. [40]A. Villa, N. Dimitratos, C. E. Chan-Thaw, C. Hammond, L. Prati, and G. J. Hutchings, “Glycerol Oxidation Using Gold-containing Catalysts,” Accounts of Chemical Research, vol. 48, no. 5, pp. 1403-1412, 2015, doi: 10.1021/ar500426g. [41]G. Jia, B. He, W. Ma, and Y. Sun, “Thermodynamic Analysis Based on Simultaneous Chemical and Phase Equilibrium for Dehydration of Glycerol with Methanol”, Energy, vol. 188, p. 116021, 2019, doi: 10.1016/j.energy.2019.116021. [42]P. M. Veiga, A. C. L. Gomes, C. O. Veloso, and C. A. Henriques, “Acid Zeolites for Glycerol Etherification with Ethyl Alcohol: Catalytic Activity and Catalyst Properties”, Applied Catalysis A: General, vol. 548, pp. 2-15, 2017, doi: 10.1016/j.apcata.2017.06.042. [43]N. A. Roslan, S. Z. Abidin, A. Ideris, and D. V. N. Vo, “A Review on Glycerol Reforming Processes Over Ni-Based Catalyst for Hydrogen and Syngas Productions”, International Journal of Hydrogen Energy, vol. 45, no. 36, pp. 18466-18489, 2020, doi: 10.1016/j.ijhydene.2019.08.211. [44]Z. Mufrodi, R. Rochmadi, S. Sutijan, and A. Budiman, “Synthesis Acetylation of Glycerol Using Batch Reactor and Continuous Reactive Distillation Column”, Engineering Journal, vol. 18, no. 2, pp. 29-39, 2014, doi: 10.4186/ej.2014.18.2.29. [45]J. Zhang and D. He, “Surface Properties of Cu/La2O3 and its Catalytic Performance in the Synthesis of Glycerol Carbonate and Monoacetin from Glycerol and Carbon Dioxide”, Journal of Colloid and Interface Science, vol. 419, pp. 31-38, 2014, doi: 10.1016/j.jcis.2013.12.049. [46]V. L. C. Gonçalves, B. P. Pinto, J. C. Silva, and C. J. A. Mota, “Acetylation of Glycerol Catalyzed by Different Solid Acids”, Catalysis Today, vol. 133-135, no. 1-4, pp. 673-677, 2008, doi: 10.1016/j.cattod.2007.12.037. [47]B. O. Dalla Costa, H. P. Decolatti, M. S. Legnoverde, and C. A. Querini, “Influence of Acidic Properties of Different Solid Acid Catalysts for Glycerol Acetylation”, Catalysis Today, vol. 289, pp. 222-230, 2017, doi: 10.1016/j.cattod.2016.09.015. [48]A. Mendoza et al., “Selective Production of Dihydroxyacetone and Glyceraldehyde by Photo-Assisted Oxidation of Glycerol”, Catalysis Today, vol. 358, pp. 149-154, 2020, doi: 10.1016/j.cattod.2019.09.035. [49]L. C. D. Coelho, N. M. L. Filho, R. P. V. Faria, A. F. P. Ferreira, A. M. Ribeiro, and A. E. Rodrigues, “Separation of Tartronic and Glyceric Acids by Simulated Moving Bed Chromatography,” Journal of Chromatography A, vol. 1563, pp. 62-70, 2018, doi: 10.1016/j.chroma.2018.05.052. [50]Y. Bin Choi, N. Nunotani, and N. Imanaka, “Glyceraldehyde Production from Glycerol Over Pt/Ceo2-Zro2-Fe2O3/SBA-16 Catalysts Around Room Temperature in Open Air System”, Materials Letters, vol. 278, no. 3, p. 128392, 2020, doi: 10.1016/j.matlet.2020.128392. [51]B. Ali, X. Lan, M. T. Arslan, S. Z. A. Gilani, H. Wang, and T. Wang, “Controlling the Selectivity and Deactivation Of H-ZSM-5 by Tuning B-Axis Channel Length for Glycerol Dehydration to Acrolein”, Journal of Industrial and Engineering Chemistry, vol. 88, pp. 127-136, 2020, doi: 10.1016/j.jiec.2020.03.037. [52]A. D. da Silva Ruy, R. M. de Brito Alves, T. L. Reis Hewer, D. de Aguiar Pontes, L. S. Gomes Teixeira, and L. A. Magalhães Pontes, “Catalysts for Glycerol Hydrogenolysis to 1,3-Propanediol: A Review of Chemical Routes and Market”, Catalysis Today, In Press, 2020, doi: 10.1016/j.cattod.2020.06.035. [53]R. X. Jiménez, A. F. Young, and H. L. S. Fernandes, “Propylene Glycol from Glycerol: Process Evaluation and Break-Even Price Determination”, Renewable Energy, vol. 158, pp. 181-191, 2020, doi: 10.1016/j.renene.2020.05.126. [54]G. Paniri, H. S. Ghaziaskar, and M. Rezayat, “Ternary Solubility of Mono and Di-Tert-Butyl Ethers of Glycerol in Supercritical Carbon Dioxide”, The Journal of Supercritical