African swine fever virus: a re-emerging threat to the swine industry and food security in the Americas
African swine fever (ASF) is a devastating disease for the swine industry, characterized by hemorrhagic fever with up to 100% mortality rate, and with a tremendous socioeconomic impact worldwide (Dixon et al., 2020). The disease was first reported in East Africa in the early 1920s as an acute hemorr...
- Autores:
-
Ruiz Sáenz, Julián
Diaz, Andres
Bonilla Aldana, Diane Katterine
Rodríguez Morales, Alfonso J.
Martínez Gutiérrez, Marlén
Aguilar, Patricia V.
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2022
- Institución:
- Universidad Cooperativa de Colombia
- Repositorio:
- Repositorio UCC
- Idioma:
- OAI Identifier:
- oai:repository.ucc.edu.co:20.500.12494/52296
- Acceso en línea:
- https://hdl.handle.net/20.500.12494/52296
- Palabra clave:
- African swine fever
Reservoirs
Arbovirus
Emerging disease
Pigs
- Rights
- openAccess
- License
- http://purl.org/coar/access_right/c_abf2
id |
COOPER2_cc5a36abb3198b2999c51a22b8134491 |
---|---|
oai_identifier_str |
oai:repository.ucc.edu.co:20.500.12494/52296 |
network_acronym_str |
COOPER2 |
network_name_str |
Repositorio UCC |
repository_id_str |
|
dc.title.none.fl_str_mv |
African swine fever virus: a re-emerging threat to the swine industry and food security in the Americas |
title |
African swine fever virus: a re-emerging threat to the swine industry and food security in the Americas |
spellingShingle |
African swine fever virus: a re-emerging threat to the swine industry and food security in the Americas African swine fever Reservoirs Arbovirus Emerging disease Pigs |
title_short |
African swine fever virus: a re-emerging threat to the swine industry and food security in the Americas |
title_full |
African swine fever virus: a re-emerging threat to the swine industry and food security in the Americas |
title_fullStr |
African swine fever virus: a re-emerging threat to the swine industry and food security in the Americas |
title_full_unstemmed |
African swine fever virus: a re-emerging threat to the swine industry and food security in the Americas |
title_sort |
African swine fever virus: a re-emerging threat to the swine industry and food security in the Americas |
dc.creator.fl_str_mv |
Ruiz Sáenz, Julián Diaz, Andres Bonilla Aldana, Diane Katterine Rodríguez Morales, Alfonso J. Martínez Gutiérrez, Marlén Aguilar, Patricia V. |
dc.contributor.author.none.fl_str_mv |
Ruiz Sáenz, Julián Diaz, Andres Bonilla Aldana, Diane Katterine Rodríguez Morales, Alfonso J. Martínez Gutiérrez, Marlén Aguilar, Patricia V. |
dc.subject.none.fl_str_mv |
African swine fever Reservoirs Arbovirus Emerging disease Pigs |
topic |
African swine fever Reservoirs Arbovirus Emerging disease Pigs |
description |
African swine fever (ASF) is a devastating disease for the swine industry, characterized by hemorrhagic fever with up to 100% mortality rate, and with a tremendous socioeconomic impact worldwide (Dixon et al., 2020). The disease was first reported in East Africa in the early 1920s as an acute hemorrhagic fever that caused the death of almost all infected domestic pigs (Montgomery, 1921; Plowright et al., 1969). Since then, the African swine fever virus (ASFV) has remained endemic in Africa affecting up to 35 African countries and has emerged in Europe, Asia, and now in the Americas |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022-10-05 |
dc.date.accessioned.none.fl_str_mv |
2023-08-02T22:24:54Z |
dc.date.available.none.fl_str_mv |
2023-08-02T22:24:54Z |
dc.type.none.fl_str_mv |
Artículos Científicos |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
1664-302X |
dc.identifier.uri.none.fl_str_mv |
10.3389/fmicb.2022.1011891 https://hdl.handle.net/20.500.12494/52296 |
dc.identifier.bibliographicCitation.none.fl_str_mv |
Ruiz-Saenz J, Diaz A, Bonilla-Aldana DK, Rodríguez-Morales AJ, Martinez-Gutierrez M and Aguilar PV (2022) African swine fever virus: A re-emerging threat to the swine industry and food security in the Americas. Front. Microbiol. 13:1011891. doi: 10.3389/fmicb.2022.1011891 |
identifier_str_mv |
1664-302X 10.3389/fmicb.2022.1011891 Ruiz-Saenz J, Diaz A, Bonilla-Aldana DK, Rodríguez-Morales AJ, Martinez-Gutierrez M and Aguilar PV (2022) African swine fever virus: A re-emerging threat to the swine industry and food security in the Americas. Front. Microbiol. 13:1011891. doi: 10.3389/fmicb.2022.1011891 |
url |
https://hdl.handle.net/20.500.12494/52296 |
dc.relation.isversionof.none.fl_str_mv |
https://www.frontiersin.org/articles/10.3389/fmicb.2022.1011891/full |
dc.relation.ispartofjournal.none.fl_str_mv |
Front. Microbiol. |
dc.relation.references.none.fl_str_mv |
Achenbach, J., Gallardo, C., Nieto-Pelegrín, E., Rivera-Arroyo, B., Degefa-Negi, T., Arias, M., et al. (2017). Identification of a new genotype of African swine fever virus in domestic pigs from Ethiopia. Transbound. Emerg. Dis. 64, 1393–1404. doi: 10.1111/tbed.12511 Adedeji, A. J., Luka, P. D., Atai, R. B., Olubade, T. A., Hambolu, D. A., Ogunleye, M. A., et al. (2021). First-time presence of African swine fever virus genotype II in Nigeria. Microbiol. Resour. Announc. 10, e00350–e00321. doi: 10.1128/MRA.00350-21 Agricultura, M. D. (2021). “Boletin 2. ¡Juntos podemos vencer a la PPA!,” in Comisión Oficial Para El Control Y Erradicación De Brotes De La Peste Porcina Africana, ed M.D.A. (República Dominicana: Ministerio de Agricultura). Alonso, C., Borca, M., Dixon, L., Revilla, Y., Rodriguez, F., Escribano, J. M., et al. (2018). ICTV virus taxonomy profile: Asfarviridae. J. Gen. Virol. 99, 613–614. doi: 10.1099/jgv.0.001049 APHIS-USDA (2021). USDA Submits Dossier to the World Organisation for Animal Health to Finalize African Swine Fever Protection Zone. Program Updates, USDA, USA. Boinas, F., Hutchings, G., Dixon, L., and Wilkinson, P. (2004). Characterization of pathogenic and non-pathogenic African swine fever virus isolates from Ornithodoros erraticus inhabiting pig premises in Portugal. J. Gen. Virol. 