A specific structure and high richness characterize intestinal microbiota of HIVexposed seronegative individuals

Intestinal microbiota facilitates food breakdown for energy metabolism and influences the im-mune response and maintaining mucosal homeostasis. Overall, HIV infection is associated with intestinal dysbiosis and immune activation, which has been related to seroconversion in HIV-exposed individuals. H...

Full description

Autores:
Zapata Builes, Wildeman
Lopera, Tulio J.
Lujan, Jorge A.
Zurek, Eduardo
Hernández López, Juan Carlos
Toro, Miguel A.
Alzate, Juan F.
Taborda, Natalia Andrea
Rugeles López, María Teresa
Aguilar Jiménez, Wbeimar
Tipo de recurso:
Article of investigation
Fecha de publicación:
2021
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/43603
Acceso en línea:
https://hdl.handle.net/20.500.12494/43603
Palabra clave:
Intestinal microbiota, richness, HIV-1, HESN, Treg cells
Intestinal microbiota, richness, HIV-1, HESN, Treg cells
Rights
openAccess
License
Atribución
id COOPER2_c72593e96eaf4caedf718911ef8f386c
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/43603
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.spa.fl_str_mv A specific structure and high richness characterize intestinal microbiota of HIVexposed seronegative individuals
title A specific structure and high richness characterize intestinal microbiota of HIVexposed seronegative individuals
spellingShingle A specific structure and high richness characterize intestinal microbiota of HIVexposed seronegative individuals
Intestinal microbiota, richness, HIV-1, HESN, Treg cells
Intestinal microbiota, richness, HIV-1, HESN, Treg cells
title_short A specific structure and high richness characterize intestinal microbiota of HIVexposed seronegative individuals
title_full A specific structure and high richness characterize intestinal microbiota of HIVexposed seronegative individuals
title_fullStr A specific structure and high richness characterize intestinal microbiota of HIVexposed seronegative individuals
title_full_unstemmed A specific structure and high richness characterize intestinal microbiota of HIVexposed seronegative individuals
title_sort A specific structure and high richness characterize intestinal microbiota of HIVexposed seronegative individuals
dc.creator.fl_str_mv Zapata Builes, Wildeman
Lopera, Tulio J.
Lujan, Jorge A.
Zurek, Eduardo
Hernández López, Juan Carlos
Toro, Miguel A.
Alzate, Juan F.
Taborda, Natalia Andrea
Rugeles López, María Teresa
Aguilar Jiménez, Wbeimar
dc.contributor.author.none.fl_str_mv Zapata Builes, Wildeman
Lopera, Tulio J.
Lujan, Jorge A.
Zurek, Eduardo
Hernández López, Juan Carlos
Toro, Miguel A.
Alzate, Juan F.
Taborda, Natalia Andrea
Rugeles López, María Teresa
Aguilar Jiménez, Wbeimar
dc.subject.spa.fl_str_mv Intestinal microbiota, richness, HIV-1, HESN, Treg cells
topic Intestinal microbiota, richness, HIV-1, HESN, Treg cells
Intestinal microbiota, richness, HIV-1, HESN, Treg cells
dc.subject.other.spa.fl_str_mv Intestinal microbiota, richness, HIV-1, HESN, Treg cells
description Intestinal microbiota facilitates food breakdown for energy metabolism and influences the im-mune response and maintaining mucosal homeostasis. Overall, HIV infection is associated with intestinal dysbiosis and immune activation, which has been related to seroconversion in HIV-exposed individuals. However, to date, it is unclear whether microbiota dysbiosis is the cause or the effect of immune alterations and disease progression. We characterize the intestinal microbiota and determine its association with immune regulation in HIV-exposed seronegative individuals (HESN), HIV-infected progressors (HIV+), and healthy control (HC) subjects. For this, feces and blood were collected. The microbiota composition of HESN showed a significantly higher alpha and beta diversity compared to HC, but similar to HIV+. A lower Treg percentage was observed in HESN than HC and HIV+, with enrichment of the genus Butyrivibrio being characteristic of this profile. Interestingly, an increase in Succinivibrio and Prevotella and a re-duction in Bacteroides genus were observed in HESN compared to HC, which is typical of HIV-infected individuals. Thus, HESNs have a microbiota profile, similar to that observed in HIV+, most likely because HESN are cohabiting with their HIV+ partners.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-12-02
dc.date.accessioned.none.fl_str_mv 2022-02-02T20:53:49Z
dc.date.available.none.fl_str_mv 2022-02-02T20:53:49Z
dc.type.none.fl_str_mv Artículos Científicos
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 1932-6203
dc.identifier.uri.spa.fl_str_mv 10.1371/journal.pone.0260729
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12494/43603
dc.identifier.bibliographicCitation.spa.fl_str_mv Lopera TJ, Lujan JA, Zurek E, Zapata W, Hernandez JC, Toro MA, et al. (2021) A specific structure and high richness characterize intestinal microbiota of HIV-exposed seronegative individuals. PLoS ONE 16(12): e0260729. https://doi.org/10.1371/journal.pone.0260729.
identifier_str_mv 1932-6203
10.1371/journal.pone.0260729
Lopera TJ, Lujan JA, Zurek E, Zapata W, Hernandez JC, Toro MA, et al. (2021) A specific structure and high richness characterize intestinal microbiota of HIV-exposed seronegative individuals. PLoS ONE 16(12): e0260729. https://doi.org/10.1371/journal.pone.0260729.