Fluids, vol. 55, no. 1, pp. 43-48, 2010, doi: 10.1016/j.supflu.2010.06.012. [55]R. Huang and E. Y. Kim, “Catalytic Synthesis of Glycerol Tert-Butyl Ethers as Fuel Additives from the Biodiesel By-Product Glycerol”, Journal of Chemistry, vol. 2015, e-763854, 2015. https://doi.org/10.1155/2015/763854 [56]X. Ding et al., “A Novel Route to Synthesis of Glycerol Dimethyl Ether from Epichlorohydrinwith High Selectivity”, Biomass and Bioenergy, vol. 70, pp. 400-406, 2014, doi: 10.1016/j.biombioe.2014.09.008. [57]S. Bagheri, N. M. Julkapli, and W. A. Yehye, “Catalytic Conversion of Biodiesel Derived Raw Glycerol to Value Added Products”, Renewable and Sustainable Energy Reviews, vol. 41, pp. 113-127, 2015, doi: 10.1016/j.rser.2014.08.031. [58]S. A. N. M. Rahim et al., “A Review of Recent Developments on Kinetics Parameters for Glycerol Electrochemical Conversion – A By-Product of Biodiesel”, Science of the Total Environment, vol. 705, p. 135137, 2020, doi: 10.1016/j.scitotenv.2019.135137. [59]C. Zhang, T. Wang, X. Liu, and Y. Ding, “Cu-Promoted Pt/Activated Carbon Catalyst for Glycerol Oxidation to Lactic Acid”, Journal of Molecular Catalysis A: Chemical, vol. 424, pp. 91-97, 2016, doi: 10.1016/j.molcata.2016.08.018. [60]A. Casas, J. R. Ruiz, M. J. Ramos, and Á. Pérez, “Effects of Triacetin on Biodiesel Quality”, Energy and Fuels, vol. 24, no. 8, pp. 4481-4489, 2010, doi: 10.1021/ef100406b. [61]M. Jafari et al., “Multivariate Analysis of Performance and Emission Parameters in a Diesel Engine Using Biodiesel and Oxygenated Additive”, Energy Conversion and Management, vol. 201, p. 112183, 2020, doi: 10.1016/j.enconman.2019.112183. [62]L. J. Konwar et al., “Shape Selectivity and Acidity Effects in Glycerol Acetylation with Acetic Anhydride: Selective Synthesis of Triacetin Over Y-Zeolite and Sulfonated Mesoporous Carbons”, Journal of Catalysis, vol. 329, pp. 237-247, 2015, doi: 10.1016/j.jcat.2015.05.021. [63]S. A. Rane, S. M. Pudi, and P. Biswas, “Esterification of Glycerol with Acetic Acid Over Highly Active and Stable Alumina-Based Catalysts: A Reaction Kinetics Study”, Chemical and Biochemical Engineering Quarterly, vol. 30, no. 1, pp. 33-45, 2016, doi: 10.15255/CABEQ.2014.2093. [64]N. Mansir, Y. H. Taufiq-yap, U. Rashid, and I. M. Lokman, “Investigation of Heterogeneous Solid Acid Catalyst Performance on Low Grade Feedstocks for Biodiesel Production: A Review”, Energy Conversion and Management, vol. 141, pp. 171-182, 2017, doi: 10.1016/j.enconman.2016.07.037. [65]S. Karnjanakom, P. Maneechakr, C. Samart, and G. Guan, “Ultrasound-Assisted Acetylation of Glycerol for Triacetin Production Over Green Catalyst: A Liquid Biofuel Candidate”, Energy Conversion and Management, vol. 173, pp. 262-270, 2018, doi: 10.1016/j.enconman.2018.07.086. [66]S. S. Kale et al., “Understanding the Role of Keggin Type Heteropolyacid Catalysts for Glycerol Acetylation Using Toluene as an Entrainer”, Applied Catalysis A: General, vol. 527, pp. 9-18, 2016, doi: 10.1016/j.apcata.2016.08.016. [67]J. Bonet, J. Costa, R. Sire, J. Reneaume, and A. Elena, “Revalorization of Glycerol: Comestible Oil from Biodiesel Synthesis”, Food and Bioproducts Processing, vol. 87, no. 3, pp. 171-178, 2009, doi: 10.1016/j.fbp.2009.06.003. [68]J. Sun, X. Tong, L. Yu, and J. Wan, “An Efficient and Sustainable Production of Triacetin from the Acetylation of Glycerol Using Magnetic Solid Acid Catalysts Under Mild Conditions”, Catalysis Today, vol. 264, pp. 115-122, 2016, doi: 10.1016/j.cattod.2015.07.011. [69]J. Liu, Z. Wang, Y. Sun, R. Jian, P. Jian, and D. Wang, “Selective Synthesis of Triacetin from Glycerol Catalyzed by HZSM-5/MCM-41 Micro/Mesoporous Molecular Sieve”, Chinese Journal of Chemical Engineering, vol. 27, no. 5, pp. 1073-1078, 2019, doi: 