85, 2177–2187. doi: 10.1099/vir.0.80058-0 Borca, M. V., Rai, A., Ramirez-Medina, E., Silva, E., Velazquez-Salinas, L., Vuono, E., et al. (2021a). A cell culture-adapted vaccine virus against the current African swine fever virus pandemic strain. J. Virol. 95, e00123–e00121. doi: 10.1128/JVI.00123-21 Borca, M. V., Ramirez-Medina, E., Silva, E., Vuono, E., Rai, A., Pruitt, S., et al. (2020). Development of a highly effective African swine fever virus vaccine by deletion of the I177L gene results in sterile immunity against the current epidemic Eurasia strain. J. Virol. 94, e02017–e02019. doi: 10.1128/JVI.02017-19 Borca, M. V., Ramirez-Medina, E., Silva, E., Vuono, E., Rai, A., Pruitt, S., et al. (2021b). ASFV-G-ΔI177L as an effective oral nasal vaccine against the Eurasia strain of Africa swine fever. Viruses 13:765. doi: 10.3390/v13050765 Bosch-Camós, L., López, E., and Rodriguez, F. (2020). African swine fever vaccines: a promising work still in progress. Porcine Health Manage. 6, 1–14. doi: 10.1186/s40813-020-00154-2 Brown, V. R., and Bevins, S. N. (2018). A review of African swine fever and the potential for introduction into the United States and the possibility of subsequent establishment in feral swine and native ticks. Front. Vet. Sci. 5:11. doi: 10.3389/fvets.2018.00011 Busch, F., Haumont, C., Penrith, M.-L., Laddomada, A., Dietze, K., Globig, A., et al. (2021). Evidence-based African swine fever policies: do we address virus and host adequately? Front. Vet. Sci. 8:637487. doi: 10.3389/fvets.2021.637487 Butler, J., and Gibbs, E. (1984). Distribution of potential soft tick vectors of African swine fever in the Caribbean region (Acari: Argasidae). Prev. Vet. Med. 2, 63–70. doi: 10.1016/0167-5877(84)90049-7 Butler, J., Wilson, D., Garris, G., Koch, H., Crum, J., and Castellanos, V. (1985). Survey for potential soft tick (Acari: Argasidae) vectors of African swine fever on the island of Hispaniola. Exp. Appl. Acarol. 1, 63–72. doi: 10.1007/BF01262200 Cwynar, P., Stojkov, J., and Wlazlak, K. (2019). African swine fever status in Europe. Viruses 11:310. doi: 10.3390/v11040310 Danzetta, M. L., Marenzoni, M. L., Iannetti, S., Tizzani, P., Calistri, P., and Feliziani, F. (2020). African swine fever: lessons to learn from past eradication experiences. A systematic review. Front. Vet. Sci. 7:296. doi: 10.3389/fvets.2020.00296 de Carvalho Ferreira, H., Weesendorp, E., Quak, S., Stegeman, J., and Loeffen, W. (2013). Quantification of airborne African swine fever virus after experimental infection. Vet. Microbiol. 165, 243–251. doi: 10.1016/j.vetmic.2013.03.007 de la Torre, A., Bosch, J., Iglesias, I., Muñoz, M. J., Mur, L., Martínez-López, B., et al. (2015). Assessing the risk of African swine fever introduction into the European Union by wild boar. Transbound. Emerg. Dis. 62, 272–279. doi: 10.1111/tbed.12129 de la Torre, A., Bosch, J., Sánchez-Vizcaíno, J. M., Ito, S., Muñoz, C., Iglesias, I., et al. (2022). African swine fever survey in a European context. Pathogens 11:137. doi: 10.3390/pathogens11020137 De Paula Lyra, T., Saraiva, V., Hermida Lage, G., and Samarcos, M. (1986). Eradication of African swine fever from Brazil. Rev. Sci. Tech. l'OIE (France) 5, 771–787. doi: 10.20506/rst.5.3.261 Diaz, A. V., Netherton, C. L., Dixon, L. K., and Wilson, A. J. (2012). African swine fever virus strain Georgia 2007/1 in Ornithodoros erraticus ticks. Emerg. Infect. Dis. 18, 1026–1028. doi: 10.3201/eid1806.111728 Dixon, L. K., Stahl, K., Jori, F., Vial, L., and Pfeiffer, D. U. (2020). African swine fever epidemiology and control. Annu. Rev. Anim. Biosci. 8, 221–246. doi: 10.1146/annurev-animal-021419-083741 EFSA European Food Safety Authority, Nielsen, S. S., Alvarez, J., Bicout, D. J., Calistri, P., Depner, K., et al. (2021). Research priorities to fill knowledge gaps in the control of African swine fever: possible transmission of African swine fever virus by vectors. EFSA J. 19:e06676. doi: 10.2903/j.efsa.2021.6676 Endris, R., Haslett, T., and Hess, W. (1991). Experimental transmission of African swine fever virus by the tick Ornithodoros (Alectorobius) puertoricensis (Acari: Argasidae). J. Med. Entomol. 28, 854–858. doi: 10.1093/jmedent/28.6.854 Endris, R., Hess, W., and Caiado, J. (1992). African swine fever virus infection in the Iberian soft tick, Ornithodoros (Pavlovskyella) marocanus (Acari: Argasidae). J. Med. Entomol. 29, 874–878. doi: 10.1093/jmedent/29.5.874 Forth, J. H., Forth, L. F., Lycett, S., Bell-Sakyi, L., Keil, G. M., Blome, S., et al. (2020). Identification of African swine fever virus-like elements in the soft tick genome provides insights into the virus' evolution. BMC Biol. 18:136. doi: 10.1186/s12915-020-00865-6 Gallardo, C., Nurmoja, I., Soler, A., Delicado, V., Simón, A., Martin, E., et al. (2018). Evolution in Europe of African swine fever genotype II viruses from highly to moderately virulent. Vet. Microbiol. 219, 70–79. doi: 10.1016/j.vetmic.2018.04.001 Gallardo, C., Soler, A., Nieto, R., Sánchez, M., Martins, C., Pelayo, V., et al. (2015). Experimental transmission of African swine fever (ASF) low virulent isolate NH/P68 by surviving pigs. Transbound. Emerg. Dis. 62, 612–622. doi: 10.1111/tbed.12431 Gallardo, C., Soler, A., Rodze, I., Nieto, R., Cano-Gómez, C., Fernandez-Pinero, J., et al. (2019). Attenuated and non-haemadsorbing (non-HAD) genotype II African swine fever virus (ASFV) isolated in Europe, Latvia 2017. Transbound. Emerg. Dis. 66, 1399–1404. doi: 10.1111/tbed.13132 Ganges, L., Crooke, H. R., Bohórquez, J. A., Postel, A., Sakoda, Y., Becher, P., et al. (2020). Classical swine fever virus: the past, present and future. Virus Res. 289:198151. doi: 10.1016/j.virusres.2020.198151 Gaudreault, N. N., Madden, D. W., Wilson, W. C., Trujillo, J. D., and Richt, J. A. (2020). African swine fever virus: an emerging DNA