url https://hdl.handle.net/20.500.12494/43603
dc.relation.isversionof.spa.fl_str_mv https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0260729
dc.relation.ispartofjournal.spa.fl_str_mv PLOS ONE
dc.relation.references.spa.fl_str_mv 1. Saulle I, Biasin M, Gnudi F, Rainone V, Ibba SV, Lo Caputo S, et al. Short Communication: Immune Activation Is Present in HIV-1-Exposed Seronegative Individuals and Is Independent of Microbial Translocation. AIDS Res Hum Retroviruses. 2016; 32: 129–133. https://doi.org/10.1089/AID.2015.0019 PMID: 26414485
2. Yao X-D, Omange RW, Henrick BM, Lester RT, Kimani J, Ball TB, et al. Acting locally: innate mucosal immunity in resistance to HIV-1 infection in Kenyan commercial sex workers. Mucosal Immunol. 2014; 7: 268–279. https://doi.org/10.1038/mi.2013.44 PMID: 23801306
3. Zapata W, Aguilar-Jime nez W, Feng Z, Weinberg A, Russo A, Potenza N, et al. Identification of innate immune antiretroviral factors during in vivo and in vitro exposure to HIV-1. Microbes Infect. 2016; 18: 211–219. https://doi.org/10.1016/j.micinf.2015.10.009 PMID: 26548606
4. Tomescu C, Abdulhaqq S, Montaner LJ. Evidence for the innate immune response as a correlate of protection in human immunodeficiency virus (HIV)-1 highly exposed seronegative subjects (HESN). Clin Exp Immunol. 2011; 164: 158–169. https://doi.org/10.1111/j.1365-2249.2011.04379.x PMID: 21413945
5. Strober W. Impact of the gut microbiome on mucosal inflammation. Trends Immunol. 2013/08/16. 2013; 34: 423–430. https://doi.org/10.1016/j.it.2013.07.001 PMID: 23957963
6. Hooper L V, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science. 2012; 336: 1268–1273. https://doi.org/10.1126/science.1223490 PMID: 22674334
7. Lozupone CA, Li M, Campbell TB, Flores SC, Linderman D, Gebert MJ, et al. Alterations in the gut microbiota associated with HIV-1 infection. Cell Host Microbe. 2013; 14: 329–339. https://doi.org/10. 1016/j.chom.2013.08.006 PMID: 24034618
8. Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013; 500: 541–546. https://doi.org/10.1038/ nature12506 PMID: 23985870
9. Dinh DM, Volpe GE, Duffalo C, Bhalchandra S, Tai AK, Kane A V, et al. Intestinal Microbiota, Microbial Translocation, and Systemic Inflammation in Chronic HIV Infection. J Infect Dis. 2014; 211: 19–27. https://doi.org/10.1093/infdis/jiu409 PMID: 25057045
10. do Nascimento WM, Machiavelli A, Ferreira LGE, Silveira LC, de Azevedo SSD, Bello G, et al. Gut microbiome profiles and associated metabolic pathways in HIV-infected treatment-na ve patients. medRxiv. 2020; 2020.12.07.20245530. https://doi.org/10.1101/2020.12.07.20245530
11. Yu G, Fadrosh D, Ma B, Ravel J, Goedert JJ. Anal microbiota profiles in HIV-positive and HIV-negative MSM. AIDS. 2014; 28: 753–760. https://doi.org/10.1097/QAD.0000000000000154 PMID: 24335481
12. Mutlu EA, Keshavarzian A, Losurdo J, Swanson G, Siewe B, Forsyth C, et al. A compositional look at the human gastrointestinal microbiome and immune activation parameters in HIV infected subjects. PLoS Pathog. 2014; 10: e1003829–e1003829. https://doi.org/10.1371/journal.ppat.1003829 PMID: 24586144
13. Va zquez-Castellanos JF, Serrano-Villar S, Latorre A, Artacho A, Ferru s ML, Madrid N, et al. Altered metabolism of gut microbiota contributes to chronic immune activation in HIV-infected individuals. Mucosal Immunol. 2015; 8: 760–772. https://doi.org/10.1038/mi.2014.107 PMID: 25407519
14. Rinaldi S, de Armas L, Dominguez-Rodrı guez S, Pallikkuth S, Dinh V, Pan L, et al. T cell immune discriminants of HIV reservoir size in a pediatric cohort of perinatally infected individuals. PLOS Pathog. 2021; 17: e1009533. Available: https://doi.org/10.1371/journal.ppat.1009533 PMID: 33901266
15. Dillon SM, Lee EJ, Kotter C V, Austin GL, Dong Z, Hecht DK, et al. An altered intestinal mucosal microbiome in HIV-1 infection is associated with mucosal and systemic immune activation and endotoxemia. Mucosal Immunol. 2014; 7: 983–994. https://doi.org/10.1038/mi.2013.116 PMID: 24399150
16. Kuebler PJ, Mehrotra ML, Shaw BI, Leadabrand KS, Milush JM, York VA, et al. Persistent HIV Type 1 Seronegative Status Is Associated With Lower CD8+ T-Cell Activation. J Infect Dis. 2015/08/26. 2016; 213: 569–573. https://doi.org/10.1093/infdis/jiv425 PMID: 26310308