10.1016/j.cjche.2018.09.013. [70]S. Kale, S. B. Umbarkar, M. K. Dongare, R. Eckelt, U. Armbruster, and A. Martin, “Selective Formation of Triacetin by Glycerol Acetylation Using Acidic Ion-Exchange Resins as Catalyst and Toluene as an Entrainer”, Applied Catalysis A: General, vol. 490, pp. 10-16, 2015, doi: 10.1016/j.apcata.2014.10.059. [71]R. Jothi Ramalingam, T. Radhika, F. Adam, and T. H. Dolla, “Acetylation of Glycerol Over Bimetallic Ag–Cu Doped Rice Husk Silica Based Biomass Catalyst for Bio-Fuel Additives Application”, International Journal of Industrial Chemistry, vol. 7, no. 2, pp. 187-194, 2016, doi: 10.1007/s40090-016-0073-0. [72]U. I. Nda-Umar, I. Ramli, E. N. Muhamad, Y. H. Taufiq-Yap, and N. Azri, “Synthesis and Characterization of Sulfonated Carbon Catalysts Derived from Biomass Waste and Its Evaluation in Glycerol Acetylation”, Biomass Conversion and Biorefinery, 2020, doi: 10.1007/s13399-020-00784-0. [73]G. Dizoğlu and E. Sert, “Fuel Additive Synthesis by Acetylation of Glycerol Using Activated Carbon/Uio-66 Composite Materials”, Fuel, vol. 281, no. July, p. 118584, 2020, doi: 10.1016/j.fuel.2020.118584. [74]P. S. Reddy, P. Sudarsanam, G. Raju, and B. M. Reddy, “Synthesis of Bio-Additives: Acetylation of Glycerol Over Zirconia-Based Solid Acid Catalysts”, Catalysis Communications, vol. 11, no. 15, pp. 1224-1228, 2010, doi: 10.1016/j.catcom.2010.07.006. [75]I. Kim, J. Kim, and D. Lee, “A Comparative Study on Catalytic Properties of Solid Acid Catalysts for Glycerol Acetylation at Low Temperatures”, Applied Catalysis B: Environmental, vol. 148-149, pp. 295-303, 2014, doi: 10.1016/j.apcatb.2013.11.008. [76]V. V Bokade, “Synthesis of Oxygenated Fuel Additives Via Acetylation of Bio-Glycerol Over H2SO4 Modified Montmorillonite K10 Catalyst”, Progress in Petrochemical Science, vol. 1, no. 1, pp. 1-5, 2018, doi: 10.31031/pps.2018.01.000501. [77]M. S. Khayoon and B. H. Hameed, “Acetylation of Glycerol to Biofuel Additives Over Sulfated Activated Carbon Catalyst”, Bioresource Technology, vol. 102, no. 19, pp. 9229-9235, 2011, doi: 10.1016/j.biortech.2011.07035. [78]P. U. Okoye, A. Z. Abdullah, and B. H. Hameed, “Synthesis of Oxygenated Fuel Additives Via Glycerol Esterification with Acetic Acid Over Bio-Derived Carbon Catalyst”, Fuel, vol. 209, pp. 538-544, 2017, doi: 10.1016/j.fuel.2017.08.024. [79]A. B. S. Neto et al., “A Comparative Study on Porous Solid Acid Oxides as Catalysts in the Esterification of Glycerol with Acetic Acid”, Catalysis Today, vol. 349, no. November 2017, pp. 57-67, 2020, doi: 10.1016/j.cattod.2018.05.057. [80]L. N. Silva, V. L. C. Gonçalves, and C. J. A. Mota, “Catalytic Acetylation of Glycerol with Acetic Anhydride”, Catalysis Communications, vol. 11, no. 12, pp. 1036-1039, 2010. doi: 10.1016/j.catcom.2010.05.007.PublicationORIGINALProducción de acetinas.pdfProducción de acetinas.pdfArticulo publicadoapplication/pdf491787https://repository.ucc.edu.co/bitstreams/de643e43-a614-4ff6-9cfe-6fd216e38914/downloade4ecf00ae6240aedcfc4a2aefe19f21cMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repository.ucc.edu.co/bitstreams/e81799f2-de02-4fae-945f-610d46e359e9/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILProducción de acetinas.pdf.jpgProducción de acetinas.pdf.jpgGenerated Thumbnailimage/jpeg4851https://repository.ucc.edu.co/bitstreams/d4e4ed52-4a72-44c8-a008-ac90a00c67fa/download19eb3d961906492d7c9fd16050cfec1fMD53TEXTProducción de acetinas.pdf.txtProducción de acetinas.pdf.txtExtracted texttext/plain78549https://repository.ucc.edu.co/bitstreams/28f4534a-8a54-49c6-af97-c29a85172e32/download99817dce544e9912add5dea8cae605feMD5420.500.12494/46421oai:repository.ucc.edu.co:20.500.12494/464212024-08-20 16:23:39.183open.accesshttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=