Arbovirus. Front. Vet. Sci. 7:215. doi: 10.3389/fvets.2020.00215 Gavier-Widén, D., Gortázar, C., Stahl, K., Neimanis, A. S., Rossi, S., Hard Av Segerstad, C., et al. (2015). African swine fever in wild boar in Europe: a notable challenge. Vet. Rec. 176, 199–200. doi: 10.1136/vr.h699 Ge, S., Li, J., Fan, X., Liu, F., Li, L., Wang, Q., et al. (2018). Molecular characterization of African swine fever virus, China, 2018. Emerg. Infect. Dis. 24, 2131–2133. doi: 10.3201/eid2411.181274 Gf-TADs (2020). African Swine Fever: An Unprecedented Global Threat—A Challenge to Livelihoods, Food Security and Biodiversity. Call for Action. Available online at: http://www.gf-tads.org/events/events-detail/fr/c/1152886/ (accessed 26 October, 2020). Golnar, A. J., Martin, E., Wormington, J. D., Kading, R. C., Teel, P. D., Hamer, S. A., et al. (2019). Reviewing the potential vectors and hosts of African swine fever virus transmission in the United States. Vector Borne Zoonotic Dis. 19, 512–524. doi: 10.1089/vbz.2018.2387 Gorry, C. (2021). In Haiti, Cubans among first responders, again: Luis Orlando Oliveros-Serrano MD Coordinator, Cuban Medical Team in Haiti. MEDICC Rev. 24, 19–20. doi: 10.37757/MR2022.V24.N1.1 Groocock, C., Hess, W., and Gladney, W. (1980). Experimental transmission of African swine fever virus by Ornithodoros coriaceus, an argasid tick indigenous to the United States. Am. J. Vet. Res. 41, 591–594. Guinat, C., Vergne, T., Jurado-Diaz, C., Sánchez-Vizcaíno, J. M., Dixon, L., and Pfeiffer, D. U. (2017). Effectiveness and practicality of control strategies for African swine fever: what do we really know? Vet. Rec. 180:97. doi: 10.1136/vr.103992 Hess, W. R., Endris, R. G., Haslett, T. M., Monahan, M. J., and Mccoy, J. P. (1987). Potential arthropod vectors of African swine fever virus in North America and the Caribbean basin. Vet. Parasitol. 26, 145–155. doi: 10.1016/0304-4017(87)90084-7 Hoffman, D. M. (2021). The Haitian orphanage crisis: exporting neoliberal family ideals in the debate on vulnerable childhoods in Haiti. Child. Soc. 35, 577–592. doi: 10.1111/chso.12442 Kading, R. C., Abworo, E. O., and Hamer, G. L. (2019). Rift valley fever virus, Japanese encephalitis virus, and African swine fever virus: three transboundary, vector-borne, veterinary biothreats with diverse surveillance, and response capacity needs. Front. Vet. Sci. 6:458. doi: 10.3389/fvets.2019.00458 Kim, H.-J., Lee, M.-J., Lee, S.-K., Kim, D.-Y., Seo, S.-J., Kang, H.-E., et al. (2019). African swine fever virus in pork brought into South Korea by travelers from China, August 2018. Emerg. Infect. Dis. 25, 1231–1233. doi: 10.3201/eid2506.181684 Kleiboeker, S. B., Burrage, T. G., Scoles, G. A., Fish, D., and Rock, D. L. (1998). African swine fever virus infection in the argasid host, Ornithodoros porcinus porcinus. J. Virol. 72, 1711–1724. doi: 10.1128/JVI.72.3.1711-1724.1998 Kleiboeker, S. B., and Scoles, G. A. (2001). Pathogenesis of African swine fever virus in Ornithodoros ticks. Anim. Health Res. Rev. 2, 121–128. doi: 10.1079/AHRR200133 Komal, J. (2020). Regional efforts in the Americas to prevent ASF introduction. African Swine Fever Unprecedented Global Threat: A Global Challenge to Livelihoods, Food Security, and Biodiversity. The Global Framework for the Progressive Control of Transboundary Animal Diseases (GF-TADs). Li, L., Ren, Z., Wang, Q., Ge, S., Liu, Y., Liu, C., et al. (2019). Infection of African swine fever in wild boar, China, 2018. Transbound. Emerg. Dis. 66, 1395–1398. doi: 10.1111/tbed.13114 Li, X., and Tian, K. (2018). African swine fever in China. Vet. Rec. 183, 300–301. doi: 10.1136/vr.k3774 Mellor, P., and Wilkinson, P. (1985). Experimental transmission of African swine fever virus by Ornithodoros savignyi (Audouin). Res. Vet. Sci. 39, 353–361. doi: 10.1016/S0034-5288(18)31726-0 Minoungou, G. L., Diop, M., Dakouo, M., Ouattara, A. K., Settypalli, T. B. K., Lo, M. M., et al. (2021). Molecular characterization of African Swine fever viruses in Burkina Faso, Mali, and Senegal 1989–2016. Transbound. Emerg. Dis. 68, 2842–2852. doi: 10.1111/tbed.14240 Montgomery, R. E. (1921). On a form of swine fever occurring in British East Africa (Kenya Colony). J. Comp. Pathol. Ther. 34, 159–191. doi: 10.1016/S0368-1742(21)80031-4 Mur, L., Atzeni, M., Martínez-López, B., Feliziani, F., Rolesu, S., and Sanchez-Vizcaino, J. M. (2016). Thirty-five-year presence of African swine fever in Sardinia: history, evolution and risk factors for disease maintenance. Transbound. Emerg. Dis. 63, e165–e177. doi: 10.1111/tbed.12264 Njau, E. P., Domelevo Entfellner, J.-B., Machuka, E. M., Bochere, E. N., Cleaveland, S., Shirima, G. M., et al. (2021). The first genotype II African swine fever virus isolated in Africa provides insight into the current Eurasian pandemic. Sci. Rep. 11:13081. doi: 10.1038/s41598-021-92593-2 Oxford-Analytica (2020). Pandemic to Worsen Recession and Instability in Haiti. Haiti: Emerald Expert Briefings. Pereira De Oliveira, R., Hutet, E., Duhayon, M., Guionnet, J.-M., Paboeuf, F., Vial, L., et al. (2020a). Successful infection of domestic pigs by ingestion of the European soft tick O. Erraticus that fed on African swine fever virus infected pig. Viruses 12:300. doi: 10.3390/v12030300 Pereira De Oliveira, R., Hutet, E., Lancelot, R., Paboeuf, F., Duhayon, M., Boinas, F., et al. (2020b). Differential vector competence of Ornithodoros soft ticks for African swine fever virus: what if it involves more than just crossing organic barriers in ticks? Parasit. Vect. 13:618. doi: 10.1186/s13071-020-04497-1 Pereira De Oliveira, R., Hutet, E., Paboeuf, F., Duhayon, M., Boinas, F., Perez De Leon, A., et al. (2019). Comparative vector competence of the Afrotropical soft tick Ornithodoros moubata and Palearctic species, O. erraticus and O. verrucosus, for African swine fever virus strains circulating in Eurasia. PLoS ONE 14:e0225657. doi: 10.1371/journal.pone.0225657 Plowright, W., Parker, J., and Peirce, M. (1969). African swine fever virus in ticks (Ornithodoros moubata, Murray) collected from animal burrows in Tanzania. Nature 221, 1071–1073. doi: 10.1038/2211071a0 Quembo, C. J., Jori, F., Vosloo, W., and Heath, L. (2018). Genetic characterization of African swine fever virus isolates from soft ticks at the wildlife/domestic interface in Mozambique and identification of a novel genotype. Transbound. Emerg. Dis. 65, 420–431. doi: 10.1111/tbed.12700 Rennie, L., Wilkinson, P., and Mellor, P. (2000). Effects of infection of the tick Ornithodoros moubata with African swine fever virus. Med. Vet. Entomol. 