17. Ouyang J, Lin J, Isnard S, Fombuena B, Peng X, Marette A, et al. The Bacterium Akkermansia muciniphila: A Sentinel for Gut Permeability and Its Relevance to HIV-Related Inflammation. Front Immunol. 2020; 11: 1–9. https://doi.org/10.3389/fimmu.2020.00001 PMID: 32038653
18. Vujkovic-Cvijin I, Somsouk M. HIV and the Gut Microbiota: Composition, Consequences, and Avenues for Amelioration. Curr HIV/AIDS Rep. 2019; 16: 204–213. https://doi.org/10.1007/s11904-019-00441-w PMID: 31037552
19. Noguera-Julian M, Rocafort M, Guille n Y, Rivera J, Casadell  M, Nowak P, et al. Gut Microbiota Linked to Sexual Preference and HIV Infection. EBioMedicine. 2016; 5: 135–146. https://doi.org/10.1016/j. ebiom.2016.01.032 PMID: 27077120
20. Mitchell C, Balkus JE, Fredricks D, Liu C, McKernan-Mullin J, Frenkel LM, et al. Interaction between lactobacilli, bacterial vaginosis-associated bacteria, and HIV Type 1 RNA and DNA Genital shedding in U. S. and Kenyan women. AIDS Res Hum Retroviruses. 2013; 29: 13–19. https://doi.org/10.1089/AID. 2012.0187 PMID: 23020644
21. Shen R, Smith PD. Mucosal correlates of protection in HIV-1-exposed sero-negative persons. Am J Reprod Immunol. 2014/01/16. 2014; 72: 219–227. https://doi.org/10.1111/aji.12202 PMID: 24428610
22. Mcclelland PRS, Lingappa JR, Srinivasan S, Kinuthia J, John-Stewart GC, Jaoko W, et al. Key Vaginal Bacteria Associated with Increased Risk of HIV Acquisition in African Women: A Nested Case-Control Study. Lancet Infect Dis. 2018; 18: 554–564. https://doi.org/10.1016/S1473-3099(18)30058-6 PMID: 29396006
23. Serna-Ortega PA, Aguilar-Jimenez W, Florez-A  lvarez L, Trabattoni D, Rugeles MT, Biasin M. IL-21 is associated with natural resistance to HIV-1 infection in a Colombian HIV exposed seronegative cohort. Microbes Infect. 2020; 22: 371–374. https://doi.org/10.1016/j.micinf.2019.11.002 PMID: 31816393
24. Scepanovic P, Hodel F, Mondot S, Partula V, Byrd A, Hammer C, et al. A comprehensive assessment of demographic, environmental, and host genetic associations with gut microbiome diversity in healthy individuals. Microbiome. 2019; 7: 130. https://doi.org/10.1186/s40168-019-0747-x PMID: 31519223
25. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014; 505: 559–563. https://doi.org/10.1038/ nature12820 PMID: 24336217
26. Nyirenda MH, Sanvito L, Darlington PJ, O’Brien K, Zhang G-X, Constantinescu CS, et al. TLR2 Stimulation Drives Human Naive and Effector Regulatory T Cells into a Th17-Like Phenotype with Reduced Suppressive Function. J Immunol. 2011; 187: 2278 LP– 2290. https://doi.org/10.4049/jimmunol. 1003715 PMID: 21775683
27. Toro-Londono MA, Bedoya-Urrego K, Garcia-Montoya GM, Galvan-Diaz AL, Alzate JF. Intestinal parasitic infection alters bacterial gut microbiota in children. PeerJ. 2019; 7: e6200. https://doi.org/10.7717/ peerj.6200 PMID: 30643702
28. Montoya-Porras LM, Omar T-C, Alzate JF, Moreno-Herrera CX, Cadavid-Restrepo GE. 16S rRNA gene amplicon sequencing reveals dominance of Actinobacteria in Rhodnius pallescens compared to Triatoma maculata midgut microbiota in natural populations of vector insects from Colombia. Acta Trop. 2018; 178: 327–332. https://doi.org/10.1016/j.actatropica.2017.11.004 PMID: 29154947
29. Dhariwal A, Chong J, Habib S, King IL, Agellon LB, Xia J. MicrobiomeAnalyst: a web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res. 2017; 45: W180–W188. https://doi.org/10.1093/nar/gkx295 PMID: 28449106
30. Chong J, Liu P, Zhou G, Xia J. Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nat Protoc. 2020; 15: 799–821. https://doi.org/10.1038/s41596-019- 0264-1 PMID: 31942082
31. Chen Y-A, Park J, Natsume-Kitatani Y, Kawashima H, Mohsen A, Hosomi K, et al. MANTA, an integrative database and analysis platform that relates microbiome and phenotypic data. PLoS One. 2020; 15: e0243609. https://doi.org/10.1371/journal.pone.0243609 PMID: 33275647
32. Gonzalez SM, Taborda NA, Correa LA, Castro GA, Hernandez JC, Montoya CJ, et al. Particular activation phenotype of T cells expressing HLA-DR but not CD38 in GALT from HIV-controllers is associated with immune regulation and delayed progression to AIDS. Immunol Res. 2016; 64: 765–774. https://doi. org/10.1007/s12026-015-8775-5 PMID: 26724942
33. Ma L, Xue H-B, Guan X-H, Shu C-M, Wang F, Zhang J-H, et al. The Imbalance of Th17 cells and CD4 +CD25highFoxp3+ Treg cells in patients with atopic dermatitis. J Eur Acad Dermatology Venereol. 2014; 28: 1079–1086. https://doi.org/10.1111/jdv.12288.
