Innovative use of agro-waste cane bagasse ash and waste glass as cement replacement for green concrete. Cost analysis and carbon dioxide and emissions
La ceniza de bagazo de caña CBA es un material de desecho agrícola utilizado como reemplazo del cemento en la preparación de concreto verde debido a sus buenas propiedades puzolánicas. La resistencia a la compresión del hormigón preparado con incorporación de bagazo de caña de azúcar es equivalente...
- Autores:
-
Arbeláez Pérez, Oscar Felipe
Restrepo Flórez, Daniela
Zapata Vergara, Laura Melina
Hernández Benavides, Karen Viviana
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2022
- Institución:
- Universidad Cooperativa de Colombia
- Repositorio:
- Repositorio UCC
- Idioma:
- OAI Identifier:
- oai:repository.ucc.edu.co:20.500.12494/52782
- Acceso en línea:
- https://doi.org/10.1016/j.jclepro.2022.134822
https://hdl.handle.net/20.500.12494/52782
- Palabra clave:
- Residuos agricolas
Ceniza de bagazo de caña
Residuos de vidrio
Concretos modificados
Concreto verde
Puzolanas
TG 2023 ICI
Cane bagasse ash
Agricultural waste
Waste glass
Modified concrete
Green concret
Pozzolans
- Rights
- closedAccess
- License
- Atribución – Sin Derivar
id |
COOPER2_c7ed14855077d721963c3af4b393c40f |
---|---|
oai_identifier_str |
oai:repository.ucc.edu.co:20.500.12494/52782 |
network_acronym_str |
COOPER2 |
network_name_str |
Repositorio UCC |
repository_id_str |
|
dc.title.none.fl_str_mv |
Innovative use of agro-waste cane bagasse ash and waste glass as cement replacement for green concrete. Cost analysis and carbon dioxide and emissions |
title |
Innovative use of agro-waste cane bagasse ash and waste glass as cement replacement for green concrete. Cost analysis and carbon dioxide and emissions |
spellingShingle |
Innovative use of agro-waste cane bagasse ash and waste glass as cement replacement for green concrete. Cost analysis and carbon dioxide and emissions Residuos agricolas Ceniza de bagazo de caña Residuos de vidrio Concretos modificados Concreto verde Puzolanas TG 2023 ICI Cane bagasse ash Agricultural waste Waste glass Modified concrete Green concret Pozzolans |
title_short |
Innovative use of agro-waste cane bagasse ash and waste glass as cement replacement for green concrete. Cost analysis and carbon dioxide and emissions |
title_full |
Innovative use of agro-waste cane bagasse ash and waste glass as cement replacement for green concrete. Cost analysis and carbon dioxide and emissions |
title_fullStr |
Innovative use of agro-waste cane bagasse ash and waste glass as cement replacement for green concrete. Cost analysis and carbon dioxide and emissions |
title_full_unstemmed |
Innovative use of agro-waste cane bagasse ash and waste glass as cement replacement for green concrete. Cost analysis and carbon dioxide and emissions |
title_sort |
Innovative use of agro-waste cane bagasse ash and waste glass as cement replacement for green concrete. Cost analysis and carbon dioxide and emissions |
dc.creator.fl_str_mv |
Arbeláez Pérez, Oscar Felipe Restrepo Flórez, Daniela Zapata Vergara, Laura Melina Hernández Benavides, Karen Viviana |
dc.contributor.author.none.fl_str_mv |
Arbeláez Pérez, Oscar Felipe Restrepo Flórez, Daniela Zapata Vergara, Laura Melina Hernández Benavides, Karen Viviana |
dc.subject.none.fl_str_mv |
Residuos agricolas Ceniza de bagazo de caña Residuos de vidrio Concretos modificados Concreto verde Puzolanas |
topic |
Residuos agricolas Ceniza de bagazo de caña Residuos de vidrio Concretos modificados Concreto verde Puzolanas TG 2023 ICI Cane bagasse ash Agricultural waste Waste glass Modified concrete Green concret Pozzolans |
dc.subject.classification.none.fl_str_mv |
TG 2023 ICI |
dc.subject.other.none.fl_str_mv |
Cane bagasse ash Agricultural waste Waste glass Modified concrete Green concret Pozzolans |
description |
La ceniza de bagazo de caña CBA es un material de desecho agrícola utilizado como reemplazo del cemento en la preparación de concreto verde debido a sus buenas propiedades puzolánicas. La resistencia a la compresión del hormigón preparado con incorporación de bagazo de caña de azúcar es equivalente a la del hormigón tradicional. Asimismo, el uso de residuos de vidrio WG como reemplazo parcial del cemento en el concreto mejora la resistencia a la compresión, generando un uso potencial desde el punto de vista económico y sustentable. En este estudio se diseñaron mezclas de concreto tradicional y modificado con reemplazos del 20% en masa del cemento. Se prepararon diferentes mezclas con ceniza de bagazo de caña y residuos de vidrio CBA0:WG0, CBA20:WG0, CBA15:WG5, CBA10:WG10, CBA5:WG15, CBA0:WG20, en sustitución del cemento. A partir de las mezclas preparadas se prepararon cuatro probetas cilíndricas de 0,15 m de diámetro y 0,3 m de longitud. Se ha estudiado el efecto de la incorporación de residuos de vidrio sobre el asentamiento, la densidad y la resistencia a la compresión. Además, se