14, 355–360. doi: 10.1046/j.1365-2915.2000.00251.x Ribeiro, R., Otte, J., Madeira, S., Hutchings, G. H., and Boinas, F. (2015). Experimental infection of Ornithodoros erraticus sensu stricto with two portuguese African swine fever virus strains. Study of factors involved in the dynamics of infection in ticks. PLoS ONE 10:e0137718. doi: 10.1371/journal.pone.0137718 Rivera-Benítez, J. F., De La Luz-Armendáriz, J., Gómez-Núñez, L., Vargas, F. D., Escatell, G. S., Ramírez-Medina, E., et al. (2021). Swine health: history, challenges and prospects. Rev. Mex. Cienc. Pecu. 12, 149–185. doi: 10.22319/rmcp.v12s3.5879 Sánchez-Vizcaíno, J. M., Mur, L., and Martínez-López, B. (2013). African swine fever (ASF): five years around Europe. Vet. Microbiol. 165, 45–50. doi: 10.1016/j.vetmic.2012.11.030 Sauter-Louis, C., Conraths, F. J., Probst, C., Blohm, U., Schulz, K., Sehl, J., et al. (2021a). African swine fever in wild boar in Europe—a review. Viruses 13:1717. doi: 10.3390/v13091717 Sauter-Louis, C., Forth, J. H., Probst, C., Staubach, C., Hlinak, A., Rudovsky, A., et al. (2021b). Joining the club: first detection of African swine fever in wild boar in Germany. Transbound. Emerg. Dis. 68, 1744–1752. doi: 10.22541/au.160253806.62312023/v1 Suárez, J., Carreño, L., Paniz-Mondolfi, A., and Canosa, F. J. M. (2018). Infectious diseases, social, economic and political crises, anthropogenic disasters and beyond: Venezuela 2019—implications for public health and travel medicine. Rev. Panam. Enferm. Infecc. 1, 73–93. doi: 10.13140/RG.2.2.13082.90562/1 Tran, X. H., Le, T. T. P., Nguyen, Q. H., Do, T. T., Nguyen, V. D., Gay, C. G., et al. (2021). African swine fever virus vaccine candidate ASFV-G-DeltaI177L efficiently protects European and native pig breeds against circulating Vietnamese field strain. Transbound. Emerg. Dis.69, e497–e504. doi: 10.1111/tbed.14329 Tran, X. H., Phuong, L. T. T., Huy, N. Q., Thuy, D. T., Nguyen, V. D., Quang, P. H., et al. (2022). Evaluation of the safety profile of the ASFV vaccine candidate ASFV-G-andDelta;I177L. Viruses 14:896. doi: 10.3390/v14050896 Tulman, E. R., Delhon, G. A., Ku, B. K., and Rock, D. L. (2009). African swine fever virus. Curr. Top. Microbiol. Immunol. 328, 43–87. doi: 10.1007/978-3-540-68618-7_2 USDA (2021). USDA Statement on Confirmation of African Swine Fever in the Dominican Republic. USDOA Animal and Plant Health Inspection Service, USDA. Uwishema, O., Chalhoub, E., Zahabioun, A., David, S. C., Khoury, C., Al-Saraireh, T. H., et al. (2021). The rising incidence of African swine fever during the COVID-19 pandemic in Africa: efforts, challenges and recommendations. Int. J. Health Plann. Manage. 37, 561–567. doi: 10.1002/hpm.3357 Velazquez-Salinas, L., Ramirez-Medina, E., Rai, A., Pruitt, S., Vuono, E. A., Espinoza, N., et al. (2021). Development real-time PCR assays to genetically differentiate vaccinated pigs from infected pigs with the Eurasian strain of African swine fever virus. Front. Vet. Sci. 8:768869. doi: 10.3389/fvets.2021.768869 Vilem, A., Nurmoja, I., Niine, T., Riit, T., Nieto, R., Viltrop, A., et al. (2020). Molecular characterization of African swine fever virus isolates in Estonia in 2014–2019. Pathogens 9:582. doi: 10.3390/pathogens9070582 Wang, W.-H., Lin, C.-Y., Chang Ishcol, M. R., Urbina, A. N., Assavalapsakul, W., Thitithanyanont, A., et al. (2019). Detection of African swine fever virus in pork products brought to Taiwan by travellers. Emerg. Microb. Infect. 8, 1000–1002. doi: 10.1080/22221751.2019.1636615 WOAH (2021a). Follow-up Report 1. African Swine Fever Virus (Inf. with), Dominican (Rep.)—REPORT ID FUR_151044. O. World Organization for Animal Health. WOAH (2021b). Follow-up Report 1. African Swine Fever Virus (Inf. with), Haiti—REPORT ID FUR_151855. O. World Organization for Animal Health. WOAH (2021c). Immediate Notification. African Swine Fever Virus (Inf. with), Dominican (Rep.)—REPORT ID IN_150921. O. World Organization for Animal Health. WOAH (2021d). Immediate Notification. African Swine Fever Virus (Inf. with), Haiti—REPORT ID IN_151732. O. World Organization for Animal Health. WOAH (2021e). RESOLUTION No. 20. Recognition of the Classical Swine Fever Status of Members. Oie: Paris, France. Wormington, J. D., Golnar, A., Poh, K. C., Kading, R. C., Martin, E., Hamer, S. A., et al. (2019). Risk of African swine fever virus sylvatic establishment and spillover to domestic swine in the United States. Vector Borne Zoonotic Dis. 19, 506–511. doi: 10.1089/vbz.2018.2386 Zani, L., Forth, J. H., Forth, L., Nurmoja, I., Leidenberger, S., Henke, J., et al. (2018). Deletion at the 5'-end of Estonian ASFV strains associated with an attenuated phenotype. Sci. Rep. 8:6510. doi: 10.1038/s41598-018-24740-1 Zhou, X., Li, N., Luo, Y., Liu, Y., Miao, F., Chen, T., et al. (2018). Emergence of African swine fever in China, 2018. Transbound. Emerg. Dis. 65, 1482–1484. doi: 10.1111/tbed.12989 |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.format.extent.none.fl_str_mv |
1011891 |
dc.coverage.temporal.none.fl_str_mv |
13 |
dc.publisher.none.fl_str_mv |
Frontiers Media Grupo de Investigación en Ciencias Animales—GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga 680002, Colombia |
dc.publisher.program.none.fl_str_mv |
Medicina veterinaria y zootecnia |
dc.publisher.place.none.fl_str_mv |