34. Li SX, Sen S, Schneider JM, Xiong K-N, Nusbacher NM, Moreno-Huizar N, et al. Gut microbiota from high-risk men who have sex with men drive immune activation in gnotobiotic mice and in vitro HIV infection. PLOS Pathog. 2019; 15: e1007611. Available: https://doi.org/10.1371/journal.ppat.1007611 PMID: 30947289
35. Vesterbacka J, Rivera J, Noyan K, Parera M, Neogi U, Calle M, et al. Richer gut microbiota with distinct metabolic profile in HIV infected Elite Controllers. Sci Rep. 2017; 7: 6269. https://doi.org/10.1038/ s41598-017-06675-1 PMID: 28740260
36. Dill-McFarland KA, Tang Z-Z, Kemis JH, Kerby RL, Chen G, Palloni A, et al. Close social relationships correlate with human gut microbiota composition. Sci Rep. 2019; 9: 703. https://doi.org/10.1038/ s41598-018-37298-9 PMID: 30679677
37. Ron R, Cabello A, Gosalbes MJ, Sa nchez-Conde M, Talavera-Rodrı guez A, Zamora J, et al. Exploiting the Microbiota for the Diagnosis of Anal Precancerous Lesions in Men Who Have Sex With Men. J Infect Dis. 2021. https://doi.org/10.1093/infdis/jiab068 PMID: 33544868
38. Song SJ, Lauber C, Costello EK, Lozupone CA, Humphrey G, Berg-Lyons D, et al. Cohabiting family members share microbiota with one another and with their dogs. Elife. 2013; 2: e00458. https://doi.org/ 10.7554/eLife.00458 PMID: 23599893
39. Benning L, Golub ET, Anastos K, French AL, Cohen M, Gilbert D, et al. Comparison of Lower Genital Tract Microbiota in HIV-Infected and Uninfected Women from Rwanda and the US. PLoS One. 2014; 9: e96844. Available: https://doi.org/10.1371/journal.pone.0096844 PMID: 24817204
40. Imahashi M, Ode H, Kobayashi A, Nemoto M, Matsuda M, Hashiba C, et al. Impact of long-term antiretroviral therapy on gut and oral microbiotas in HIV-1-infected patients. Sci Rep. 2021; 11: 960. https:// doi.org/10.1038/s41598-020-80247-8 PMID: 33441754
41. Srinivasan S, Beamer MA, Fiedler TL, Austin MN, SizovaM V, Strenk SM, et al. Megasphaera lornae sp. nov., Megasphaera hutchinsoni sp. nov., and Megasphaera vaginalis sp. nov.: novel bacteria isolated from the female genital tract. Int J Syst Evol Microbiol. 2021; 71. https://doi.org/10.1099/ijsem.0. 004702.
42. Yuille S, Reichardt N, Panda S, Dunbar H, Mulder IE. Human gut bacteria as potent class I histone deacetylase inhibitors in vitro through production of butyric acid and valeric acid. PLoS One. 2018; 13: e0201073. https://doi.org/10.1371/journal.pone.0201073 PMID: 30052654
43. Moon CD, Pacheco DM, Kelly WJ, Leahy SC, Li D, Kopecny J, et al. Reclassification of Clostridium proteoclasticum as Butyrivibrio proteoclasticus comb. nov., a butyrate-producing ruminal bacterium. Int J Syst Evol Microbiol. 2008; 58: 2041–2045. https://doi.org/10.1099/ijs.0.65845-0 PMID: 18768601
44. Zoetendal EG, Plugge CM, Akkermans ADL, de Vos WM. Victivallis vadensis gen. nov., sp. nov., a sugar-fermenting anaerobe from human faeces. Int J Syst Evol Microbiol. 2003; 53: 211–215. https:// doi.org/10.1099/ijs.0.02362-0 PMID: 12656175
45. AM K., KS D., SS B., Jayesh S, Lauren P, Karolina K, et al. Oral and Gut Microbial Diversity and Immune Regulation in Patients with HIV on Antiretroviral Therapy. mSphere. 2021; 5: e00798–19. https://doi.org/10.1128/mSphere.00798-19 PMID: 32024712
46. Luja n JA, Rugeles MT, Taborda NA. Contribution of the Microbiota to Intestinal Homeostasis and its Role in the Pathogenesis of HIV-1 Infection. Curr HIV Res. 2019; 17: 13–25. https://doi.org/10.2174/ 1570162X17666190311114808 PMID: 30854974
47. Falivene J, Ghiglione Y, Laufer N, Socı as ME, Holgado MP, Ruiz MJ, et al. Th17 and Th17/Treg ratio at early HIV infection associate with protective HIV-specific CD8(+) T-cell responses and disease progression. Sci Rep. 2015; 5: 11511. https://doi.org/10.1038/srep11511 PMID: 26099972
48. Card CM, McLaren PJ, Wachihi C, Kimani J, Plummer FA, Fowke KR. Decreased Immune Activation in Resistance to HIV-1 Infection Is Associated with an Elevated Frequency of CD4+CD25+FOXP3+ Regulatory T Cells. J Infect Dis. 2009; 199: 1318–1322. https://doi.org/10.1086/597801 PMID: 19301980
49. Gelpi M, Vestad B, Hansen SH, Holm K, Drivsholm N, Goetz A, et al. Impact of Human Immunodeficiency Virus–Related Gut Microbiota Alterations on Metabolic Comorbid Conditions. Clin Infect Dis. 2020; 71: e359–e367. https://doi.org/10.1093/cid/ciz1235 PMID: 31894240
dc.rights.license.none.fl_str_mv Atribución
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 14
dc.coverage.temporal.spa.fl_str_mv 16(12): e0260729.