realizó un análisis de costos. Los resultados experimentales muestran que la incorporación combinada de ceniza de bagazo de caña y vidrio usado disminuye el revenimiento en relación con la baja absorción de agua de ambos residuos. Además, el aumento del contenido de vidrio de desecho aumenta la densidad de acuerdo con la mayor densidad de vidrio de desecho. Adicionalmente, los resultados mostraron que la resistencia a la compresión se modifica con la incorporación de ceniza de bagazo de caña, la mayor resistencia a la compresión se obtuvo en la mezcla de concreto 15% ceniza de bagazo de caña y 5% de residuos de vidrio etiquetados como CBA15:WG5. De hecho, la resistencia a la compresión aumentó un 10 % en comparación con la resistencia a la compresión de la mezcla de hormigón preparada con residuos de vidrio etiquetados como CBA0:WG20. El análisis de costos mostró que la mezcla CBA15:WG5 tiene un costo 8% menor que el concreto tradicional CBA0:WG0. Con la sustitución parcial del 20% del cemento por CBA, se logra reducir la emisión de CO2 por cada m3 de material producido. Por otro lado, la introducción de CBA reduce el efecto de la reacción de sílice alcalina. Se espera que la incorporación combinada de residuos de vidrio y cenizas de bagazo de caña en la preparación del hormigón mejore el uso de la biomasa residual en la preparación del hormigón sostenible y respetuosa con el medio ambiente. |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022-10-30 |
dc.date.accessioned.none.fl_str_mv |
2023-09-29T15:44:03Z |
dc.date.available.none.fl_str_mv |
2023-09-29T15:44:03Z 2027-08-11 |
dc.type.none.fl_str_mv |
Artículos Científicos |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://doi.org/10.1016/j.jclepro.2022.134822 https://hdl.handle.net/20.500.12494/52782 |
dc.identifier.bibliographicCitation.none.fl_str_mv |
Oscar Felipe Arbelaez Perez, Daniela Restrepo Florez, Laura Melina Zapata Vergara, Karen Viviana Hernández Benavides, Innovative use of agro-waste cane bagasse ash and waste glass as cement replacement for green concrete. Cost analysis and carbon dioxide emissions, Journal of Cleaner Production, Volume 379, Part 2, 2022, 134822, ISSN 0959-6526, https://doi.org/10.1016/j.jclepro.2022.134822. (https://www.sciencedirect.com/science/article/pii/S0959652622043955) Abstract: The individual incorporation of cane bagasse ash (CBA) and waste glass (WG) as substitutes of cement changes the properties of concrete. The aim of this study was to investigate the effects of using CBA with WG as cement substitutes on concrete properties. Different mixtures with cane bagasse ash and waste glass were prepared. The workability of concrete mixtures was evaluated by slump test immediately after casting, density and compressive strength were tested at 28 days. Additionally, cost analysis, carbon dioxide emissions and alkali-silica reaction were evaluated. Using cane bagasse ash with waste glass to produce concrete achieved better results for physical and mechanical properties than the concrete mixture using CBA or WG individually as a partial substitute for cement. The experimental results show that the incorporation of cane bagasse ash decreased the slump related with the low water absorption of CBA. Additionally, the hardened density of concrete incorporating waste glass and cane bagasse ash was lower than traditional concrete, however a definite trend was not observed. The combined use of CBA and WG has a positive contribution in achieving the highest compressive strength. The results exhibited that the incorporation of cane bagasse improved the compressive strength. The CBA15:WG5 mixture can increase 20% compressive strength in comparison with CBA0:WG20 mixture (without CBA). Additionally, CBA15:WG5 mixture have 8% lower cost than the traditional concrete CBA0:WG0. With the partial substitution of 20% of cement by ashes from cane bagasse ash and waste glass, it is possible to reduce the emission of CO2 for each m3 of material produced. On the other hand, the introduction of cane bagasse ash reduces the alkali silica reaction effect. Keywords: Cane bagasse ash; Agricultural waste; Waste glass; Green concrete; Cost analysis; CO2 emissions |
url |
https://doi.org/10.1016/j.jclepro.2022.134822 https://hdl.handle.net/20.500.12494/52782 |
identifier_str_mv |
Oscar Felipe Arbelaez Perez, Daniela Restrepo Florez, Laura Melina Zapata Vergara, Karen Viviana Hernández Benavides, Innovative use of agro-waste cane bagasse ash and waste glass as cement replacement for green concrete. Cost analysis and carbon dioxide emissions, Journal of Cleaner Production, Volume 379, Part 2, 2022, 134822, ISSN 0959-6526, https://doi.org/10.1016/j.jclepro.2022.134822. (https://www.sciencedirect.com/science/article/pii/S0959652622043955) Abstract: The individual incorporation of cane bagasse ash (CBA) and waste glass (WG) as substitutes of cement changes the properties of concrete. The aim of this study was to investigate the effects of using CBA with WG as cement substitutes on concrete properties. Different mixtures with cane bagasse ash and waste glass were prepared. The workability of concrete mixtures was evaluated by slump test immediately after casting, density and compressive strength were tested at 28 days. Additionally, cost analysis, carbon dioxide emissions and alkali-silica reaction were evaluated. Using cane bagasse ash with waste glass to produce concrete achieved better results for physical and mechanical properties than the concrete mixture using CBA or WG individually as a partial substitute for cement. The experimental results show that the incorporation of cane bagasse ash decreased the slump related with the low water absorption of CBA. Additionally, the hardened density of concrete incorporating waste glass and cane bagasse ash was lower than traditional concrete, however a definite trend was not observed. The combined use of CBA and WG has a positive contribution in achieving the highest compressive strength. The results exhibited that the incorporation of cane bagasse improved the compressive strength. The CBA15:WG5 mixture can increase 20% compressive strength in comparison with CBA0:WG20 mixture (without CBA). Additionally, CBA15:WG5 mixture have 8% lower cost than the traditional concrete CBA0:WG0. With the partial substitution of 20% of cement by ashes from cane bagasse ash and waste glass, it is possible to reduce the emission of CO2 for each m3 of material produced. On the other hand, the introduction of cane bagasse ash reduces the alkali silica reaction effect. Keywords: Cane bagasse ash; Agricultural waste; Waste glass; Green concrete; Cost analysis; CO2 emissions |
dc.relation.isversionof.none.fl_str_mv |
https://www.sciencedirect.com/science/article/abs/pii/S0959652622043955?via%3Dihub |
dc.relation.references.none.fl_str_mv |
Adesanya, D.A., Raheem, A.A., 2009. Development of corn cob ash blended cement. Constr. Build. Mater. 23, 347–352. https://doi.org/10.1016/j.conbuildmat.2007.11.013 Adesina, A., 2020. Recent advances in the concrete industry to reduce its carbon dioxide emissions. Environ. Challenges 1, 100004. https://doi.org/10.1016/j.envc.2020.100004 Alnahhal, M.F., Alengaram, U.J., Jumaat, M.Z., Abutaha, F., Alqedra, M.A., Nayaka, R.R., 2018. Assessment on engineering properties and CO2 emissions of recycled aggregate concrete incorporating waste products as supplements to Portland cement. J. Clean. Prod. 203, 822–835. https://doi.org/10.1016/j.jclepro.2018.08.292 Andrew, R.M., 2019. Global CO2 emissions from cement production, 1928-2018. Earth Syst. Sci. Data 11, 1675–1710. https://doi.org/10.5194/essd-11-1675-2019 Chowdhury, S., Mishra, M., Suganya, O., 2015. The incorporation of wood waste ash as a partial cement replacement material for making structural grade concrete: An overview. Ain Shams Eng. J. 6, 429–437. https://doi.org/10.1016/j.asej.2014.11.005 Cordeiro, G.C., Toledo Filho, R.D., Tavares, L.M., Fairbairn, E. de M.R., 2009. Ultrafine grinding of sugar cane bagasse ash for application as pozzolanic admixture in concrete. Cem. Concr. Res. 39, 110–115. https://doi.org/10.1016/j.cemconres.2008.11.005 Esmaeili, J., Oudah Al-Mwanes, A., 2021. A review: Properties of eco-friendly ultra-high-performance concrete incorporated with waste glass as a partial replacement for cement. Mater. Today Proc. 42, 1958–1965. https://doi.org/10.1016/j.matpr.2020.12.242 Jha, P., Sachan, A.K., Singh, R.P., 2021. Agro-waste sugarcane bagasse ash (ScBA) as partial replacement of binder material in concrete. Mater. Today Proc. 44, 419–427. https://doi.org/10.1016/j.matpr.2020.09.751 Jiang, X., Xiao, R., Bai, Y., Huang, B., Ma, Y., 2022. Influence of waste glass powder as a supplementary cementitious material (SCM) on physical and mechanical properties of cement paste under high temperatures. J. Clean. Prod. 340. https://doi.org/10.1016/j.jclepro.2022.130778 Jittin, V., Bahurudeen, A., Ajinkya, S.D., 2020. Utilisation of rice husk ash for cleaner production of different construction products. J. Clean. Prod. 263, 121578. https://doi.org/10.1016/j.jclepro.2020.121578 Kamali, M., Ghahremaninezhad, A., 2015. Effect of glass powders on the mechanical and durability properties of cementitious materials. Constr. Build. Mater. 98, 407–416. https://doi.org/10.1016/j.conbuildmat.2015.06.010 Kumari, S., Walia, R., 2021. Life cycle assessment of sustainable concrete by utilizing groundnut husk ash in concrete. Mater. Today Proc. 49, 1910–1915. https://doi.org/10.1016/j.matpr.2021.08.082 Lyra, G.P., Borrachero, M.V., Soriano, L., Payá, J., Rossignolo, J.A., 2021. Comparison of original and washed pure sugar cane bagasse ashes as supplementary cementing materials. Constr. Build. Mater. 272, 122001. https://doi.org/10.1016/j.conbuildmat.2020.122001 Miller, S.A., Moore, F.C., 2020. Climate and health damages from global concrete production. Nat. Clim. Chang. 10, 439–443. https://doi.org/10.1038/s41558-020-0733-0 Mohajerani, A., Vajna, J., Cheung, T.H.H., Kurmus, H., Arulrajah, A., Horpibulsuk, S., 2017. Practical recycling applications of crushed waste glass in construction materials: A review. Constr. Build. Mater. 156, 443–467. https://doi.org/10.1016/j.conbuildmat.2017.09.005 Nassar, R.U.D., Soroushian, P., Sufyan-Ud-Din, M., 2021. Long-term field performance of concrete produced with powder waste glass as partial replacement of cement. Case Stud. Constr. Mater. 15, e00745. https://doi.org/10.1016/j.cscm.2021.e00745 Nie, S., Zhou, J., Yang, F., Lan, M., Li, J., Zhang, Z., Chen, Z., Xu, M., Li, H., Sanjayan, J.G., 2022. Analysis of theoretical carbon dioxide emissions from cement production: Methodology and application. J. Clean. Prod. 334, 130270. https://doi.org/10.1016/j.jclepro.2021.130270 Pourkhorshidi, A.R., Najimi, M., Parhizkar, T., Jafarpour, F., Hillemeier, B., 2010. Cement & Concrete Composites Applicability of the standard specifications of ASTM C618 for evaluation of natural pozzolans. Cem. Concr. Compos. 32, 794–800. https://doi.org/10.1016/j.cemconcomp.2010.08.007 Prasanna, Maneeth, P., Brij Bhushan, S., Rohan, S.G., 2016. Experimental Investigation on Partial Replacement of Cement by Sugar Cane Bagasse Ash in Cement Concrete. Int. J. Sci. Res. Dev. 3, 550–554. Raheem, A.A., Ikotun, B.D., 2020. Incorporation of agricultural residues as partial substitution for cement in concrete and mortar – A review. J. Build. Eng. 31, 101428. https://doi.org/10.1016/j.jobe.2020.101428 Ramesh Kumar, G.B., Kesavan, V., 2020. Study of structural properties evaluation on coconut fiber ash mixed concrete. Mater. Today Proc. 22, 811–816. https://doi.org/10.1016/j.matpr.2019.10.158 Rashad, A.M., 2014. Recycled waste glass as fine aggregate replacement in cementitious materials based on Portland cement. Constr. Build. Mater. 72, 340–357. https://doi.org/10.1016/j.conbuildmat.2014.08.092 Sabău, M., Bompa, D. V., Silva, L.F.O., 2021. Comparative carbon emission assessments of recycled and natural aggregate concrete: Environmental influence of cement content. Geosci. Front. 12. https://doi.org/10.1016/j.gsf.2021.101235 Sathiparan, N., 2021. Utilization prospects of eggshell powder in sustainable construction material – A review. Constr. Build. Mater. 293, 123465. https://doi.org/10.1016/j.conbuildmat.2021.123465 Selvakumar, M., Geetha, S., Kasturi Rangan, S., Sithrubi, T., Sathyashriya, K., 2020. Effect of glass powder as partial fine aggregate replacement on properties of basalt fibre reinforced concrete. Mater. Today Proc. 43, 1460–1464. https://doi.org/10.1016/j.matpr.2020.09.299 Shen, L., Gao, T., Zhao, J., Wang, Limao, Wang, Lan, Liu, L., Chen, F., Xue, J., 2014. Factory-level measurements on CO2 emission factors of cement production in China. Renew. Sustain. Energy Rev. 34, 337–349. https://doi.org/10.1016/j.rser.2014.03.025 Somna, R., Jaturapitakkul, C., Rattanachu, P., Chalee, W., 2012. Effect of ground bagasse ash on mechanical and durability properties of recycled aggregate concrete. Mater. Des. 36, 597–603. https://doi.org/10.1016/j.matdes.2011.11.065 Subathra Devi, V., Gnanavel, B.K., 2014. Properties of concrete manufactured using steel slag. Procedia Eng. 97, 95–104. https://doi.org/10.1016/j.proeng.2014.12.229 SUMESH, R.S., SUJATHA, U., 2018. Feasibility of Partial Replacement of Cement By Sugarcane Bagasse Ash in Concrete. i-manager’s J. Civ. Eng. 8, 38. https://doi.org/10.26634/jce.8.3.14450 Syahida Adnan, Z., Ariffin, N.F., Syed Mohsin, S.M., Abdul Shukor Lim, N.H., 2022. Review paper: Performance of rice husk ash as a material for partial cement replacement in concrete. Mater. Today Proc. 48, 842–848. https://doi.org/10.1016/j.matpr.2021.02.400 Tamanna, K., Raman, S.N., Jamil, M., Hamid, R., 2020. Utilization of wood waste ash in construction technology: A review. Constr. Build. Mater. 237, 117654. https://doi.org/10.1016/j.conbuildmat.2019.117654 Thomas, B.S., Kumar, S., Arel, H.S., 2017. Sustainable concrete containing palm oil fuel ash as a supplementary cementitious material – A review. Renew. Sustain. Energy Rev. 80, 550–561. https://doi.org/10.1016/j.rser.2017.05.128 Thomas, B.S., Yang, J., Bahurudeen, A., Abdalla, J.A., Hawileh, R.A., Hamada, H.M., Nazar, S., Jittin, V., Ashish, D.K., 2021. Sugarcane bagasse ash as supplementary cementitious material in concrete – a review. Mater. Today Sustain. 15, 100086. https://doi.org/10.1016/j.mtsust.2021.100086 Töbelmann, D., Wendler, T., 2020. The impact of environmental innovation on carbon dioxide emissions. J. Clean. Prod. 244. https://doi.org/10.1016/j.jclepro.2019.118787 Turner, L.K., Collins, F.G., 2013. Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete. Constr. Build. Mater. 43, 125–130. https://doi.org/10.1016/j.conbuildmat.2013.01.023 Ullah, K., Irshad Qureshi, M., Ahmad, A., Ullah, Z., 2022. Substitution potential of plastic fine aggregate in concrete for sustainable production. Structures 35, 622–637. https://doi.org/10.1016/j.istruc.2021.11.003 |
dc.rights.license.none.fl_str_mv |
Atribución – Sin Derivar |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/closedAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
rights_invalid_str_mv |
Atribución – Sin Derivar http://purl.org/coar/access_right/c_14cb |
eu_rights_str_mv |
closedAccess |
dc.format.extent.none.fl_str_mv |
134822 |
dc.coverage.temporal.none.fl_str_mv |
379 |
dc.publisher.none.fl_str_mv |
Universidad Cooperativa de Colombia |
dc.publisher.program.none.fl_str_mv |
Ingeniería Civil |
dc.publisher.place.none.fl_str_mv |
Medellín |
publisher.none.fl_str_mv |
Universidad Cooperativa de Colombia |
institution |
Universidad Cooperativa de Colombia |
bitstream.url.fl_str_mv |
https://repository.ucc.edu.co/bitstreams/65d5d6d9-3aad-41eb-bb7f-6110d0f010e5/download https://repository.ucc.edu.co/bitstreams/c391b5aa-3d95-4aeb-91f2-635fedd1d847/download https://repository.ucc.edu.co/bitstreams/5b05ec02-c0ea-4ee1-8c28-a54b4710bc87/download https://repository.ucc.edu.co/bitstreams/74a1f8e4-0c69-4e00-965c-04da8687d95e/download https://repository.ucc.edu.co/bitstreams/570fcd41-d3bd-4e7b-9867-5e7e8a97f90d/download https://repository.ucc.edu.co/bitstreams/fc230aaa-fbd7-4f7a-ba5f-47ab633a107f/download https://repository.ucc.edu.co/bitstreams/a904910e-7e38-4bb7-b9f2-b20b532392cc/download |
bitstream.checksum.fl_str_mv |
3bce4f7ab09dfc588f126e1e36e98a45 60b863ac6d6d22fbb1ad08daaf3aceeb d2b1598914a2e76366d4f6829f1515e3 70965df9e6a772fcd5606cd68b54724c 9a01ec01a64f9377a3ea782c718754d2 052cadf74d05833d1f3ac7859bc34202 371c4fd45d8af1ef87ccc661bcfd0a9b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Cooperativa de Colombia |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1811565199564472320 |
spelling |
Arbeláez Pérez, Oscar FelipeRestrepo Flórez, DanielaZapata Vergara, Laura MelinaHernández Benavides, Karen Viviana3792023-09-29T15:44:03Z2023-09-29T15:44:03Z2027-08-112022-10-30https://doi.org/10.1016/j.jclepro.2022.134822https://hdl.handle.net/20.500.12494/52782Oscar Felipe Arbelaez Perez, Daniela Restrepo Florez, Laura Melina Zapata Vergara, Karen Viviana Hernández Benavides, Innovative use of agro-waste cane bagasse ash and waste glass as cement replacement for green concrete. Cost analysis and carbon dioxide emissions, Journal of Cleaner Production, Volume 379, Part 2, 2022, 134822, ISSN 0959-6526, https://doi.org/10.1016/j.jclepro.2022.134822. (https://www.sciencedirect.com/science/article/pii/S0959652622043955) Abstract: The individual incorporation of cane bagasse ash (CBA) and waste glass (WG) as substitutes of cement changes the properties of concrete. The aim of this study was to investigate the effects of using CBA with WG as cement substitutes on concrete properties. Different mixtures with cane bagasse ash and waste glass were prepared. The workability of concrete mixtures was evaluated by slump test immediately after casting, density and compressive strength were tested at 28 days. Additionally, cost analysis, carbon dioxide emissions and alkali-silica reaction were evaluated. Using cane bagasse ash with waste glass to produce concrete achieved better results for physical and mechanical properties than the concrete mixture using CBA or WG individually as a partial substitute for cement. The experimental results show that the incorporation of cane bagasse ash decreased the slump related with the low water absorption of CBA. Additionally, the hardened density of concrete incorporating waste glass and cane bagasse ash was lower than traditional concrete, however a definite trend was not observed. The combined use of CBA and WG has a positive contribution in achieving the highest compressive strength. The results exhibited that the incorporation of cane bagasse improved the compressive strength. The CBA15:WG5 mixture can increase 20% compressive strength in comparison with CBA0:WG20 mixture (without CBA). Additionally, CBA15:WG5 mixture have 8% lower cost than the traditional concrete CBA0:WG0. With the partial substitution of 20% of cement by ashes from cane bagasse ash and waste glass, it is possible to reduce the emission of CO2 for each m3 of material produced. On the other hand, the introduction of cane bagasse ash reduces the alkali silica reaction effect. Keywords: Cane bagasse ash; Agricultural waste; Waste glass; Green concrete; Cost analysis; CO2 emissionsLa ceniza de bagazo de caña CBA es un material de desecho agrícola utilizado como reemplazo del cemento en la preparación de concreto verde debido a sus buenas propiedades puzolánicas. La resistencia a la compresión del hormigón preparado con incorporación de bagazo de caña de azúcar es equivalente a la del hormigón tradicional. Asimismo, el uso de residuos de vidrio WG como reemplazo parcial del cemento en el concreto mejora la resistencia a la compresión, generando un uso potencial desde el punto de vista económico y sustentable. En este estudio se diseñaron mezclas de concreto tradicional y modificado con reemplazos del 20% en masa del cemento. Se prepararon diferentes mezclas con ceniza de bagazo de caña y residuos de vidrio CBA0:WG0, CBA20:WG0, CBA15:WG5, CBA10:WG10, CBA5:WG15, CBA0:WG20, en sustitución del cemento. A partir de las mezclas preparadas se prepararon cuatro probetas cilíndricas de 0,15 m de diámetro y 0,3 m de longitud. Se ha estudiado el efecto de la incorporación de residuos de vidrio sobre el asentamiento, la densidad y la resistencia a la compresión. Además, se realizó un análisis de costos. Los resultados experimentales muestran que la incorporación combinada de ceniza de bagazo de caña y vidrio usado disminuye el revenimiento en relación con la baja absorción de agua de ambos residuos. Además, el aumento del contenido de vidrio de desecho aumenta la densidad de acuerdo con la mayor densidad de vidrio de desecho. Adicionalmente, los resultados mostraron que la resistencia a la compresión se modifica con la incorporación de ceniza de bagazo de caña, la mayor resistencia a la compresión se obtuvo en la mezcla de concreto 15% ceniza de bagazo de caña y 5% de residuos de vidrio etiquetados como CBA15:WG5. De hecho, la resistencia a la compresión aumentó un 10 % en comparación con la resistencia a la compresión de la mezcla de hormigón preparada con residuos de vidrio etiquetados como CBA0:WG20. El análisis de costos mostró que la mezcla CBA15:WG5 tiene un costo 8% menor que el concreto tradicional CBA0:WG0. Con la sustitución parcial del 20% del cemento por CBA, se logra reducir la emisión de CO2 por cada m3 de material producido. Por otro lado, la introducción de CBA reduce el efecto de la reacción de sílice alcalina. Se espera que la incorporación combinada de residuos de vidrio y cenizas de bagazo de caña en la preparación del hormigón mejore el uso de la biomasa residual en la preparación del hormigón sostenible y respetuosa con el medio ambiente.Cane bagasse ash CBA is an agro waste material used as cement replacement in the preparation of green concrete due to its good pozzolanic properties. The compressive strength of prepared concrete with incorporation of sugarcane bagasse is equivalent to traditional concrete. Likewise, the use of waste glass WG as partial replacement for cement in concrete improves the compressive strength, generating a potential use from the economic and sustainable point of view. In this study mixtures of traditional and modified concrete were designed with replacements of 20% in mass of the cement. Different mixtures with cane bagasse ash and waste glass CBA0:WG0, CBA20:WG0, CBA15:WG5, CBA10:WG10, CBA5:WG15, CBA0:WG20, in replacement of cement were prepared. From the prepared mixtures, four cylindrical specimens of size 0.15 m diameter and 0.3m length were prepared. The effect of the incorporation of waste glass on the slump, density and compressive strength had been studied. Additionally, cost analysis was carried out. The experimental results show that the combined incorporation of cane bagasse ash and waste glass decreases the slump according related with the low water absorption of both residues. Additionally, the increasing of waste glass content increases the density according the higher density of waste glass. Additionally, the results showed that the compressive strength is modified with the incorporation of cane bagasse ash, the largest compressive strength was obtained in concrete mix 15% cane bagasse ash and 5% of waste glass labelled as CBA15:WG5. In fact, compressive strength increased 10% when compared with the compressive strength of the concrete mix prepared with waste glass labelled as CBA0:WG20. Cost analysis showed that the CBA15:WG5 mixture have 8% lower cost than the traditional concrete CBA0:WG0. With the partial substitution of 20% of cement by CBA, it is possible to reduce the emission of CO2 for each m3 of material produced. On the other hand, the introduction of CBA reduces the alkali silica reaction effect. The combined incorporation of waste glass and cane bagasse ash in concrete preparation is expected to enhance the use of residual biomass in sustainable and environmentally friendly concrete preparation.oscar.arbelaez@campusucc.edu.codaniela.restrepof@campusucc.edu.colaura.zapatav@campusucc.edu.cokaren.hernandezbe@campusucc.edu.cohttps://scholar.google.com/citations?user=TmMf33gAAAAJ&hl=es134822Universidad Cooperativa de ColombiaIngeniería CivilMedellínhttps://www.sciencedirect.com/science/article/abs/pii/S0959652622043955?via%3DihubAdesanya, D.A., Raheem, A.A., 2009. Development of corn cob ash blended cement. Constr. Build. Mater. 23, 347–352. https://doi.org/10.1016/j.conbuildmat.2007.11.013 Adesina, A., 2020. Recent advances in the concrete industry to reduce its carbon dioxide emissions. Environ. Challenges 1, 100004. https://doi.org/10.1016/j.envc.2020.100004 Alnahhal, M.F., Alengaram, U.J., Jumaat, M.Z., Abutaha, F., Alqedra, M.A., Nayaka, R.R., 2018. Assessment on engineering properties and CO2 emissions of recycled aggregate concrete incorporating waste products as supplements to Portland cement. J. Clean. Prod. 203, 822–835. https://doi.org/10.1016/j.jclepro.2018.08.292 Andrew, R.M., 2019. Global CO2 emissions from cement production, 1928-2018. Earth Syst. Sci. Data 11, 1675–1710. https://doi.org/10.5194/essd-11-1675-2019 Chowdhury, S., Mishra, M., Suganya, O., 2015. The incorporation of wood waste ash as a partial cement replacement material for making structural grade concrete: An overview. Ain Shams Eng. J. 6, 429–437. https://doi.org/10.1016/j.asej.2014.11.005 Cordeiro, G.C., Toledo Filho, R.D., Tavares, L.M., Fairbairn, E. de M.R., 2009. Ultrafine grinding of sugar cane bagasse ash for application as pozzolanic admixture in concrete. Cem. Concr. Res. 39, 110–115. https://doi.org/10.1016/j.cemconres.2008.11.005 Esmaeili, J., Oudah Al-Mwanes, A., 2021. A review: Properties of eco-friendly ultra-high-performance concrete incorporated with waste glass as a partial replacement for cement. Mater. Today Proc. 42, 1958–1965. https://doi.org/10.1016/j.matpr.2020.12.242 Jha, P., Sachan, A.K., Singh, R.P., 2021. Agro-waste sugarcane bagasse ash (ScBA) as partial replacement of binder material in concrete. Mater. Today Proc. 44, 419–427. https://doi.org/10.1016/j.matpr.2020.09.751 Jiang, X., Xiao, R., Bai, Y., Huang, B., Ma, Y., 2022. Influence of waste glass powder as a supplementary cementitious material (SCM) on physical and mechanical properties of cement paste under high temperatures. J. Clean. Prod. 340. https://doi.org/10.1016/j.jclepro.2022.130778 Jittin, V., Bahurudeen, A., Ajinkya, S.D., 2020. Utilisation of rice husk ash for cleaner production of different construction products. J. Clean. Prod. 263, 121578. https://doi.org/10.1016/j.jclepro.2020.121578 Kamali, M., Ghahremaninezhad, A., 2015. Effect of glass powders on the mechanical and durability properties of cementitious materials. Constr. Build. Mater. 98, 407–416. https://doi.org/10.1016/j.conbuildmat.2015.06.010 Kumari, S., Walia, R., 2021. Life cycle assessment of sustainable concrete by utilizing groundnut husk ash in concrete. Mater. Today Proc. 49, 1910–1915. https://doi.org/10.1016/j.matpr.2021.08.082 Lyra, G.P., Borrachero, M.V., Soriano, L., Payá, J., Rossignolo, J.A., 2021. Comparison of original and washed pure sugar cane bagasse ashes as supplementary cementing materials. Constr. Build. Mater. 272, 122001. https://doi.org/10.1016/j.conbuildmat.2020.122001 Miller, S.A., Moore, F.C., 2020. Climate and health damages from global concrete production. Nat. Clim. Chang. 10, 439–443. https://doi.org/10.1038/s41558-020-0733-0 Mohajerani, A., Vajna, J., Cheung, T.H.H., Kurmus, H., Arulrajah, A., Horpibulsuk, S., 2017. Practical recycling applications of crushed waste glass in construction materials: A review. Constr. Build. Mater. 156, 443–467. https://doi.org/10.1016/j.conbuildmat.2017.09.005 Nassar, R.U.D., Soroushian, P., Sufyan-Ud-Din, M., 2021. Long-term field performance of concrete produced with powder waste glass as partial replacement of cement. Case Stud. Constr. Mater. 15, e00745. https://doi.org/10.1016/j.cscm.2021.e00745 Nie, S., Zhou, J., Yang, F., Lan, M., Li, J., Zhang, Z., Chen, Z., Xu, M., Li, H., Sanjayan, J.G., 2022. Analysis of theoretical carbon dioxide emissions from cement production: Methodology and application. J. Clean. Prod. 334, 130270. https://doi.org/10.1016/j.jclepro.2021.130270 Pourkhorshidi, A.R., Najimi, M., Parhizkar, T., Jafarpour, F., Hillemeier, B., 2010. Cement & Concrete Composites Applicability of the standard specifications of ASTM C618 for evaluation of natural pozzolans. Cem. Concr. Compos. 32, 794–800. https://doi.org/10.1016/j.cemconcomp.2010.08.007 Prasanna, Maneeth, P., Brij Bhushan, S., Rohan, S.G., 2016. Experimental Investigation on Partial Replacement of Cement by Sugar Cane Bagasse Ash in Cement Concrete. Int. J. Sci. Res. Dev. 3, 550–554. Raheem, A.A., Ikotun, B.D., 2020. Incorporation of agricultural residues as partial substitution for cement in concrete and mortar – A review. J. Build. Eng. 31, 101428. https://doi.org/10.1016/j.jobe.2020.101428 Ramesh Kumar, G.B., Kesavan, V., 2020. Study of structural properties evaluation on coconut fiber ash mixed concrete. Mater. Today Proc. 22, 811–816. https://doi.org/10.1016/j.matpr.2019.10.158 Rashad, A.M., 2014. Recycled waste glass as fine aggregate replacement in cementitious materials based on Portland cement. Constr. Build. Mater. 72, 340–357. https://doi.org/10.1016/j.conbuildmat.2014.08.092 Sabău, M., Bompa, D. V., Silva, L.F.O., 2021. Comparative carbon emission assessments of recycled and natural aggregate concrete: Environmental influence of cement content. Geosci. Front. 12. https://doi.org/10.1016/j.gsf.2021.101235 Sathiparan, N., 2021. Utilization prospects of eggshell powder in sustainable construction material – A review. Constr. Build. Mater. 293, 123465. https://doi.org/10.1016/j.conbuildmat.2021.123465 Selvakumar, M., Geetha, S., Kasturi Rangan, S., Sithrubi, T., Sathyashriya, K., 2020. Effect of glass powder as partial fine aggregate replacement on properties of basalt fibre reinforced concrete. Mater. Today Proc. 43, 1460–1464. https://doi.org/10.1016/j.matpr.2020.09.299 Shen, L., Gao, T., Zhao, J., Wang, Limao, Wang, Lan, Liu, L., Chen, F., Xue, J., 2014. Factory-level measurements on CO2 emission factors of cement production in China. Renew. Sustain. Energy Rev. 34, 337–349. https://doi.org/10.1016/j.rser.2014.03.025 Somna, R., Jaturapitakkul, C., Rattanachu, P., Chalee, W., 2012. Effect of ground bagasse ash on mechanical and durability properties of recycled aggregate concrete. Mater. Des. 36, 597–603. https://doi.org/10.1016/j.matdes.2011.11.065 Subathra Devi, V., Gnanavel, B.K., 2014. Properties of concrete manufactured using steel slag. Procedia Eng. 97, 95–104. https://doi.org/10.1016/j.proeng.2014.12.229 SUMESH, R.S., SUJATHA, U., 2018. Feasibility of Partial Replacement of Cement By Sugarcane Bagasse Ash in Concrete. i-manager’s J. Civ. Eng. 8, 38. https://doi.org/10.26634/jce.8.3.14450 Syahida Adnan, Z., Ariffin, N.F., Syed Mohsin, S.M., Abdul Shukor Lim, N.H., 2022. Review paper: Performance of rice husk ash as a material for partial cement replacement in concrete. Mater. Today Proc. 48, 842–848. https://doi.org/10.1016/j.matpr.2021.02.400 Tamanna, K., Raman, S.N., Jamil, M., Hamid, R., 2020. Utilization of wood waste ash in construction technology: A review. Constr. Build. Mater. 237, 117654. https://doi.org/10.1016/j.conbuildmat.2019.117654 Thomas, B.S., Kumar, S., Arel, H.S., 2017. Sustainable concrete containing palm oil fuel ash as a supplementary cementitious material – A review. Renew. Sustain. Energy Rev. 80, 550–561. https://doi.org/10.1016/j.rser.2017.05.128 Thomas, B.S., Yang, J., Bahurudeen, A., Abdalla, J.A., Hawileh, R.A., Hamada, H.M., Nazar, S., Jittin, V., Ashish, D.K., 2021. Sugarcane bagasse ash as supplementary cementitious material in concrete – a review. Mater. Today Sustain. 15, 100086. https://doi.org/10.1016/j.mtsust.2021.100086 Töbelmann, D., Wendler, T., 2020. The impact of environmental innovation on carbon dioxide emissions. J. Clean. Prod. 244. https://doi.org/10.1016/j.jclepro.2019.118787 Turner, L.K., Collins, F.G., 2013. Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete. Constr. Build. Mater. 43, 125–130. https://doi.org/10.1016/j.conbuildmat.2013.01.023 Ullah, K., Irshad Qureshi, M., Ahmad, A., Ullah, Z., 2022. Substitution potential of plastic fine aggregate in concrete for sustainable production. Structures 35, 622–637. https://doi.org/10.1016/j.istruc.2021.11.003Residuos agricolasCeniza de bagazo de cañaResiduos de vidrioConcretos modificadosConcreto verdePuzolanasTG 2023 ICICane bagasse ashAgricultural wasteWaste glassModified concreteGreen concretPozzolansInnovative use of agro-waste cane bagasse ash and waste glass as cement replacement for green concrete. Cost analysis and carbon dioxide and emissionsArtículos Científicoshttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribución – Sin Derivarinfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/65d5d6d9-3aad-41eb-bb7f-6110d0f010e5/download3bce4f7ab09dfc588f126e1e36e98a45MD51ORIGINAL2023_Innovative_Use_Agro-waste.pdf2023_Innovative_Use_Agro-waste.pdfapplication/pdf288403https://repository.ucc.edu.co/bitstreams/c391b5aa-3d95-4aeb-91f2-635fedd1d847/download60b863ac6d6d22fbb1ad08daaf3aceebMD52Manuscript .pdfManuscript .pdfapplication/pdf334056https://repository.ucc.edu.co/bitstreams/5b05ec02-c0ea-4ee1-8c28-a54b4710bc87/downloadd2b1598914a2e76366d4f6829f1515e3MD53TEXT2023_Innovative_Use_Agro-waste.pdf.txt2023_Innovative_Use_Agro-waste.pdf.txtExtracted texttext/plain40887https://repository.ucc.edu.co/bitstreams/74a1f8e4-0c69-4e00-965c-04da8687d95e/download70965df9e6a772fcd5606cd68b54724cMD54Manuscript .pdf.txtManuscript .pdf.txtExtracted texttext/plain52787https://repository.ucc.edu.co/bitstreams/570fcd41-d3bd-4e7b-9867-5e7e8a97f90d/download9a01ec01a64f9377a3ea782c718754d2MD56THUMBNAIL2023_Innovative_Use_Agro-waste.pdf.jpg2023_Innovative_Use_Agro-waste.pdf.jpgGenerated Thumbnailimage/jpeg12118https://repository.ucc.edu.co/bitstreams/fc230aaa-fbd7-4f7a-ba5f-47ab633a107f/download052cadf74d05833d1f3ac7859bc34202MD55Manuscript .pdf.jpgManuscript .pdf.jpgGenerated Thumbnailimage/jpeg12023https://repository.ucc.edu.co/bitstreams/a904910e-7e38-4bb7-b9f2-b20b532392cc/download371c4fd45d8af1ef87ccc661bcfd0a9bMD5720.500.12494/52782oai:repository.ucc.edu.co:20.500.12494/527822024-08-10 21:02:36.787restrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo= |