Bucaramanga |
publisher.none.fl_str_mv |
Frontiers Media Grupo de Investigación en Ciencias Animales—GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga 680002, Colombia |
institution |
Universidad Cooperativa de Colombia |
bitstream.url.fl_str_mv |
https://repository.ucc.edu.co/bitstreams/620e1814-e6a0-4b52-a653-9206c15ff0a4/download https://repository.ucc.edu.co/bitstreams/911e3fc2-aae2-4821-baee-43f3e544f75d/download https://repository.ucc.edu.co/bitstreams/b68cb115-96ee-4468-8a0a-87cac79faceb/download https://repository.ucc.edu.co/bitstreams/94b18a70-1508-47e9-a033-aafbfce2a228/download https://repository.ucc.edu.co/bitstreams/ce87f56a-5b80-4c64-925d-f91c61783784/download https://repository.ucc.edu.co/bitstreams/e80f8700-4da0-4083-9a57-4f67fa5ae1d3/download https://repository.ucc.edu.co/bitstreams/90d2032d-a926-466d-a3bc-e2af5a462645/download |
bitstream.checksum.fl_str_mv |
bd3db1187d9bff385d8b6c738942dcd3 743442e143c0021ceb61ef2757abe982 3bce4f7ab09dfc588f126e1e36e98a45 38175860075faeef8854e9dc1a6f058a 311c5c1c92dda3d014168a98024e3128 f6018c5d2c63736e45af29dddc51173f 4f14fc5b27bdf0b859ed35dc5413575b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Cooperativa de Colombia |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1811565104140910592 |
spelling |
Ruiz Sáenz, Julián Diaz, AndresBonilla Aldana, Diane Katterine Rodríguez Morales, Alfonso J.Martínez Gutiérrez, MarlénAguilar, Patricia V.132023-08-02T22:24:54Z2023-08-02T22:24:54Z2022-10-051664-302X10.3389/fmicb.2022.1011891https://hdl.handle.net/20.500.12494/52296Ruiz-Saenz J, Diaz A, Bonilla-Aldana DK, Rodríguez-Morales AJ, Martinez-Gutierrez M and Aguilar PV (2022) African swine fever virus: A re-emerging threat to the swine industry and food security in the Americas. Front. Microbiol. 13:1011891. doi: 10.3389/fmicb.2022.1011891African swine fever (ASF) is a devastating disease for the swine industry, characterized by hemorrhagic fever with up to 100% mortality rate, and with a tremendous socioeconomic impact worldwide (Dixon et al., 2020). The disease was first reported in East Africa in the early 1920s as an acute hemorrhagic fever that caused the death of almost all infected domestic pigs (Montgomery, 1921; Plowright et al., 1969). Since then, the African swine fever virus (ASFV) has remained endemic in Africa affecting up to 35 African countries and has emerged in Europe, Asia, and now in the Americashttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000153095https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000213748https://orcid.org/0000-0002-1447-1458https://orcid.org/0000-0002-9429-0058https://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000000695julian.ruizs@campusucc.edu.coMarlen.martinezg@campusucc.edu.cohttps://scholar.google.com/citations?user=o3Y7mZwAAAAJ&hl=eshttps://scholar.google.com/citations?user=flSrsSIAAAAJ&hl=es1011891Frontiers MediaGrupo de Investigación en Ciencias Animales—GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga 680002, ColombiaMedicina veterinaria y zootecniaBucaramangahttps://www.frontiersin.org/articles/10.3389/fmicb.2022.1011891/fullFront. Microbiol.Achenbach, J., Gallardo, C., Nieto-Pelegrín, E., Rivera-Arroyo, B., Degefa-Negi, T., Arias, M., et al. (2017). Identification of a new genotype of African swine fever virus in domestic pigs from Ethiopia. Transbound. Emerg. Dis. 64, 1393–1404. doi: 10.1111/tbed.12511Adedeji, A. J., Luka, P. D., Atai, R. B., Olubade, T. A., Hambolu, D. A., Ogunleye, M. A., et al. (2021). First-time presence of African swine fever virus genotype II in Nigeria. Microbiol. Resour. Announc. 10, e00350–e00321. doi: 10.1128/MRA.00350-21Agricultura, M. D. (2021). “Boletin 2. ¡Juntos podemos vencer a la PPA!,” in Comisión Oficial Para El Control Y Erradicación De Brotes De La Peste Porcina Africana, ed M.D.A. (República Dominicana: Ministerio de Agricultura).Alonso, C., Borca, M., Dixon, L., Revilla, Y., Rodriguez, F., Escribano, J. M., et al. (2018). ICTV virus taxonomy profile: Asfarviridae. J. Gen. Virol. 99, 613–614. doi: 10.1099/jgv.0.001049APHIS-USDA (2021). USDA Submits Dossier to the World Organisation for Animal Health to Finalize African Swine Fever Protection Zone. Program Updates, USDA, USA.Boinas, F., Hutchings, G., Dixon, L., and Wilkinson, P. (2004). Characterization of pathogenic and non-pathogenic African swine fever virus isolates from Ornithodoros erraticus inhabiting pig premises in Portugal. J. Gen. Virol. 85, 2177–2187. doi: 10.1099/vir.0.80058-0Borca, M. V., Rai, A., Ramirez-Medina, E., Silva, E., Velazquez-Salinas, L., Vuono, E., et al. (2021a). A cell culture-adapted vaccine virus against the current African swine fever virus pandemic strain. J. Virol. 95, e00123–e00121. doi: 10.1128/JVI.00123-21Borca, M. V., Ramirez-Medina, E., Silva, E., Vuono, E., Rai, A., Pruitt, S., et al. (2020). Development of a highly effective African swine fever virus vaccine by deletion of the I177L gene results in sterile immunity against the current epidemic Eurasia strain. J. Virol. 94, e02017–e02019. doi: 10.1128/JVI.02017-19Borca, M. V., Ramirez-Medina, E., Silva, E., Vuono, E., Rai, A., Pruitt, S., et al. (2021b). ASFV-G-ΔI177L as an effective oral nasal vaccine against the Eurasia strain of Africa swine fever. Viruses 13:765. doi: 10.3390/v13050765Bosch-Camós, L., López, E., and Rodriguez, F. (2020). African swine fever vaccines: a promising work still in progress. Porcine Health Manage. 6, 1–14. doi: 10.1186/s40813-020-00154-2Brown, V. R., and Bevins, S. N. (2018). A review of African swine fever and the potential for introduction into the United States and the possibility of subsequent establishment in feral swine and native ticks. Front. Vet. Sci. 5:11. doi: 10.3389/fvets.2018.00011Busch, F., Haumont, C., Penrith, M.