dc.publisher.spa.fl_str_mv Aftab A. Ansari, Emory University School of Medicine, UNITED STATES
Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellin, Colombia
dc.publisher.program.spa.fl_str_mv Medicina
dc.publisher.place.spa.fl_str_mv Medellín
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/21fd1873-058d-44d8-b9c4-201ea4241bdd/download
https://repository.ucc.edu.co/bitstreams/26e8dd10-2063-43a9-a518-d5f1cf29e606/download
https://repository.ucc.edu.co/bitstreams/47dc3f85-3d7f-4d2b-9efe-a07d806c0cad/download
https://repository.ucc.edu.co/bitstreams/30718e4e-2740-45aa-8f6b-b09c9e79907a/download
bitstream.checksum.fl_str_mv 3bce4f7ab09dfc588f126e1e36e98a45
581facb094753d43939bf4a3618f0c3f
dff062c33f48ac63179fc62d9f33f5e2
94a7437fb7d06a66c7e62a78c1448d58
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1811565636082466816
spelling Zapata Builes, WildemanLopera, Tulio J.Lujan, Jorge A.Zurek, EduardoHernández López, Juan CarlosToro, Miguel A.Alzate, Juan F.Taborda, Natalia AndreaRugeles López, María TeresaAguilar Jiménez, Wbeimar16(12): e0260729.2022-02-02T20:53:49Z2022-02-02T20:53:49Z2021-12-021932-620310.1371/journal.pone.0260729https://hdl.handle.net/20.500.12494/43603Lopera TJ, Lujan JA, Zurek E, Zapata W, Hernandez JC, Toro MA, et al. (2021) A specific structure and high richness characterize intestinal microbiota of HIV-exposed seronegative individuals. PLoS ONE 16(12): e0260729. https://doi.org/10.1371/journal.pone.0260729.Intestinal microbiota facilitates food breakdown for energy metabolism and influences the im-mune response and maintaining mucosal homeostasis. Overall, HIV infection is associated with intestinal dysbiosis and immune activation, which has been related to seroconversion in HIV-exposed individuals. However, to date, it is unclear whether microbiota dysbiosis is the cause or the effect of immune alterations and disease progression. We characterize the intestinal microbiota and determine its association with immune regulation in HIV-exposed seronegative individuals (HESN), HIV-infected progressors (HIV+), and healthy control (HC) subjects. For this, feces and blood were collected. The microbiota composition of HESN showed a significantly higher alpha and beta diversity compared to HC, but similar to HIV+. A lower Treg percentage was observed in HESN than HC and HIV+, with enrichment of the genus Butyrivibrio being characteristic of this profile. Interestingly, an increase in Succinivibrio and Prevotella and a re-duction in Bacteroides genus were observed in HESN compared to HC, which is typical of HIV-infected individuals. Thus, HESNs have a microbiota profile, similar to that observed in HIV+, most likely because HESN are cohabiting with their HIV+ partners.Intestinal microbiota facilitates food breakdown for energy metabolism and influences the im-mune response and maintaining mucosal homeostasis. Overall, HIV infection is associated with intestinal dysbiosis and immune activation, which has been related to seroconversion in HIV-exposed individuals. However, to date, it is unclear whether microbiota dysbiosis is the cause or the effect of immune alterations and disease progression. We characterize the intestinal microbiota and determine its association with immune regulation in HIV-exposed seronegative individuals (HESN), HIV-infected progressors (HIV+), and healthy control (HC) subjects. For this, feces and blood were collected. The microbiota composition of HESN showed a significantly higher alpha and beta diversity compared to HC, but similar to HIV+. A lower Treg percentage was observed in HESN than HC and HIV+, with enrichment of the genus Butyrivibrio being characteristic of this profile. Interestingly, an increase in Succinivibrio and Prevotella and a re-duction in Bacteroides genus were observed in HESN compared to HC, which is typical of HIV-infected individuals. Thus, HESNs have a microbiota profile, similar to that observed in HIV+, most likely because HESN are cohabiting with their HIV+ partners.https://scienti.minciencias.gov.co/cvlac/EnProdArticulo/query.do?cod_producto=73&cod_rh=0000157775https://orcid.org/0000-0002-7351-8738COL0112548wildeman.zapatab@campusucc.edu.cohttps://scholar.google.com.co/citations?hl=en&user=VLZxl1UAAAAJ14Aftab A. Ansari, Emory University School of Medicine, UNITED STATESGrupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellin, ColombiaMedicinaMedellínhttps://journals.plos.org/plosone/article?id=10.1371/journal.pone.0260729PLOS ONE1. Saulle I, Biasin M, Gnudi F, Rainone V, Ibba SV, Lo Caputo S, et al. Short Communication: Immune Activation Is Present in HIV-1-Exposed Seronegative Individuals and Is Independent of Microbial Translocation. AIDS Res Hum Retroviruses. 