-L., Laddomada, A., Dietze, K., Globig, A., et al. (2021). Evidence-based African swine fever policies: do we address virus and host adequately? Front. Vet. Sci. 8:637487. doi: 10.3389/fvets.2021.637487Butler, J., and Gibbs, E. (1984). Distribution of potential soft tick vectors of African swine fever in the Caribbean region (Acari: Argasidae). Prev. Vet. Med. 2, 63–70. doi: 10.1016/0167-5877(84)90049-7Butler, J., Wilson, D., Garris, G., Koch, H., Crum, J., and Castellanos, V. (1985). Survey for potential soft tick (Acari: Argasidae) vectors of African swine fever on the island of Hispaniola. Exp. Appl. Acarol. 1, 63–72. doi: 10.1007/BF01262200Cwynar, P., Stojkov, J., and Wlazlak, K. (2019). African swine fever status in Europe. Viruses 11:310. doi: 10.3390/v11040310Danzetta, M. L., Marenzoni, M. L., Iannetti, S., Tizzani, P., Calistri, P., and Feliziani, F. (2020). African swine fever: lessons to learn from past eradication experiences. A systematic review. Front. Vet. Sci. 7:296. doi: 10.3389/fvets.2020.00296de Carvalho Ferreira, H., Weesendorp, E., Quak, S., Stegeman, J., and Loeffen, W. (2013). Quantification of airborne African swine fever virus after experimental infection. Vet. Microbiol. 165, 243–251. doi: 10.1016/j.vetmic.2013.03.007de la Torre, A., Bosch, J., Iglesias, I., Muñoz, M. J., Mur, L., Martínez-López, B., et al. (2015). Assessing the risk of African swine fever introduction into the European Union by wild boar. Transbound. Emerg. Dis. 62, 272–279. doi: 10.1111/tbed.12129de la Torre, A., Bosch, J., Sánchez-Vizcaíno, J. M., Ito, S., Muñoz, C., Iglesias, I., et al. (2022). African swine fever survey in a European context. Pathogens 11:137. doi: 10.3390/pathogens11020137De Paula Lyra, T., Saraiva, V., Hermida Lage, G., and Samarcos, M. (1986). Eradication of African swine fever from Brazil. Rev. Sci. Tech. l'OIE (France) 5, 771–787. doi: 10.20506/rst.5.3.261Diaz, A. V., Netherton, C. L., Dixon, L. K., and Wilson, A. J. (2012). African swine fever virus strain Georgia 2007/1 in Ornithodoros erraticus ticks. Emerg. Infect. Dis. 18, 1026–1028. doi: 10.3201/eid1806.111728Dixon, L. K., Stahl, K., Jori, F., Vial, L., and Pfeiffer, D. U. (2020). African swine fever epidemiology and control. Annu. Rev. Anim. Biosci. 8, 221–246. doi: 10.1146/annurev-animal-021419-083741EFSA European Food Safety Authority, Nielsen, S. S., Alvarez, J., Bicout, D. J., Calistri, P., Depner, K., et al. (2021). Research priorities to fill knowledge gaps in the control of African swine fever: possible transmission of African swine fever virus by vectors. EFSA J. 19:e06676. doi: 10.2903/j.efsa.2021.6676Endris, R., Haslett, T., and Hess, W. (1991). Experimental transmission of African swine fever virus by the tick Ornithodoros (Alectorobius) puertoricensis (Acari: Argasidae). J. Med. Entomol. 28, 854–858. doi: 10.1093/jmedent/28.6.854Endris, R., Hess, W., and Caiado, J. (1992). African swine fever virus infection in the Iberian soft tick, Ornithodoros (Pavlovskyella) marocanus (Acari: Argasidae). J. Med. Entomol. 29, 874–878. doi: 10.1093/jmedent/29.5.874Forth, J. H., Forth, L. F., Lycett, S., Bell-Sakyi, L., Keil, G. M., Blome, S., et al. (2020). Identification of African swine fever virus-like elements in the soft tick genome provides insights into the virus' evolution. BMC Biol. 18:136. doi: 10.1186/s12915-020-00865-6Gallardo, C., Nurmoja, I., Soler, A., Delicado, V., Simón, A., Martin, E., et al. (2018). Evolution in Europe of African swine fever genotype II viruses from highly to moderately virulent. Vet. Microbiol. 219, 70–79. doi: 10.1016/j.vetmic.2018.04.001Gallardo, C., Soler, A., Nieto, R., Sánchez, M., Martins, C., Pelayo, V., et al. (2015). Experimental transmission of African swine fever (ASF) low virulent isolate NH/P68 by surviving pigs. Transbound. Emerg. Dis. 62, 612–622. doi: 10.1111/tbed.12431Gallardo, C., Soler, A., Rodze, I., Nieto, R., Cano-Gómez, C., Fernandez-Pinero, J., et al. (2019). Attenuated and non-haemadsorbing (non-HAD) genotype II African swine fever virus (ASFV) isolated in Europe, Latvia 2017. Transbound. Emerg. Dis. 66, 1399–1404. doi: 10.1111/tbed.13132Ganges, L., Crooke, H. R., Bohórquez, J. A., Postel, A., Sakoda, Y., Becher, P., et al. (2020). Classical swine fever virus: the past, present and future. Virus Res. 289:198151. doi: 10.1016/j.virusres.2020.198151Gaudreault, N. N., Madden, D. W., Wilson, W. C., Trujillo, J. D., and Richt, J. A. (2020). African swine fever virus: an emerging DNA Arbovirus. Front. Vet. Sci. 7:215. doi: 10.3389/fvets.2020.00215Gavier-Widén, D., Gortázar, C., Stahl, K., Neimanis, A. S., Rossi, S., Hard Av Segerstad, C., et al. (2015). African swine fever in wild boar in Europe: a notable challenge. Vet. Rec. 176, 199–200. doi: 10.1136/vr.h699Ge, S., Li, J., Fan, X., Liu, F., Li, L., Wang, Q., et al. (2018). Molecular characterization of African swine fever virus, China, 2018. Emerg. Infect. Dis. 24, 2131–2133. doi: 10.3201/eid2411.181274Gf-TADs (2020). African Swine Fever: An Unprecedented Global Threat—A Challenge to Livelihoods, Food Security and Biodiversity. Call for Action. Available online at: http://www.gf-tads.org/events/events-detail/fr/c/1152886/ (accessed 26 October, 2020).Golnar, A. J., Martin, E., Wormington, J. D., Kading, R. C., Teel, P. D., Hamer, S. A., et al. (2019). Reviewing the potential vectors and hosts of African swine fever virus transmission in the United States. Vector Borne Zoonotic Dis. 19, 512–524. doi: 10.1089/vbz.2018.2387Gorry, C. (2021). In Haiti, Cubans among first responders, again: Luis Orlando Oliveros-Serrano MD Coordinator, Cuban Medical Team in Haiti. MEDICC Rev. 24, 19–20. doi: 10.37757/MR2022.V24.N1.1Groocock, C., Hess, W., and Gladney, W. (1980). Experimental transmission of African swine fever virus by Ornithodoros coriaceus, an argasid tick indigenous to the United States. Am. J. Vet. Res. 41, 591–594.Guinat, C., Vergne, T., Jurado-Diaz, C., Sánchez-Vizcaíno, J. M., Dixon, L., and Pfeiffer, D. U. (2017). Effectiveness and practicality of control strategies for African swine fever: what do we really know? Vet. Rec. 180:97. doi: 10.1136/vr.103992Hess, W. R., Endris, R. G., Haslett, T. M., Monahan, M. J., and Mccoy, J. P. (1987). Potential arthropod vectors of African swine fever virus in North America and the Caribbean basin. Vet. Parasitol. 