2016; 32: 129–133. https://doi.org/10.1089/AID.2015.0019 PMID: 264144852. Yao X-D, Omange RW, Henrick BM, Lester RT, Kimani J, Ball TB, et al. Acting locally: innate mucosal immunity in resistance to HIV-1 infection in Kenyan commercial sex workers. Mucosal Immunol. 2014; 7: 268–279. https://doi.org/10.1038/mi.2013.44 PMID: 238013063. Zapata W, Aguilar-Jime nez W, Feng Z, Weinberg A, Russo A, Potenza N, et al. Identification of innate immune antiretroviral factors during in vivo and in vitro exposure to HIV-1. Microbes Infect. 2016; 18: 211–219. https://doi.org/10.1016/j.micinf.2015.10.009 PMID: 265486064. Tomescu C, Abdulhaqq S, Montaner LJ. Evidence for the innate immune response as a correlate of protection in human immunodeficiency virus (HIV)-1 highly exposed seronegative subjects (HESN). Clin Exp Immunol. 2011; 164: 158–169. https://doi.org/10.1111/j.1365-2249.2011.04379.x PMID: 214139455. Strober W. Impact of the gut microbiome on mucosal inflammation. Trends Immunol. 2013/08/16. 2013; 34: 423–430. https://doi.org/10.1016/j.it.2013.07.001 PMID: 239579636. Hooper L V, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science. 2012; 336: 1268–1273. https://doi.org/10.1126/science.1223490 PMID: 226743347. Lozupone CA, Li M, Campbell TB, Flores SC, Linderman D, Gebert MJ, et al. Alterations in the gut microbiota associated with HIV-1 infection. Cell Host Microbe. 2013; 14: 329–339. https://doi.org/10. 1016/j.chom.2013.08.006 PMID: 240346188. Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013; 500: 541–546. https://doi.org/10.1038/ nature12506 PMID: 239858709. Dinh DM, Volpe GE, Duffalo C, Bhalchandra S, Tai AK, Kane A V, et al. Intestinal Microbiota, Microbial Translocation, and Systemic Inflammation in Chronic HIV Infection. J Infect Dis. 2014; 211: 19–27. https://doi.org/10.1093/infdis/jiu409 PMID: 2505704510. do Nascimento WM, Machiavelli A, Ferreira LGE, Silveira LC, de Azevedo SSD, Bello G, et al. Gut microbiome profiles and associated metabolic pathways in HIV-infected treatment-na ve patients. medRxiv. 2020; 2020.12.07.20245530. https://doi.org/10.1101/2020.12.07.2024553011. Yu G, Fadrosh D, Ma B, Ravel J, Goedert JJ. Anal microbiota profiles in HIV-positive and HIV-negative MSM. AIDS. 2014; 28: 753–760. https://doi.org/10.1097/QAD.0000000000000154 PMID: 2433548112. Mutlu EA, Keshavarzian A, Losurdo J, Swanson G, Siewe B, Forsyth C, et al. A compositional look at the human gastrointestinal microbiome and immune activation parameters in HIV infected subjects. PLoS Pathog. 2014; 10: e1003829–e1003829. https://doi.org/10.1371/journal.ppat.1003829 PMID: 2458614413. Va zquez-Castellanos JF, Serrano-Villar S, Latorre A, Artacho A, Ferru s ML, Madrid N, et al. Altered metabolism of gut microbiota contributes to chronic immune activation in HIV-infected individuals. Mucosal Immunol. 2015; 8: 760–772. https://doi.org/10.1038/mi.2014.107 PMID: 2540751914. Rinaldi S, de Armas L, Dominguez-Rodrı guez S, Pallikkuth S, Dinh V, Pan L, et al. T cell immune discriminants of HIV reservoir size in a pediatric cohort of perinatally infected individuals. PLOS Pathog. 2021; 17: e1009533. Available: https://doi.org/10.1371/journal.ppat.1009533 PMID: 3390126615. Dillon SM, Lee EJ, Kotter C V, Austin GL, Dong Z, Hecht DK, et al. An altered intestinal mucosal microbiome in HIV-1 infection is associated with mucosal and systemic immune activation and endotoxemia. Mucosal Immunol. 2014; 7: 983–994. https://doi.org/10.1038/mi.2013.116 PMID: 2439915016. Kuebler PJ, Mehrotra ML, Shaw BI, Leadabrand KS, Milush JM, York VA, et al. Persistent HIV Type 1 Seronegative Status Is Associated With Lower CD8+ T-Cell Activation. J Infect Dis. 2015/08/26. 2016; 213: 569–573. https://doi.org/10.1093/infdis/jiv425 PMID: 2631030817. Ouyang J, Lin J, Isnard S, Fombuena B, Peng X, Marette A, et al. The Bacterium Akkermansia muciniphila: A Sentinel for Gut Permeability and Its Relevance to HIV-Related Inflammation. Front Immunol. 2020; 11: 1–9. https://doi.org/10.3389/fimmu.2020.00001 PMID: 3203865318. Vujkovic-Cvijin I, Somsouk M. HIV and the Gut Microbiota: Composition, Consequences, and Avenues for Amelioration. Curr HIV/AIDS Rep. 2019; 16: 204–213. https://doi.org/10.1007/s11904-019-00441-w PMID: 3103755219. Noguera-Julian M, Rocafort M, Guille n Y, Rivera J, Casadell  M, Nowak P, et al. Gut Microbiota Linked to Sexual Preference and HIV Infection. EBioMedicine. 