26, 145–155. doi: 10.1016/0304-4017(87)90084-7Hoffman, D. M. (2021). The Haitian orphanage crisis: exporting neoliberal family ideals in the debate on vulnerable childhoods in Haiti. Child. Soc. 35, 577–592. doi: 10.1111/chso.12442Kading, R. C., Abworo, E. O., and Hamer, G. L. (2019). Rift valley fever virus, Japanese encephalitis virus, and African swine fever virus: three transboundary, vector-borne, veterinary biothreats with diverse surveillance, and response capacity needs. Front. Vet. Sci. 6:458. doi: 10.3389/fvets.2019.00458Kim, H.-J., Lee, M.-J., Lee, S.-K., Kim, D.-Y., Seo, S.-J., Kang, H.-E., et al. (2019). African swine fever virus in pork brought into South Korea by travelers from China, August 2018. Emerg. Infect. Dis. 25, 1231–1233. doi: 10.3201/eid2506.181684Kleiboeker, S. B., Burrage, T. G., Scoles, G. A., Fish, D., and Rock, D. L. (1998). African swine fever virus infection in the argasid host, Ornithodoros porcinus porcinus. J. Virol. 72, 1711–1724. doi: 10.1128/JVI.72.3.1711-1724.1998Kleiboeker, S. B., and Scoles, G. A. (2001). Pathogenesis of African swine fever virus in Ornithodoros ticks. Anim. Health Res. Rev. 2, 121–128. doi: 10.1079/AHRR200133Komal, J. (2020). Regional efforts in the Americas to prevent ASF introduction. African Swine Fever Unprecedented Global Threat: A Global Challenge to Livelihoods, Food Security, and Biodiversity. The Global Framework for the Progressive Control of Transboundary Animal Diseases (GF-TADs).Li, L., Ren, Z., Wang, Q., Ge, S., Liu, Y., Liu, C., et al. (2019). Infection of African swine fever in wild boar, China, 2018. Transbound. Emerg. Dis. 66, 1395–1398. doi: 10.1111/tbed.13114Li, X., and Tian, K. (2018). African swine fever in China. Vet. Rec. 183, 300–301. doi: 10.1136/vr.k3774Mellor, P., and Wilkinson, P. (1985). Experimental transmission of African swine fever virus by Ornithodoros savignyi (Audouin). Res. Vet. Sci. 39, 353–361. doi: 10.1016/S0034-5288(18)31726-0Minoungou, G. L., Diop, M., Dakouo, M., Ouattara, A. K., Settypalli, T. B. K., Lo, M. M., et al. (2021). Molecular characterization of African Swine fever viruses in Burkina Faso, Mali, and Senegal 1989–2016. Transbound. Emerg. Dis. 68, 2842–2852. doi: 10.1111/tbed.14240Montgomery, R. E. (1921). On a form of swine fever occurring in British East Africa (Kenya Colony). J. Comp. Pathol. Ther. 34, 159–191. doi: 10.1016/S0368-1742(21)80031-4Mur, L., Atzeni, M., Martínez-López, B., Feliziani, F., Rolesu, S., and Sanchez-Vizcaino, J. M. (2016). Thirty-five-year presence of African swine fever in Sardinia: history, evolution and risk factors for disease maintenance. Transbound. Emerg. Dis. 63, e165–e177. doi: 10.1111/tbed.12264Njau, E. P., Domelevo Entfellner, J.-B., Machuka, E. M., Bochere, E. N., Cleaveland, S., Shirima, G. M., et al. (2021). The first genotype II African swine fever virus isolated in Africa provides insight into the current Eurasian pandemic. Sci. Rep. 11:13081. doi: 10.1038/s41598-021-92593-2Oxford-Analytica (2020). Pandemic to Worsen Recession and Instability in Haiti. Haiti: Emerald Expert Briefings.Pereira De Oliveira, R., Hutet, E., Duhayon, M., Guionnet, J.-M., Paboeuf, F., Vial, L., et al. (2020a). Successful infection of domestic pigs by ingestion of the European soft tick O. Erraticus that fed on African swine fever virus infected pig. Viruses 12:300. doi: 10.3390/v12030300Pereira De Oliveira, R., Hutet, E., Lancelot, R., Paboeuf, F., Duhayon, M., Boinas, F., et al. (2020b). Differential vector competence of Ornithodoros soft ticks for African swine fever virus: what if it involves more than just crossing organic barriers in ticks? Parasit. Vect. 13:618. doi: 10.1186/s13071-020-04497-1Pereira De Oliveira, R., Hutet, E., Paboeuf, F., Duhayon, M., Boinas, F., Perez De Leon, A., et al. (2019). Comparative vector competence of the Afrotropical soft tick Ornithodoros moubata and Palearctic species, O. erraticus and O. verrucosus, for African swine fever virus strains circulating in Eurasia. PLoS ONE 14:e0225657. doi: 10.1371/journal.pone.0225657Plowright, W., Parker, J., and Peirce, M. (1969). African swine fever virus in ticks (Ornithodoros moubata, Murray) collected from animal burrows in Tanzania. Nature 221, 1071–1073. doi: 10.1038/2211071a0Quembo, C. J., Jori, F., Vosloo, W., and Heath, L. (2018). Genetic characterization of African swine fever virus isolates from soft ticks at the wildlife/domestic interface in Mozambique and identification of a novel genotype. Transbound. Emerg. Dis. 65, 420–431. doi: 10.1111/tbed.12700Rennie, L., Wilkinson, P., and Mellor, P. (2000). Effects of infection of the tick Ornithodoros moubata with African swine fever virus. Med. Vet. Entomol. 14, 355–360. doi: 10.1046/j.1365-2915.2000.00251.xRibeiro, R., Otte, J., Madeira, S., Hutchings, G. H., and Boinas, F. (2015). Experimental infection of Ornithodoros erraticus sensu stricto with two portuguese African swine fever virus strains. Study of factors involved in the dynamics of infection in ticks. PLoS ONE 10:e0137718. doi: 10.1371/journal.pone.0137718Rivera-Benítez, J. F., De La Luz-Armendáriz, J., Gómez-Núñez, L., Vargas, F. D., Escatell, G. S., Ramírez-Medina, E., et al. (2021). Swine health: history, challenges and prospects. Rev. Mex. Cienc. Pecu. 12, 149–185. doi: 10.22319/rmcp.v12s3.5879Sánchez-Vizcaíno, J. M., Mur, L., and Martínez-López, B. (2013). African swine fever (ASF): five years around Europe. Vet. Microbiol. 165, 45–50. doi: 10.1016/j.vetmic.2012.11.030Sauter-Louis, C., Conraths, F. J., Probst, C., Blohm, U., Schulz, K., Sehl, J., et al. (2021a). African swine fever in wild boar in Europe—a review. Viruses 13:1717. doi: 10.3390/v13091717Sauter-Louis, C., Forth, J. H., Probst, C., Staubach, C., Hlinak, A., Rudovsky, A., et al. (2021b). Joining the club: first detection of African swine fever in wild boar in Germany. Transbound. Emerg. Dis. 68, 1744–1752. doi: 10.22541/au.160253806.62312023/v1Suárez, J., Carreño, L., Paniz-Mondolfi, A., and Canosa, F. J. M. (2018). Infectious diseases, social, economic and political crises, anthropogenic disasters and beyond: Venezuela 2019—implications for public health and travel medicine. Rev. Panam. Enferm. Infecc. 1, 73–93. doi: 10.13140/RG.2.2.13082.90562/1Tran, X. H., Le, T. T. P., Nguyen, Q. H., Do, T. T., Nguyen, V. D., Gay, C. G., et al. (2021). African swine fever virus vaccine candidate ASFV-G-DeltaI177L efficiently protects European and native pig breeds against circulating Vietnamese field strain. Transbound. Emerg. Dis.69, e497–e504. doi: 10.1111/tbed.14329Tran, X. H., Phuong, L. T. T., Huy, N. Q., Thuy, D. T., Nguyen, V. D., Quang, P. H., et al. (2022). Evaluation of the safety profile of the ASFV vaccine candidate ASFV-G-andDelta;I177L. Viruses 14:896. doi: 10.3390/v14050896Tulman, E. R., Delhon, G. A., Ku, B. K., and Rock, D. L. (2009). African swine fever virus. Curr. Top. Microbiol. Immunol. 328, 43–87. doi: 10.1007/978-3-540-68618-7_2USDA (2021). USDA Statement on Confirmation of African Swine Fever in the Dominican Republic. USDOA Animal and Plant Health Inspection Service, USDA.Uwishema, O., Chalhoub, E., Zahabioun, A., David, S. C., Khoury, C., Al-Saraireh, T. H., et al. (2021). The rising incidence of African swine fever during the COVID-19 pandemic in Africa: efforts, challenges and recommendations. Int. J. Health Plann. Manage. 37, 561–567. doi: 10.1002/hpm.3357Velazquez-Salinas, L., Ramirez-Medina, E., Rai, A., Pruitt, S., Vuono, E. A., Espinoza, N., et al. (2021). Development real-time PCR assays to genetically differentiate vaccinated pigs from infected pigs with the Eurasian strain of African swine fever virus. Front. Vet. Sci. 8:768869. doi: 10.3389/fvets.2021.768869Vilem, A., Nurmoja, I., Niine, T., Riit, T., Nieto, R., Viltrop, A., et al. (2020). Molecular characterization of African swine fever virus isolates in Estonia in 2014–2019. Pathogens 9:582. doi: 10.3390/pathogens9070582Wang, W.-H., Lin, C.-Y., Chang Ishcol, M. R., Urbina, A. N., Assavalapsakul, W., Thitithanyanont, A., et al. (2019). Detection of African swine fever virus in pork products brought to Taiwan by travellers. Emerg. Microb. Infect. 8, 1000–1002. doi: 10.1080/22221751.2019.1636615WOAH (2021a). Follow-up Report 1. African Swine Fever Virus (Inf. with), Dominican (Rep.)—REPORT ID FUR_151044. O. World Organization for Animal Health.WOAH (2021b). Follow-up Report 1. African Swine Fever Virus (Inf. with), Haiti—REPORT ID FUR_151855. O. World Organization for Animal Health.WOAH (2021c). Immediate Notification. African Swine Fever Virus (Inf. with), Dominican (Rep.)—REPORT ID IN_150921. O. World Organization for Animal Health.WOAH (2021d). Immediate Notification. African Swine Fever Virus (Inf. with), Haiti—REPORT ID IN_151732. O. World Organization for Animal Health.WOAH (2021e). RESOLUTION No. 20. Recognition of the Classical Swine Fever Status of Members. Oie: Paris, France.Wormington, J. D., Golnar, A., Poh, K. C., Kading, R. C., Martin, E., Hamer, S. A., et al. (2019). Risk of African swine fever virus sylvatic establishment and spillover to domestic swine in the United States. Vector Borne Zoonotic Dis. 19, 506–511. doi: 10.1089/vbz.2018.2386Zani, L., Forth, J. H., Forth, L., Nurmoja, I., Leidenberger, S., Henke, J., et al. (2018). Deletion at the 5'-end of Estonian ASFV strains associated with an attenuated phenotype. Sci. Rep. 8:6510. doi: 10.1038/s41598-018-24740-1Zhou, X., Li, N., Luo, Y., Liu, Y., Miao, F., Chen, T., et al. (2018). Emergence of African swine fever in China, 2018. Transbound. Emerg. Dis. 65, 1482–1484. doi: 10.1111/tbed.12989African swine feverReservoirsArbovirusEmerging diseasePigsAfrican swine fever virus: a re-emerging threat to the swine industry and food security in the AmericasArtículos Científicoshttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationORIGINAL2023_african_swine_fever_virus.pdf2023_african_swine_fever_virus.pdfArticuloapplication/pdf355148https://repository.ucc.edu.co/bitstreams/620e1814-e6a0-4b52-a653-9206c15ff0a4/downloadbd3db1187d9bff385d8b6c738942dcd3MD512023_african_swine_fever_virus-FormatoLicenciaUso.pdf2023_african_swine_fever_virus-FormatoLicenciaUso.pdfLicencia de usoapplication/pdf219867https://repository.ucc.edu.co/bitstreams/911e3fc2-aae2-4821-baee-43f3e544f75d/download743442e143c0021ceb61ef2757abe982MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/b68cb115-96ee-4468-8a0a-87cac79faceb/download3bce4f7ab09dfc588f126e1e36e98a45MD52TEXT2023_african_swine_fever_virus.pdf.txt2023_african_swine_fever_virus.pdf.txtExtracted texttext/plain50368https://repository.ucc.edu.co/bitstreams/94b18a70-1508-47e9-a033-aafbfce2a228/download38175860075faeef8854e9dc1a6f058aMD542023_african_swine_fever_virus-FormatoLicenciaUso.pdf.txt2023_african_swine_fever_virus-FormatoLicenciaUso.pdf.txtExtracted texttext/plain6071https://repository.ucc.edu.co/bitstreams/ce87f56a-5b80-4c64-925d-f91c61783784/download311c5c1c92dda3d014168a98024e3128MD56THUMBNAIL2023_african_swine_fever_virus.pdf.jpg2023_african_swine_fever_virus.pdf.jpgGenerated Thumbnailimage/jpeg10842https://repository.ucc.edu.co/bitstreams/e80f8700-4da0-4083-9a57-4f67fa5ae1d3/downloadf6018c5d2c63736e45af29dddc51173fMD552023_african_swine_fever_virus-FormatoLicenciaUso.pdf.jpg2023_african_swine_fever_virus-FormatoLicenciaUso.pdf.jpgGenerated Thumbnailimage/jpeg13557https://repository.ucc.edu.co/bitstreams/90d2032d-a926-466d-a3bc-e2af5a462645/download4f14fc5b27bdf0b859ed35dc5413575bMD5720.500.12494/52296oai:repository.ucc.edu.co:20.500.12494/522962024-08-09 12:27:18.716open.accesshttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo= |