2016; 5: 135–146. https://doi.org/10.1016/j. ebiom.2016.01.032 PMID: 2707712020. Mitchell C, Balkus JE, Fredricks D, Liu C, McKernan-Mullin J, Frenkel LM, et al. Interaction between lactobacilli, bacterial vaginosis-associated bacteria, and HIV Type 1 RNA and DNA Genital shedding in U. S. and Kenyan women. AIDS Res Hum Retroviruses. 2013; 29: 13–19. https://doi.org/10.1089/AID. 2012.0187 PMID: 2302064421. Shen R, Smith PD. Mucosal correlates of protection in HIV-1-exposed sero-negative persons. Am J Reprod Immunol. 2014/01/16. 2014; 72: 219–227. https://doi.org/10.1111/aji.12202 PMID: 2442861022. Mcclelland PRS, Lingappa JR, Srinivasan S, Kinuthia J, John-Stewart GC, Jaoko W, et al. Key Vaginal Bacteria Associated with Increased Risk of HIV Acquisition in African Women: A Nested Case-Control Study. Lancet Infect Dis. 2018; 18: 554–564. https://doi.org/10.1016/S1473-3099(18)30058-6 PMID: 2939600623. Serna-Ortega PA, Aguilar-Jimenez W, Florez-A  lvarez L, Trabattoni D, Rugeles MT, Biasin M. IL-21 is associated with natural resistance to HIV-1 infection in a Colombian HIV exposed seronegative cohort. Microbes Infect. 2020; 22: 371–374. https://doi.org/10.1016/j.micinf.2019.11.002 PMID: 3181639324. Scepanovic P, Hodel F, Mondot S, Partula V, Byrd A, Hammer C, et al. A comprehensive assessment of demographic, environmental, and host genetic associations with gut microbiome diversity in healthy individuals. Microbiome. 2019; 7: 130. https://doi.org/10.1186/s40168-019-0747-x PMID: 3151922325. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014; 505: 559–563. https://doi.org/10.1038/ nature12820 PMID: 2433621726. Nyirenda MH, Sanvito L, Darlington PJ, O’Brien K, Zhang G-X, Constantinescu CS, et al. TLR2 Stimulation Drives Human Naive and Effector Regulatory T Cells into a Th17-Like Phenotype with Reduced Suppressive Function. J Immunol. 2011; 187: 2278 LP– 2290. https://doi.org/10.4049/jimmunol. 1003715 PMID: 2177568327. Toro-Londono MA, Bedoya-Urrego K, Garcia-Montoya GM, Galvan-Diaz AL, Alzate JF. Intestinal parasitic infection alters bacterial gut microbiota in children. PeerJ. 2019; 7: e6200. https://doi.org/10.7717/ peerj.6200 PMID: 3064370228. Montoya-Porras LM, Omar T-C, Alzate JF, Moreno-Herrera CX, Cadavid-Restrepo GE. 16S rRNA gene amplicon sequencing reveals dominance of Actinobacteria in Rhodnius pallescens compared to Triatoma maculata midgut microbiota in natural populations of vector insects from Colombia. Acta Trop. 2018; 178: 327–332. https://doi.org/10.1016/j.actatropica.2017.11.004 PMID: 2915494729. Dhariwal A, Chong J, Habib S, King IL, Agellon LB, Xia J. MicrobiomeAnalyst: a web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res. 2017; 45: W180–W188. https://doi.org/10.1093/nar/gkx295 PMID: 2844910630. Chong J, Liu P, Zhou G, Xia J. Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nat Protoc. 2020; 15: 799–821. https://doi.org/10.1038/s41596-019- 0264-1 PMID: 3194208231. Chen Y-A, Park J, Natsume-Kitatani Y, Kawashima H, Mohsen A, Hosomi K, et al. MANTA, an integrative database and analysis platform that relates microbiome and phenotypic data. PLoS One. 2020; 15: e0243609. https://doi.org/10.1371/journal.pone.0243609 PMID: 3327564732. Gonzalez SM, Taborda NA, Correa LA, Castro GA, Hernandez JC, Montoya CJ, et al. Particular activation phenotype of T cells expressing HLA-DR but not CD38 in GALT from HIV-controllers is associated with immune regulation and delayed progression to AIDS. Immunol Res. 2016; 64: 765–774. https://doi. org/10.1007/s12026-015-8775-5 PMID: 2672494233. Ma L, Xue H-B, Guan X-H, Shu C-M, Wang F, Zhang J-H, et al. The Imbalance of Th17 cells and CD4 +CD25highFoxp3+ Treg cells in patients with atopic dermatitis. J Eur Acad Dermatology Venereol. 2014; 28: 1079–1086. https://doi.org/10.1111/jdv.12288.34. Li SX, Sen S, Schneider JM, Xiong K-N, Nusbacher NM, Moreno-Huizar N, et al. Gut microbiota from high-risk men who have sex with men drive immune activation in gnotobiotic mice and in vitro HIV infection. PLOS Pathog. 2019; 15: e1007611. Available: https://doi.org/10.1371/journal.ppat.1007611 PMID: 3094728935. Vesterbacka J, Rivera J, Noyan K, Parera M, Neogi U, Calle M, et al. Richer gut microbiota with distinct metabolic profile in HIV infected Elite Controllers. Sci Rep. 2017; 7: 6269. https://doi.org/10.1038/ s41598-017-06675-1 PMID: 2874026036. Dill-McFarland KA, Tang Z-Z, Kemis JH, Kerby RL, Chen G, Palloni A, et al. Close social relationships correlate with human gut microbiota composition. Sci Rep. 2019; 9: 703. https://doi.org/10.1038/ s41598-018-37298-9 PMID: 3067967737. Ron R, Cabello A, Gosalbes MJ, Sa nchez-Conde M, Talavera-Rodrı guez A, Zamora J, et al. Exploiting the Microbiota for the Diagnosis of Anal Precancerous Lesions in Men Who Have Sex With Men. J Infect Dis. 2021. https://doi.org/10.1093/infdis/jiab068 PMID: 3354486838. Song SJ, Lauber C, Costello EK, Lozupone CA, Humphrey G, Berg-Lyons D, et al. Cohabiting family members share microbiota with one another and with their dogs. Elife. 2013; 2: e00458. https://doi.org/ 10.7554/eLife.00458 PMID: 2359989339. Benning L, Golub ET, Anastos K, French AL, Cohen M, Gilbert D, et al. Comparison of Lower Genital Tract Microbiota in HIV-Infected and Uninfected Women from Rwanda and the US. PLoS One. 2014; 9: e96844. Available: https://doi.org/10.1371/journal.pone.0096844 PMID: 2481720440. Imahashi M, Ode H, Kobayashi A, Nemoto M, Matsuda M, Hashiba C, et al. Impact of long-term antiretroviral therapy on gut and oral microbiotas in HIV-1-infected patients. Sci Rep. 2021; 11: 960. https:// doi.org/10.1038/s41598-020-80247-8 PMID: 3344175441. Srinivasan S, Beamer MA, Fiedler TL, Austin MN, SizovaM V, Strenk SM, et al. Megasphaera lornae sp. nov., Megasphaera hutchinsoni sp. nov., and Megasphaera vaginalis sp. nov.: novel bacteria isolated from the female genital tract. Int J Syst Evol Microbiol. 2021; 71. https://doi.org/10.1099/ijsem.0. 004702.42. Yuille S, Reichardt N, Panda S, Dunbar H, Mulder IE. Human gut bacteria as potent class I histone deacetylase inhibitors in vitro through production of butyric acid and valeric acid. PLoS One. 2018; 13: e0201073. https://doi.org/10.1371/journal.pone.0201073 PMID: 3005265443. Moon CD, Pacheco DM, Kelly WJ, Leahy SC, Li D, Kopecny J, et al. Reclassification of Clostridium proteoclasticum as Butyrivibrio proteoclasticus comb. nov., a butyrate-producing ruminal bacterium. Int J Syst Evol Microbiol. 2008; 58: 2041–2045. https://doi.org/10.1099/ijs.0.65845-0 PMID: 1876860144. Zoetendal EG, Plugge CM, Akkermans ADL, de Vos WM. Victivallis vadensis gen. nov., sp. nov., a sugar-fermenting anaerobe from human faeces. Int J Syst Evol Microbiol. 2003; 53: 211–215. https:// doi.org/10.1099/ijs.0.02362-0 PMID: 1265617545. AM K., KS D., SS B., Jayesh S, Lauren P, Karolina K, et al. Oral and Gut Microbial Diversity and Immune Regulation in Patients with HIV on Antiretroviral Therapy. mSphere. 2021; 5: e00798–19. https://doi.org/10.1128/mSphere.00798-19 PMID: 3202471246. Luja n JA, Rugeles MT, Taborda NA. Contribution of the Microbiota to Intestinal Homeostasis and its Role in the Pathogenesis of HIV-1 Infection. Curr HIV Res. 2019; 17: 13–25. https://doi.org/10.2174/ 1570162X17666190311114808 PMID: 3085497447. Falivene J, Ghiglione Y, Laufer N, Socı as ME, Holgado MP, Ruiz MJ, et al. Th17 and Th17/Treg ratio at early HIV infection associate with protective HIV-specific CD8(+) T-cell responses and disease progression. Sci Rep. 2015; 5: 11511. https://doi.org/10.1038/srep11511 PMID: 2609997248. Card CM, McLaren PJ, Wachihi C, Kimani J, Plummer FA, Fowke KR. Decreased Immune Activation in Resistance to HIV-1 Infection Is Associated with an Elevated Frequency of CD4+CD25+FOXP3+ Regulatory T Cells. J Infect Dis. 2009; 199: 1318–1322. https://doi.org/10.1086/597801 PMID: 1930198049. Gelpi M, Vestad B, Hansen SH, Holm K, Drivsholm N, Goetz A, et al. Impact of Human Immunodeficiency Virus–Related Gut Microbiota Alterations on Metabolic Comorbid Conditions. Clin Infect Dis. 2020; 71: e359–e367. https://doi.org/10.1093/cid/ciz1235 PMID: 31894240Intestinal microbiota, richness, HIV-1, HESN, Treg cellsIntestinal microbiota, richness, HIV-1, HESN, Treg cellsA specific structure and high richness characterize intestinal microbiota of HIVexposed seronegative individualsArtículos Científicoshttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribucióninfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/21fd1873-058d-44d8-b9c4-201ea4241bdd/download3bce4f7ab09dfc588f126e1e36e98a45MD52ORIGINALMicrobiota HESN UCC_UdeA 2021.pdfMicrobiota HESN UCC_UdeA 2021.pdfArtículoapplication/pdf1563576https://repository.ucc.edu.co/bitstreams/26e8dd10-2063-43a9-a518-d5f1cf29e606/download581facb094753d43939bf4a3618f0c3fMD51THUMBNAILMicrobiota HESN UCC_UdeA 2021.pdf.jpgMicrobiota HESN UCC_UdeA 2021.pdf.jpgGenerated Thumbnailimage/jpeg5548https://repository.ucc.edu.co/bitstreams/47dc3f85-3d7f-4d2b-9efe-a07d806c0cad/downloaddff062c33f48ac63179fc62d9f33f5e2MD53TEXTMicrobiota HESN UCC_UdeA 2021.pdf.txtMicrobiota HESN UCC_UdeA 2021.pdf.txtExtracted texttext/plain56887https://repository.ucc.edu.co/bitstreams/30718e4e-2740-45aa-8f6b-b09c9e79907a/download94a7437fb7d06a66c7e62a78c1448d58MD5420.500.12494/43603oai:repository.ucc.edu.co:20.500.12494/436032024-08-10 22:47:51.112restrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo=