Natural products with inhibitory activity against Human Immunodeficiency Virus Type 1

Infections caused by human immunodeficiency virus (HIV) are considered one of the main public health problems worldwide. Antiretroviral therapy (ART) is the current modality of treatment for HIV-1 infection. It comprises the combined use of several drugs and can decrease the viral load and increase...

Full description

Autores:
Zapata Builes, Wildeman
Serna Arbeláez, Maria S.
Flórez Sampedro, Laura
Orozco, Lina P.
Ramírez, Katherin
Galeano, Elkin
Tipo de recurso:
Article of investigation
Fecha de publicación:
2021
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/35509
Acceso en línea:
https://hdl.handle.net/20.500.12494/35509
Palabra clave:
HIV-1
ART
Alternative therapy
Natural products
Anti-HIV activity
HIV-1
ART
Alternative therapy
Natural products
Anti-HIV activity
Rights
openAccess
License
Atribución
id COOPER2_c63304269c6fb3df7f812f70bd2d4a58
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/35509
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.spa.fl_str_mv Natural products with inhibitory activity against Human Immunodeficiency Virus Type 1
title Natural products with inhibitory activity against Human Immunodeficiency Virus Type 1
spellingShingle Natural products with inhibitory activity against Human Immunodeficiency Virus Type 1
HIV-1
ART
Alternative therapy
Natural products
Anti-HIV activity
HIV-1
ART
Alternative therapy
Natural products
Anti-HIV activity
title_short Natural products with inhibitory activity against Human Immunodeficiency Virus Type 1
title_full Natural products with inhibitory activity against Human Immunodeficiency Virus Type 1
title_fullStr Natural products with inhibitory activity against Human Immunodeficiency Virus Type 1
title_full_unstemmed Natural products with inhibitory activity against Human Immunodeficiency Virus Type 1
title_sort Natural products with inhibitory activity against Human Immunodeficiency Virus Type 1
dc.creator.fl_str_mv Zapata Builes, Wildeman
Serna Arbeláez, Maria S.
Flórez Sampedro, Laura
Orozco, Lina P.
Ramírez, Katherin
Galeano, Elkin
dc.contributor.author.none.fl_str_mv Zapata Builes, Wildeman
Serna Arbeláez, Maria S.
Flórez Sampedro, Laura
Orozco, Lina P.
Ramírez, Katherin
Galeano, Elkin
dc.subject.spa.fl_str_mv HIV-1
ART
Alternative therapy
Natural products
Anti-HIV activity
topic HIV-1
ART
Alternative therapy
Natural products
Anti-HIV activity
HIV-1
ART
Alternative therapy
Natural products
Anti-HIV activity
dc.subject.other.spa.fl_str_mv HIV-1
ART
Alternative therapy
Natural products
Anti-HIV activity
description Infections caused by human immunodeficiency virus (HIV) are considered one of the main public health problems worldwide. Antiretroviral therapy (ART) is the current modality of treatment for HIV-1 infection. It comprises the combined use of several drugs and can decrease the viral load and increase the CD4+ Tcell count in patients with HIV-1 infection, thereby proving to be an effective modality. This therapy significantly decreases the rate of morbidity and mortality owing to acquired immunodeficiency syndrome (AIDS) and prolongs and improves the quality of life of infected patients. However, nonadherence to ARTmay increase viral resistance to antiretroviral drugs and transmission of drug-resistant strains of HIV. +erefore, it is necessary to continue research for compounds with anti-HIV-1 activity, exhibiting a potential for the development of an alternative or complementary therapy to ARTwith low cost and fewer side effects. Natural products and their derivatives represent an excellent option owing to their therapeutic potential against HIV. Currently, the derivatives of natural products available as anti-HIV-1 agents include zidovudine, an arabinonucleoside derivative of the Caribbean marine sponge (Tectitethya crypta), which inhibits the reverse transcriptase of the virus. +is was the first antiviral agent approved for treatment of HIV infection. Additionally, bevirimat (isolated from Syzygium claviflorum) and calanolide A (isolated from Calophyllum sp.) are inhibitors of viral maturation and reverse transcription process, respectively. In the present review, we aimed to describe the wide repertoire of natural compounds exhibiting anti-HIV-1 activity that can be considered for designing new therapeutic strategies to curb the HIV pandemic.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-08-02T22:38:24Z
dc.date.available.none.fl_str_mv 2021-08-02T22:38:24Z
dc.date.issued.none.fl_str_mv 2021-05-30
dc.type.none.fl_str_mv Artículos Científicos
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 1687-8647
dc.identifier.uri.spa.fl_str_mv 10.1155/2021/5552088
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12494/35509
dc.identifier.bibliographicCitation.spa.fl_str_mv Serna-Arbeláez, M. S., Florez-Sampedro, Orozco, L. P., Ramírez, K., Galeano, E. y Zapata, W. (2021) Natural Products with Inhibitory Activity against Human Immunodeficiency Virus Type 1. Advances in Virology, vol. 2021, Article ID 5552088, 22 pages, 2021. https://doi.org/10.1155/2021/5552088
identifier_str_mv 1687-8647
10.1155/2021/5552088
Serna-Arbeláez, M. S., Florez-Sampedro, Orozco, L. P., Ramírez, K., Galeano, E. y Zapata, W. (2021) Natural Products with Inhibitory Activity against Human Immunodeficiency Virus Type 1. Advances in Virology, vol. 2021, Article ID 5552088, 22 pages, 2021. https://doi.org/10.1155/2021/5552088
url https://hdl.handle.net/20.500.12494/35509
dc.relation.isversionof.spa.fl_str_mv https://www.hindawi.com/journals/av/2021/5552088/
dc.relation.ispartofjournal.spa.fl_str_mv Advances in Virology
dc.relation.references.spa.fl_str_mv [1] S. G. Deeks, S. R. Lewin, and D. V. Havlir, “+e end of AIDS: HIV infection as a chronic disease,” ?e Lancet, vol. 382, no. 9903, pp. 1525–1533, 2013
[2] UNAIDS, Global HIV & AIDS Statistics-2020 Fact Sheet, UNAIDS, Geneva, Switzerland, unaids.org2020, 2020.
[3] S. B. Laskey and R. F. Siliciano, “A mechanistic theory to explain the efficacy of antiretroviral therapy,” Nature Reviews Microbiology, vol. 12, no. 11, pp. 772–780, 2014.
[4] T. B. Ng, B. Huang, W. P. Fong, and H. W. Yeung, “Antihuman immunodeficiency virus (anti-HIV) natural products with special emphasis on HIV reverse transcriptase inhibitors,” Life Sciences, vol. 61, no. 10, pp. 933–949, 1997.
[5] Panel on Antiretroviral Guidelines for Adults and Adolescents, Guidelines for the Use of Antiretroviral Agents in Adults and Adolescents with HIV, Department of Health and Human Services, Washington, DC, USA, 2019.
[6] Organization WH, Guideline on when to Start Antiretroviral ?erapy and on Pre-exposure Prophylaxis for HIV, 78 pages, World Health Organization, Geneva, Switzerland, 2015.
[7] D. King, S. Tomkins, A. Waters et al., “Intracellular cytokines may model immunoregulation of abacavir hypersensitivity in HIV-infected subjects,” Journal of Allergy and Clinical Immunology, vol. 115, no. 5, pp. 1081–1087, 2005
[8] J. Stekler, J. Maenza, C. Stevens et al., “Abacavir hypersensitivity reaction in primary HIV infection,” Aids, vol. 20, no. 9, pp. 1269–1274, 2006.
[9] B. S. Peters and K. Conway, “+erapy for HIV,” Advances in Dental Research, vol. 23, no. 1, pp. 23–27, 2011.
[10] V. Montessori, N. Press, M. Harris, L. Akagi, and J. S. Montaner, “Adverse effects of antiretroviral therapy for HIV infection,” CMAJ: Canadian Medical Association Journal, vol. 170, no. 2, pp. 229–238, 2004.
[11] S. Esser, D. Helbig, U. Hillen, J. Dissemond, and S. Grabbe, “Side effects of HIV therapy,” JDDG, vol. 5, no. 9, pp. 745–754, 2007
[12] L. Menendez-Arias, “Targeting HIV: antiretroviral therapy ´ and development of drug resistance,” Trends in Pharmacological Sciences, vol. 23, no. 8, pp. 381–388, 2002.
[13] E. M. Gardner, W. J. Burman, J. F. Steiner, P. L. Anderson, and D. R. Bangsberg, “Antiretroviral medication adherence and the development of class-specific antiretroviral resistance,” AIDS, vol. 23, no. 9, pp. 1035–1046, 2009
[14] J. B. Nachega, V. C. Marconi, G. U. van Zyl et al., “HIV treatment adherence, drug resistance, virologic failure: evolving concepts,” Infectious Disorders Drug Targets, vol. 11, no. 2, pp. 167–174, 2011.
[15] P. Yeni, “Update on HAART in HIV,” Journal of Hepatology, vol. 44, 2006
[16] F. Nakagawa, A. Miners, C. J. Smith et al., “Projected lifetime healthcare costs associated with HIV infection,” PLoS One, vol. 10, no. 4, Article ID e0125018, 2015.
[17] N. E. +omford, D. A. Senthebane, A. Rowe et al., “Natural products for drug discovery in the 21st century: innovations for novel drug discovery,” International Journal of Molecular Sciences, vol. 19, no. 6, 2018.
[18] L. Palmisano and S. Vella, “A brief history of antiretroviral therapy of HIV infection: success and challenges,” Annali dell’Istituto Superiore di Sanita, vol. 47, no. 1, pp. 44–48, 2011.
[19] K. Vermani and S. Garg, “Herbal medicines for sexually transmitted diseases and AIDS,” Journal of Ethnopharmacology, vol. 80, no. 1, pp. 49–66, 2002.
[20] D. Chattopadhyay, M. C. Sarkar, T. Chatterjee et al., “Recent advancements for the evaluation of anti-viral activities of natural products,” New Biotechnology, vol. 25, no. 5, pp. 347–368, 2009.
[21] K. Yazaki, G.-i. Arimura, and T. Ohnishi, “Hidden’ terpenoids in plants: their biosynthesis, localization and ecological roles,” Plant and Cell Physiology, vol. 58, no. 10, pp. 1615–1621, 2017
[22] D. +oll, “Biosynthesis and biological functions of terpenoids in plants,” Biotechnology of Isoprenoids, vol. 148, pp. 63–106, 2015.
[23] J.-H. Yu, G.-C. Wang, Y.-S. Han, Y. Wu, M. A. Wainberg, and J.-M. Yue, “Limonoids with anti-HIV activity from Cipadessa cinerascens,” Journal of Natural Products, vol. 78, no. 6, pp. 1243–1252, 2015.
[24] M. Shahidul Alam, M. A. Quader, and M. A. Rashid, “HIVinhibitory diterpenoid from Anisomeles indica,” Fitoterapia, vol. 71, no. 5, pp. 574–576, 2000.
[25] S.-Z. Huang, X. Zhang, Q.-Y. Ma et al., “Terpenoids and their anti-HIV-1 activities from Excoecaria acerifolia,” Fitoterapia, vol. 91, pp. 224–230, 2013.
[26] S.-Z. Huang, X. Zhang, Q.-Y. Ma et al., “Anti-HIV-1 tigliane diterpenoids from Excoecaria acertiflia Didr,” Fitoterapia, vol. 95, pp. 34–41, 2014.[27] S.-F. Li, Y. Zhang, N. Huang et al., “Daphnane diterpenoids from the stems of Trigonostemon lii and their anti-HIV-1 activity,” Phytochemistry, vol. 93, pp. 216–221, 2013.
[28] Y.-Y. Cheng, H. Chen, H.-P. He et al., “Anti-HIV active daphnane diterpenoids from Trigonostemon thyrsoideum,” Phytochemistry, vol. 96, pp. 360–369, 2013.
[29] T. Fujioka, Y. Kashiwada, R. E. Kilkuskie et al., “Anti-AIDS agents, 11. Betulinic acid and platanic acid as anti-HIV principles from Syzigium claviflorum, and the anti-HIV activity of structurally related triterpenoids,” Journal of Natural Products, vol. 57, no. 2, pp. 243–247, 1994.
[30] T. Kanamoto, Y. Kashiwada, K. Kanbara et al., “Anti-human immunodeficiency virus activity of YK-FH312 (a betulinic acid derivative), a novel compound blocking viral maturation,” Antimicrobial Agents and Chemotherapy, vol. 45, no. 4, pp. 1225–1230, 2001.
[31] F. Li, R. Goila-Gaur, K. Salzwedel et al., “PA-457: a potent HIV inhibitor that disrupts core condensation by targeting a late step in Gag processing,” Proceedings of the National Academy of Sciences, vol. 100, no. 23, pp. 13555–13560, 2003.
[32] Y. Zhao, Q. Gu, S. L. Morris-Natschke, C.-H. Chen, and K.-H. Lee, “Incorporation of privileged structures into bevirimat can improve activity against wild-type and bevirimat-resistant HIV-1,” Journal of Medicinal Chemistry, vol. 59, no. 19, pp. 9262–9268, 2016.
[33] F. Soler, C. Poujade, M. Evers et al., “Betulinic acid derivatives: a new class of specific inhibitors of human immunodeficiency virus type 1 entry,” Journal of Medicinal Chemistry, vol. 39, no. 5, pp. 1069–1083, 1996.
[34] J. Tang, S. A. Jones, J. L. Jeffrey et al., “Discovery of a novel and potent class of anti-HIV-1 maturation inhibitors with improved virology profile against gag polymorphisms,” Bioorganic & Medicinal Chemistry Letters, vol. 27, no. 12, pp. 2689–2694, 2017.
[35] H.-X. Xu, F.-Q. Zeng, M. Wan, and K.-Y. Sim, “Anti-HIV triterpene acids fromGeum japonicum,” Journal of Natural Products, vol. 59, no. 7, pp. 643–645, 1996.
[36] Y. Kashiwada, T. Nagao, A. Hashimoto et al., “Anti-AIDS agents 38. Anti-HIV activity of 3-O-acyl ursolic acid Derivatives1,” Journal of Natural Products, vol. 63, no. 12, pp. 1619–1622, 2000
[37] N. Kongkum, P. Tuchinda, M. Pohmakotr et al., “Cytotoxic, antitopoisomerase IIα, and anti-HIV-1 activities of triterpenoids isolated from leaves and twigs of Gardenia carinata,” Journal of Natural Products, vol. 76, no. 4, pp. 530–537, 2013.
[38] S. el-Mekkawy, M. R. Meselhy, N. Nakamura et al., “AntiHIV-1 and anti-HIV-1-protease substances from Ganoderma lucidum,” Phytochemistry, vol. 49, no. 6, pp. 1651–1657, 1998.
[39] B.-S. Min, N. Nakamura, H. Miyashiro, K.-W. Bae, and M. Hattori, “Triterpenes from the spores of Ganoderma lucidum and their inhibitory activity against HIV-1 protease,” Chemical and Pharmaceutical Bulletin, vol. 46, no. 10, pp. 1607–1612, 1998
[40] T. Konoshima, I. Yasuda, Y. Kashiwada, L. M. Cosentino, and K.-H. Lee, “Anti-AIDS agents, 21. Triterpenoid saponins as anti-HIV principles from fruits of gleditsia japonica and gymnocladus chinesis, and a structure-activity correlation,” Journal of Natural Products, vol. 58, no. 9, pp. 1372–1377, 1995.
[41] Y. Kashman, K. R. Gustafson, R. W. Fuller et al., “HIV inhibitory natural products. Part 7. +e calanolides, a novel HIV-inhibitory class of coumarin derivatives from the tropical rainforest tree, Calophyllum lanigerum,” Journal of Medicinal Chemistry, vol. 35, no. 15, pp. 2735–2743, 1992.
[42] M. Huerta-Reyes, M. d. C. Basualdo, F. Abe, M. JimenezEstrada, C. Soler, and R. Reyes-Chilpa, “HIV-1 inhibitory compounds from Calophyllum brasiliense leaves,” Biological and Pharmaceutical Bulletin, vol. 27, no. 9, pp. 1471–1475, 2004
[43] A. D. Patil, A. J. Freyer, D. S. Eggleston et al., “+e inophyllums, novel inhibitors of HIV-1 reverse transcriptase isolated from the Malaysian tree, Calophyllum inophyllum Linn,” Journal of Medicinal Chemistry, vol. 36, no. 26, pp. 4131–4138, 1993.
[44] H. Dharmaratne, W. Wanigasekera, E. Mata-Greenwood, and J. Pezzuto, “Inhibition of human immunodeficiency virus type 1 reverse transcriptase activity by cordatolides isolated fromCalophyllum cordato-oblongum,” Planta Medica, vol. 64, no. 05, pp. 460-461, 1998.
[45] H. R. W. Dharmaratne, G. T. Tan, G. P. K. Marasinghe, and J. M. Pezzuto, “Inhibition of HIV-1 reverse transcriptase and HIV-1 replication by Calophyllum coumarins and xanthones,” Planta Medica, vol. 68, no. 1, pp. 86-87, 2002.
[46] E. Kudo, M. Taura, K. Matsuda et al., “Inhibition of HIV-1 replication by a tricyclic coumarin GUT-70 in acutely and chronically infected cells,” Bioorganic & Medicinal Chemistry Letters, vol. 23, no. 3, pp. 606–609, 2013.
[47] P. Zhou, Y. Takaishi, H. Duan et al., “Coumarins and bicoumarin from Ferula sumbul: anti-HIV activity and inhibition of cytokine release,” Phytochemistry, vol. 53, no. 6, pp. 689–697, 2000.
[48] N. Marquez, R. Sancho, L. M. Bedoya et al., “Mesuol, a natural occurring 4-phenylcoumarin, inhibits HIV-1 replication by targeting the NF-kappaB pathway,” Antiviral Research, vol. 66, no. 2-3, pp. 137–145, 2005.
[49] Q. Wang, Z. Ding, J. Liu, and Y. Zheng, “Xanthohumol, a novel anti-HIV-1 agent purified from Hops Humulus lupulus,” Antiviral Research, vol. 64, no. 3, pp. 189–194, 2004.
[50] D. C. Rowley, M. S. T. Hansen, D. Rhodes et al., “+alassiolins A-C: new marine-derived inhibitors of HIV cDNA integrase,” Bioorganic & Medicinal Chemistry, vol. 10, no. 11, pp. 3619–3625, 2002
[51] N. Mahmood, C. Pizza, R. Aquino et al., “Inhibition of HIV infection by flavanoids,” Antiviral Research, vol. 22, no. 2-3, pp. 189–199, 1993.
[52] S. Li, T. Hattori, and E. N. Kodama, “Epigallocatechin gallate inhibits the HIV reverse transcription step,” Antiviral Chemistry and Chemotherapy, vol. 21, no. 6, pp. 239–243, 2011.
[53] K. Kitamura, M. Honda, H. Yoshizaki et al., “Baicalin, an inhibitor of HIV-1 production in vitro,” Antiviral Research, vol. 37, no. 2, pp. 131–140, 1998.
[54] B. Q. Li, T. Fu, Y. Dongyan, J. A. Mikovits, F. W. Ruscetti, and J. M. Wang, “Flavonoid baicalin inhibits HIV-1 infection at the level of viral entry,” Biochemical and Biophysical Research Communications, vol. 276, no. 2, pp. 534–538, 2000.
[55] S. Pasetto, V. Pardi, and R. M. Murata, “Anti-HIV-1 activity of flavonoid myricetin on HIV-1 infection in a dual-chamber in vitro model,” PLoS One, vol. 9, no. 12, Article ID e115323, 2014.
[56] P. Chaniad, C. Wattanapiromsakul, S. Pianwanit, and S. Tewtrakul, “Anti-HIV-1 integrase compounds fromDioscorea bulbiferaand molecular docking study,” Pharmaceutical Biology, vol. 54, no. 6, pp. 1077–1085, 2016
[57] J. T. Ortega, A. I. Suarez, M. L. Serrano, J. Baptista, F. H. Pujol, and H. R. Rangel, “+e role of the glycosyl moiety of myricetin derivatives in anti-HIV-1 activity in vitro,” AIDS Research and ?erapy, vol. 14, no. 1, 57 pages, 2017.
[58] A. Mazumder, K. Raghavan, J. Weinstein, K. W. Kohn, and Y. Pommier, “Inhibition of human immunodeficiency virus type-1 integrase by curcumin,” Biochemical Pharmacology, vol. 49, no. 8, pp. 1165–1170, 1995.
[59] A. Mazumder, N. Neamati, S. Sunder et al., “Curcumin analogs with altered potencies against HIV-1 integrase as probes for biochemical mechanisms of drug action,” Journal of Medicinal Chemistry, vol. 40, no. 19, pp. 3057– 3063, 1997.
[60] N. Kumari, A. A. Kulkarni, X. Lin et al., “Inhibition of HIV-1 by curcumin A, a novel curcumin analog,” Drug Design, Development and ?erapy, vol. 9, pp. 5051–5060, 2015.
[61] R. A. Reinke, D. J. Lee, B. R. McDougall et al., “L-chicoric acid inhibits human immunodeficiency virus type 1 integration in vivo and is a noncompetitive but reversible inhibitor of HIV-1 integrase in vitro,” Virology, vol. 326, no. 2, pp. 203–219, 2004.
[62] Y.-J. Zou, H.-X. Wang, T.-B. Ng, C.-Y. Huang, and J.-X. Zhang, “Purification and characterization of a novel laccase from the edible mushroom Hericium coralloides,” ?e Journal of Microbiology, vol. 50, no. 1, pp. 72–78, 2012.
[63] H. X. Wang and T. B. Ng, “A new laccase from dried fruiting bodies of the monkey head mushroom Hericium erinaceum,” Biochemical and Biophysical Research Communications, vol. 322, no. 1, pp. 17–21, 2004.
[64] M. Li, G. Zhang, H. Wang, and T. Ng, “Purification and characterization of a laccase from the edible wild mushroom Tricholoma mongolicum,” Journal of Microbiology and Biotechnology, vol. 20, no. 7, pp. 1069–1076, 2010.
[65] H. X. Wang and T. B. Ng, “A laccase from the medicinal mushroom Ganoderma lucidum,” Applied Microbiology and Biotechnology, vol. 72, no. 3, pp. 508–513, 2006
[66] J. Sun, Q. J. Chen, Q. Q. Cao et al., “A laccase with antiproliferative and HIV-I reverse transcriptase inhibitory activities from the mycorrhizal fungus Agaricus placomyces,” Journal of Biomedicine & Biotechnology, vol. 2012, Article ID 736472, 12 pages, 2012.
[67] D. D. Hu, R. Y. Zhang, G. Q. Zhang, H. X. Wang, and T. B. Ng, “A laccase with antiproliferative activity against tumor cells from an edible mushroom, white common Agrocybe cylindracea,” Phytomedicine, vol. 18, no. 5, pp. 374–379, 2011
[68] H. X. Wang and T. B. Ng, “Purification of a novel lowmolecular-mass laccase with HIV-1 reverse transcriptase inhibitory activity from the mushroom Tricholoma giganteum,” Biochemical and Biophysical Research Communications, vol. 315, no. 2, pp. 450–454, 2004.
[69] S. Zhao, C. B. Rong, C. Kong et al., “A novel laccase with potent antiproliferative and HIV-1 reverse transcriptase inhibitory activities from mycelia of mushroom Coprinus comatus,” BioMed Research International, vol. 2014, Article ID 417461, 8 pages, 2014.
[70] X. Wu, C. Huang, Q. Chen, H. Wang, and J. Zhang, “A novel laccase with inhibitory activity towards HIV-I reverse transcriptase and antiproliferative effects on tumor cells from the fermentation broth of mushroomPleurotus cornucopiae,” Biomedical Chromatography, vol. 28, no. 4, pp. 548–553, 2014.
[71] J. H. Wong, T. B. Ng, Y. Jiang, F. Liu, S. C. Sze, and K. Y. Zhang, “Purification and characterization of a Laccase with inhibitory activity toward HIV-1 reverse transcriptase and tumor cells from an edible mushroom (Pleurotus cornucopiae),” Protein and Peptide Letters, vol. 17, no. 8, pp. 1040–1047, 2010.
[72] G.-Q. Zhang, Y.-F. Wang, X.-Q. Zhang, T. B. Ng, and H.-X. Wang, “Purification and characterization of a novel laccase from the edible mushroom Clitocybe maxima,” Process Biochemistry, vol. 45, no. 5, pp. 627–633, 2010.
[73] L. Xu, H. Wang, and T. Ng, “A laccase with HIV-1 reverse transcriptase inhibitory activity from the broth of mycelial culture of the mushroom Lentinus tigrinus,” BioMed Research International, vol. 2012, Article ID 536725, 7 pages, 2012.
[74] J. Sun, H. Wang, and T. B. Ng, “Isolation of a laccase with HIV-1 reverse transcriptase inhibitory activity from fresh fruiting bodies of the Lentinus edodes (Shiitake mushroom),” Indian Journal of Biochemistry & Biophysics, vol. 48, no. 2, pp. 88–94, 2011.
[75] H. X. Wang and T. B. Ng, “Examination of lectins, polysaccharopeptide, polysaccharide, alkaloid, coumarin and trypsin inhibitors for inhibitory activity against human immunodeficiency virus reverse transcriptase and glycohydrolases,” Planta Medica, vol. 67, no. 7, pp. 669–672, 2001.
[76] J. Balzarini, D. Schols, J. Neyts, E. Van Damme, W. Peumans, and E. De Clercq, “Alpha-(1-3)- and alpha-(1-6)-D-mannose-specific plant lectins are markedly inhibitory to human immunodeficiency virus and cytomegalovirus infections in vitro,” Antimicrobial Agents and Chemotherapy, vol. 35, no. 3, pp. 410–416, 1991.
[77] J. Balzarini, J. Neyts, D. Schols et al., “+e mannose-specific plant lectins from Cymbidium hybrid and Epipactis helleborine and the (N-acetylglucosamine)n-specific plant lectin from Urtica dioica are potent and selective inhibitors of human immunodeficiency virus and cytomegalovirus replication in vitro,” Antiviral Research, vol. 18, no. 2, pp. 191–207, 1992.
[78] R. D. Charan, M. H. G. Munro, B. R. O’Keefe et al., “Isolation and characterization ofMyrianthus holstiiLectin, a potent HIV-1 inhibitory protein from the PlantMyrianthus holstii1,” Journal of Natural Products, vol. 63, no. 8, pp. 1170–1174, 2000
[79] G. Ferir, D. Huskens, S. Noppen, L. M. I. Koharudin, ´ A. M. Gronenborn, and D. Schols, “Broad anti-HIV activity of the Oscillatoria agardhii agglutinin homologue lectin family,” Journal of Antimicrobial Chemotherapy, vol. 69, no. 10, pp. 2746–2758, 2014.
[80] T. Mori, B. R. O’Keefe, R. C. Sowder 2nd. et al., “Isolation and characterization of griffithsin, a novel HIV-inactivating protein, from the red alga Griffithsia sp,” Journal of Biological Chemistry, vol. 280, no. 10, pp. 9345–9353, 2005.
[81] S. Zhao, Y. Zhao, S. Li et al., “A novel lectin with highly potent antiproliferative and HIV-1 reverse transcriptase inhibitory activities from the edible wild mushroom Russula delica,” Glycoconjugate Journal, vol. 27, no. 2, pp. 259–265, 2010.
[82] Y. R. Li, Q. H. Liu, H. X. Wang, and T. B. Ng, “A novel lectin with potent antitumor, mitogenic and HIV-1 reverse transcriptase inhibitory activities from the edible mushroom Pleurotus citrinopileatus,” Biochimica et Biophysica Acta (BBA)-General Subjects, vol. 1780, no. 1, pp. 51–57, 2008.
[83] C. H. Han, Q. H. Liu, T. B. Ng, and H. X. Wang, “A novel homodimeric lactose-binding lectin from the edible split gill medicinal mushroom Schizophyllum commune,” Biochemical and Biophysical Research Communications, vol. 336, no. 1, pp. 252–257, 2005.
[84] G. Q. Zhang, J. Sun, H. X. Wang, and T. B. Ng, “A novel lectin with antiproliferative activity from the medicinal mushroom Pholiota adiposa,” Acta Biochimica Polonica, vol. 56, no. 3, pp. 415–421, 2009.
[85] J. K. Zhao, H. X. Wang, and T. B. Ng, “Purification and characterization of a novel lectin from the toxic wild mushroom Inocybe umbrinella,” Toxicon, vol. 53, no. 3, pp. 360–366, 2009.
[86] S. Zheng, C. Li, T. B. Ng, and H. X. Wang, “A lectin with mitogenic activity from the edible wild mushroom Boletus edulis,” Process Biochemistry, vol. 42, no. 12, pp. 1620–1624, 2007.
[87] Y. Li, G. Zhang, T. B. Ng, and H. Wang, “A novel lectin with antiproliferative and HIV-1 reverse transcriptase inhibitory activities from dried fruiting bodies of the monkey head mushroom Hericium erinaceum,” BioMed Research International, vol. 2010, Article ID 716515, 9 pages, 2010.
[88] H. Wang and T. B. Ng, “Isolation and characterization of velutin, a novel low-molecular-weight ribosome-inactivating protein from winter mushroom (Flammulina velutipes) fruiting bodies,” Life Sciences, vol. 68, no. 18, pp. 2151–2158, 2001.
[89] S. K. Lam and T. B. Ng, “First simultaneous isolation of a ribosome inactivating protein and an antifungal protein from a mushroom (Lyophyllum shimeji) together with evidence for synergism of their antifungal effects,” Archives of Biochemistry and Biophysics, vol. 393, no. 2, pp. 271–280, 2001
[90] S. K. Lam and T. B. Ng, “Hypsin, a novel thermostable ribosome-inactivating protein with antifungal and antiproliferative activities from fruiting bodies of the edible mushroom Hypsizigus marmoreus,” Biochemical and Biophysical Research Communications, vol. 285, no. 4, pp. 1071–1075, 2001.
[91] J. H. Wong, H. X. Wang, and T. B. Ng, “Marmorin, a new ribosome inactivating protein with antiproliferative and HIV-1 reverse transcriptase inhibitory activities from the mushroom Hypsizigus marmoreus,” Applied Microbiology and Biotechnology, vol. 81, no. 4, pp. 669–674, 2008
[92] Y.-M. Ng, Y. Yang, K.-H. Sze, X. Zhang, Y.-T. Zheng, and P.-C. Shaw, “Structural characterization and anti-HIV-1 activities of arginine/glutamate-rich polypeptide Luffin P1 from the seeds of sponge gourd (Luffa cylindrica),” Journal of Structural Biology, vol. 174, no. 1, pp. 164–172, 2011.
[93] I. Kaur, M. Puri, Z. Ahmed, F. P. Blanchet, B. Mangeat, and V. Piguet, “Inhibition of HIV-1 replication by balsamin, a ribosome inactivating protein of Momordica balsamina,” PLoS One, vol. 8, no. 9, Article ID e73780, 2013.
[94] F. Rajamohan, T. K. Venkatachalam, J. D. Irvin, and F. M. Uckun, “Pokeweed antiviral protein isoforms PAP-I, PAP-II, and PAP-III depurinate RNA of human immunodeficiency virus (HIV)-1,” Biochemical and Biophysical Research Communications, vol. 260, no. 2, pp. 453–458, 1999.
[95] T. Ichiba, P. J. Scheuer, M. Kelly-borges, and F. Pierce, “+ree bromotyrosine derivatives, one terminating in an unprecedented diketocyclopentenylidene enamine,” ?e Journal of Organic Chemistry, vol. 58, no. 15, pp. 4149-4150, 1993.
[96] D. Gochfeld, K. El Sayed, M. Yousaf et al., “Marine natural products as lead anti-HIV agents,” Mini-Reviews in Medicinal Chemistry, vol. 3, no. 5, pp. 401–424, 2003.
[97] L. G. G´omez-Archila, W. Zapata, F. J. D´ıaz, M. T. Rugeles, E. Galeano, and A. Mart´ınez, “Bromotyrosine derivatives from marine sponges inhibit the HIV-1 replication in vitro,” Vitae, vol. 21, no. 2, pp. 114–125, 2014
[98] S. A. Ross, J. D. Weete, R. F. Schinazi et al., “Mololipids, A new series of anti-HIV bromotyramine-derived compounds from a sponge of the order Verongida†,” Journal of Natural Products, vol. 63, no. 4, pp. 501–503, 2000.
[99] P. Yogeeswari and D. Sriram, “Betulinic acid and its derivatives: a review on their biological properties,” Current Medicinal Chemistry, vol. 12, no. 6, pp. 657–666, 2005.
[100] D. E. Martin, R. Blum, J. Wilton et al., “Safety and pharmacokinetics of Bevirimat (PA-457), a novel inhibitor of human immunodeficiency virus maturation, in healthy volunteers,” Antimicrobial Agents and Chemotherapy, vol. 51, no. 9, pp. 3063–3066, 2007.
[101] D. E. Martin, R. Blum, J. Doto, H. Galbraith, and C. Ballow, “Multiple-dose pharmacokinetics and safety of bevirimat, a novel inhibitor of HIV Maturation, in healthy volunteers,” Clinical Pharmacokinetics, vol. 46, no. 7, pp. 589–598, 2007.
[102] P. F. Smith, A. Ogundele, A. Forrest et al., “Phase I and II study of the safety, virologic effect, and pharmacokinetics/ pharmacodynamics of single-dose 3-O-(3′,3′-Dimethylsuccinyl)Betulinic acid (bevirimat) against human immunodeficiency virus infection,” Antimicrobial Agents and Chemotherapy, vol. 51, no. 10, pp. 3574–3581, 2007.
[103] N. A. Margot, C. S. Gibbs, and M. D. Miller, “Phenotypic susceptibility to bevirimat in isolates from HIV-1-infected patients without prior exposure to bevirimat,” Antimicrobial Agents and Chemotherapy, vol. 54, no. 6, pp. 2345–2353, 2010.
[104] A. Neyret, B. Gay, A. Cransac et al., “Insight into the mechanism of action of EP-39, a bevirimat derivative that inhibits HIV-1 maturation,” Antiviral Research, vol. 164, pp. 162–175, 2019.
[105] B. Labrosse, O. Pleskoff, N. Sol, C. Jones, Y. H´enin, and M. Alizon, “Resistance to a drug blocking human immunodeficiency virus type 1 entry (RPR103611) is conferred by mutations in gp41,” Journal of Virology, vol. 71, no. 11, pp. 8230–8236, 1997.
[106] B. Labrosse, C. Treboute, and M. Alizon, “Sensitivity to a nonpeptidic compound (RPR103611) blocking human immunodeficiency virus type 1 Env-mediated fusion depends on sequence and accessibility of the gp41 loop region,” Journal of Virology, vol. 74, no. 5, pp. 2142–2150, 2000.
[107] I. Kostova, S. Raleva, P. Genova, and R. Argirova, “Structureactivity relationships of synthetic coumarins as HIV-1 inhibitors,” Bioinorganic Chemistry and Applications, vol. 2006, Article ID 68274, 9 pages, 2006.
[108] B. Chenera, M. L. West, J. A. Finkelstein, and G. B. Dreyer’, “Total synthesis of (±)-calanolide A, a non-nucleoside inhibitor of HIV-1 reverse transcriptase,” ?e Journal of Organic Chemistry, vol. 58, no. 21, 1993.
[109] A. Kucherenko, M. T. Flavin, W. A. Boulanger et al., “Novel approach for synthesis of (±)-calanolide a and its anti-HIV activity,” Tetrahedron Letters, vol. 36, no. 31, 1995.
[110] M. T. Flavin, “Synthesis, chromatographic resolution, and anti-human immunodeficiency virus activity of (±)-Calanolide A and its enantiomers,” Journal of Medicinal Chemistry, vol. 39, no. 6, 1995
[111] J. H. Cardellina, H. R. Bokesch, T. C. McKee, and M. R. Boyd, “Resolution and comparative anti-HIV evaluation of the enantiomers of calanolides A and B,” Bioorganic & Medicinal Chemistry Letters, vol. 5, no. 9, pp. 1011–1014, 1995
[112] R. W. Buckheit Jr., E. L. White, V. Fliakas-Boltz et al., “Unique anti-human immunodeficiency virus activities of the nonnucleoside reverse transcriptase inhibitors calanolide A, costatolide, and dihydrocostatolide,” Antimicrobial Agents and Chemotherapy, vol. 43, no. 8, pp. 1827–1834, 1999
[113] R. Buckheit Jr., V. Fliakasboltz, W. Decker et al., “Comparative anti-HIV evaluation of diverse HIV-1-specific reverse transcriptase inhibitor-resistant virus isolates demonstrates the existence of distinct phenotypic subgroups,” Antiviral Research, vol. 26, no. 2, pp. 117–132, 1995.
[114] J. C. Garc´ıa Zebad´ua, G. A. Magos Guerrero, M. Mumbr´u Massip et al., “Inhibition of HIV-1 reverse transcriptase, toxicological and chemical profile of Calophyllum brasiliense extracts from Chiapas, Mexico,” Fitoterapia, vol. 82, no. 7, pp. 1027–1034, 2011.
[115] T. Creagh, J. L. Ruckle, D. T. Tolbert et al., “Safety and pharmacokinetics of single doses of (+)-calanolide a, a novel, naturally occurring nonnucleoside reverse transcriptase inhibitor, in healthy, human immunodeficiency virus-negative human subjects,” Antimicrobial Agents and Chemotherapy, vol. 45, no. 5, pp. 1379–1386, 2001.
[116] D. A. Eiznhamer, T. Creagh, J. L. Ruckle et al., “Safety and pharmacokinetic profile of multiple escalating doses of (+)-calanolide A, a naturally occurring nonnucleoside reverse transcriptase inhibitor, in healthy HIV-negative volunteers,” HIV Clinical Trials, vol. 3, no. 6, pp. 435–450, 2002.
[117] K. Matsuda, S. Hattori, R. Kariya et al., “Inhibition of HIV-1 entry by the tricyclic coumarin GUT-70 through the modification of membrane fluidity,” Biochemical and Biophysical Research Communications, vol. 457, no. 3, pp. 288–294, 2015
[118] H. Wang, Y. Liu, C. Huan et al., “NF-κB-Interacting long noncoding RNA regulates HIV-1 replication and latency by repressing NF-κB signaling,” Journal of Virology, vol. 94, no. 17, 2020.
[119] P. Bremner and M. Heinrich, “Natural products as targeted modulators of the nuclear factor-kappaB pathway,” ?e Journal of Pharmacy and Pharmacology, vol. 54, no. 4, pp. 453–472, 2002.
[120] M. Karin, Y. Yamamoto, and Q. M. Wang, “+e IKK NF-κB system: a treasure trove for drug development,” Nature Reviews Drug Discovery, vol. 3, no. 1, pp. 17–26, 2004.
[121] R. Sancho, N. Marquez, M. G ´ omez-Gonzalo et al., ´ “Imperatorin inhibits HIV-1 replication through an Sp1- dependent pathway,” Journal of Biological Chemistry, vol. 279, no. 36, pp. 37349–37359, 2004.
[122] E. Kozioł and K. Skalicka-Woz´niak, “Imperatorin–pharmacological meaning and analytical clues: profound investigation,” Phytochemistry Review, vol. 15, pp. 627–649, 2016.
[123] M. Deng, L. Xie, L. Zhong, Y. Liao, L. Liu, and X. Li, “Imperatorin: a review of its pharmacology, toxicity and pharmacokinetics,” European Journal of Pharmacology, vol. 879, 2020.
[124] G. Casano, A. Dum`etre, C. Pannecouque, S. Hutter, N. Azas, and M. Robin, “Anti-HIV and antiplasmodial activity of original flavonoid derivatives,” Bioorganic & Medicinal Chemistry, vol. 18, no. 16, pp. 6012–6023, 2010.
[125] T. P. T. Cushnie and A. J. Lamb, “Antimicrobial activity of flavonoids,” International Journal of Antimicrobial Agents, vol. 26, no. 5, pp. 343–356, 2005.
[126] X. Zhao, K. Jiang, B. Liang, and X. Huang, “Anticancer effect of xanthohumol induces growth inhibition and apoptosis of human liver cancer through NF-κB/p53-apoptosis signaling pathway,” Oncology Reports, vol. 35, no. 2, pp. 669–675, 2016.
[127] B. W. Vanhoecke, F. Delporte, E. Van Braeckel et al., “A safety study of oral tangeretin and xanthohumol administration to laboratory mice,” Vivo, vol. 19, no. 1, pp. 103–107, 2005.
[128] K. Yamaguchi, M. Honda, H. Ikigai, Y. Hara, and T. Shimamura, “Inhibitory effects of (−)-epigallocatechin gallate on the life cycle of human immunodeficiency virus type 1 (HIV-1),” Antiviral Research, vol. 53, no. 1, pp. 19–34, 2002.
[129] K. Kawai, N. H. Tsuno, J. Kitayama et al., “Epigallocatechin gallate, the main component of tea polyphenol, binds to CD4 and interferes with gp120 binding,” Journal of Allergy and Clinical Immunology, vol. 112, no. 5, pp. 951–957, 2003.
[130] C. L. Nance, E. B. Siwak, and W. T. Shearer, “Preclinical development of the green tea catechin, epigallocatechin gallate, as an HIV-1 therapy,” Journal of Allergy and Clinical Immunology, vol. 123, no. 2, pp. 459–465, 2009.
[131] P. Anand, A. B. Kunnumakkara, R. A. Newman, and B. B. Aggarwal, “Bioavailability of curcumin: problems and promises,” Molecular Pharmaceutics, vol. 4, no. 6, pp. 807–818, 2007.
[132] C. J. Li, L. J. Zhang, B. J. Dezube, C. S. Crumpacker, and A. B. Pardee, “+ree inhibitors of type 1 human immunodeficiency virus long terminal repeat-directed gene expression and virus replication,” Proceedings of the National Academy of Sciences, vol. 90, no. 5, pp. 1839–1842, 1993.
[133] A. Ali and A. C. Banerjea, “Curcumin inhibits HIV-1 by promoting Tat protein degradation,” Scientific Reports, vol. 627539 pages, 2016.
[134] A. L. Cheng, C. H. Hsu, J. K. Lin et al., “Phase I clinical trial of curcumin, a chemopreventive agent, in patients with highrisk or pre-malignant lesions,” Anticancer Research, vol. 21, no. 4b, pp. 2895–2900, 2001.
[135] G. Shoba, D. Joy, T. Joseph, M. Majeed, R. Rajendran, and P. Srinivas, “Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers,” Planta Medica, vol. 64, no. 4, pp. 353–356, 1998.
[136] P. Baldrian, “Fungal laccases-occurrence and properties,” FEMS Microbiology Reviews, vol. 30, no. 2, pp. 215–242, 2006.
[137] P. Giardina, V. Faraco, C. Pezzella, A. Piscitelli, S. Vanhulle, and G. Sannia, “Laccases: a never-ending story,” Cellular and Molecular Life Sciences, vol. 67, no. 3, pp. 369–385, 2010.
[138] M. Bottcher and F. Grosse, “HIV-1 protease inhibits its ¨ homologous reverse transcriptase by protein-protein interaction,” Nucleic Acids Research, vol. 25, pp. 1709–1714, 1997
[139] T. B. Ng and H. X. Wang, “A homodimeric laccase with unique characteristics from the yellow mushroom Cantharellus cibarius,” Biochemical and Biophysical Research Communications, vol. 313, no. 1, pp. 37–41, 2004.
[140] H. X. Wang and T. B. Ng, “A novel laccase with fair thermostability from the edible wild mushroom (Albatrella dispansus),” Biochemical and Biophysical Research Communications, vol. 319, no. 2, pp. 381–385, 2004.
[141] A. E. Franco Molano and E. Uribe- Calle, “Hongos agricales y boletales de Colombia,” Biota Colombiana, vol. 1, no. 1, pp. 25–43, 2000.
[142] C. Arboleda, A. I. Mej´ıa, A. E. Franco-Molano, G. A. Jim´enez, and J. Pm, “Autochthonous white rot fungi from the tropical forest of Colombia for dye decolourisation and ligninolytic enzymes production,” Sydowia, vol. 60, no. 2, pp. 165–180, 2008.
[143] A. Ruiz and A. Varela, “Nuevos registros de Aphyllophorales (Basidiomicota) en bosque montano h´umedo y de niebla de Colombia,” Caldasia, vol. 28, no. 2, pp. 259–266, 2006.
[144] L. Florez-sampedro, W. Zapata, W. Zapata et al., “In vitro ´ anti-HIV-1 activity of the enzymatic extract enriched with laccase produced by the fungi ganoderma sp. and lentinus sp,” Revista Vitae, vol. 23, no. 2, pp. 109–118, 2016.
[145] R. Goldstein Ijh, M. Monsigny, T. Osawa, and N. Sharon, “What should be called a lectin?” Nature, vol. 285, no. 66, 1980.
[146] H. Wang, T. B. Ng, and V. E. C. Ooi, “Lectins from mushrooms,” Mycological Research, vol. 102, no. 8, pp. 897–906, 1998.
[147] J. Guillot and G. Konska, “Lectins in higher fungi,” Biochemical Systematics and Ecology, vol. 25, no. 3, pp. 203–230, 1997.
[148] H. X. Wang, T. B. Ng, W. K. Liu, V. E. Ooi, and S. T. Chang, “Isolation and characterization of two distinct lectins with antiproliferative activity from the cultured mycelium of the edible mushroom Tricholoma mongolicum,” International Journal of Peptide and Protein Research, vol. 46, no. 6, pp. 508–513, 1995.
[149] P. H. K. Ngai and T. B. Ng, “Lentin, a novel and potent antifungal protein from shitake mushroom with inhibitory effects on activity of human immunodeficiency virus-1 reverse transcriptase and proliferation of leukemia cells,” Life Sciences, vol. 73, no. 26, pp. 3363–3374, 2003.
[150] H. Wang, T. B. Ng, and Q. Liu, “Isolation of a new heterodimeric lectin with mitogenic activity from fruiting bodies of the mushroom Agrocybe cyli
[151] Q.-B. She, T.-B. Ng, and W.-K. Liu, “A novel lectin with potent immunomodulatory activity isolated from both fruiting bodies and cultured mycelia of the edible MushroomVolvariella volvacea,” Biochemical and Biophysical Research Communications, vol. 247, no. 1, pp. 106–111, 1998
[152] S. Sueyoshi, T. Tsuji, and T. Osawa, “Purification and characterization of four isolectins of mushroom (Agaricus bisporus),” Biol Chem Hoppe Seyler, vol. 366, no. 3, pp. 213–221, 1985
[153] S. Oguri, M. Yoshida, and Y. Nagata, “Isolation, crystallization, and characterization of a 16.5-kDa protein from fruit bodies of a lectin-deficient strain ofPleurotus cornucopiae,” Bioscience, Biotechnology, and Biochemistry, vol. 58, no. 3, pp. 502–506, 1994
[154] T.-S. Vo and S.-K. Kim, “Potential anti-HIV agents from marine resources: an overview,” Marine Drugs, vol. 8, no. 12, pp. 2871–2892, 2010.
[155] M. D. Swanson, H. C. Winter, I. J. Goldstein, and D. M. Markovitz, “A lectin isolated from bananas is a potent inhibitor of HIV replication,” Journal of Biological Chemistry, vol. 285, no. 12, pp. 8646–8655, 2010.
[156] T. Mori, B. R. O’Keefe, R. C. Sowder 2nd. et al., “Isolation and characterization of griffithsin, a novel HIV-inactivating protein, from the red alga Griffithsia sp,” Journal of Biological Chemistry, vol. 280, no. 10, pp. 9345–9353, 2004.
[157] K. B. Alexandre, E. S. Gray, B. E. Lambson et al., “Mannoserich glycosylation patterns on HIV-1 subtype C gp120 and sensitivity to the lectins, Griffithsin, Cyanovirin-N and Scytovirin,” Virology, vol. 402, no. 1, pp. 187–196, 2010.
[158] P. Emau, B. Tian, B. R. O’keefe et al., “Griffithsin, a potent HIV entry inhibitor, is an excellent candidate for anti-HIV microbicide,” Journal of Medical Primatology, vol. 36, no. 4- 5, pp. 244–253, 2007.
[159] B. R. O’Keefe, F. Vojdani, V. Buffa et al., “Scaleable manufacture of HIV-1 entry inhibitor griffithsin and validation of its safety and efficacy as a topical microbicide component,” Proceedings of the National Academy of Sciences, vol. 106, no. 15, pp. 6099–6104, 2009
[160] J. C. Kouokam, D. Huskens, D. Schols et al., “Investigation of griffithsin’s interactions with human cells confirms its outstanding safety and efficacy profile as a microbicide candidate,” PLoS One, vol. 6, no. 8, Article ID e22635, 2011.
[161] C. Barton, J. C. Kouokam, A. B. Lasnik et al., “Activity of and effect of subcutaneous treatment with the broad-spectrum antiviral lectin griffithsin in two laboratory rodent models,” Antimicrobial Agents and Chemotherapy, vol. 58, no. 1, pp. 120–127, 2014.
[162] G. Ferir, K. E. Palmer, and D. Schols, “Synergistic activity ´ profile of griffithsin in combination with tenofovir, maraviroc and enfuvirtide against HIV-1 clade C,” Virology, vol. 417, no. 2, pp. 253–258, 2011.
[163] L. F. Kramzer, K. T. Hamorsky, P. W. Graebing et al., “Preformulation characterization of griffithsin, a biopharmaceutical candidate for HIV prevention,” AAPS PharmSciTech, vol. 22, no. 3, 83 pages, 2021.
[164] G. G¨unaydın, G. Edfeldt, D. A. Garber et al., “Impact of Q-Griffithsin anti-HIV microbicide gel in non-human primates: in situ analyses of epithelial and immune cell markers in rectal mucosa,” Scientific Reports, vol. 9, no.1, 18120 pages, 2019.
[165] K. R. Crakes, C. Herrera, J. L. Morgan et al., “Efficacy of silk fibroin biomaterial vehicle for in vivo mucosal delivery of Griffithsin and protection against HIV and SHIV infection ex vivo,” Journal of the International AIDS Society, vol. 23, no. 10, Article ID e25628, 2020.
[166] F. Minooei, J. R. Fried, J. L. Fuqua, K. E. Palmer, and J. M. Steinbach-Rankins, “In vitro study on synergistic interactions between free and encapsulated Q-griffithsin and antiretrovirals against HIV-1 infection,” International Journal of Nanomedicine, vol. 16, pp. 1189–1206, 2021
[167] “Study to evaluate the safety of griffithsin in a carrageenan gel in healthy women clinicaltrials,” 2021, https://clinicaltrials. gov/ct2/show/study/NCT02875119.
[168] “Griffithsin-based rectal microbicide for PREvention of viral ENTry,” 2021, https://clinicaltrials.gov/ct2/show/ NCT04032717
[169] R. A. Collins, T. B. Ng, W. P. Fong, C. C. Wan, and H. W. Yeung, “A comparison of human immunodeficiency virus type 1 inhibition by partially purified aqueous extracts of Chinese medicinal herbs,” Life Sciences, vol. 60, no. 23, pp. Pl345–PL351, 1997.
[170] Q.-Z. Yao, M. M. Yu, L. S. M. Ooi et al., “Isolation and characterization of a type 1 ribosome-inactivating protein from fruiting bodies of the edible mushroom (volvariella volvacea),” Journal of Agricultural and Food Chemistry, vol. 46, no. 2, pp. 788–792, 1998.
[171] T. Girbes, J. Ferreras, F. Arias, and F. Stirpe, “Description, distribution, activity and phylogenetic relationship of ribosome-inactivating proteins in plants, fungi and bacteria,” Mini-Reviews in Medicinal Chemistry, vol. 4, no. 5, pp. 461–476, 2004
[172] S. A. Kidwai, A. A. Ansari, and A. Salahuddin, “Effect of succinylation (3-carboxypropionylation) on the conformation and immunological activity of ovalbumin,” Biochemical Journal, vol. 155, no. 1, pp. 171–180, 1976
[173] P.-C. Shaw, K.-M. Lee, and K.-B. Wong, “Recent advances in trichosanthin, a ribosome-inactivating protein with multiple pharmacological properties,” Toxicon, vol. 45, no. 6, pp. 683–689, 2005
[174] M. S. McGrath, K. M. Hwang, S. E. Caldwell et al., “GLQ223: an inhibitor of human immunodeficiency virus replication in acutely and chronically infected cells of lymphocyte and mononuclear phagocyte lineage,” Proceedings of the National Academy of Sciences, vol. 86, no. 8, pp. 2844–2848, 1989
[175] Y.-Y. Wang, D.-Y. Ouyang, H. Huang, H. Chan, S.-C. Tam, and Y.-T. Zheng, “Enhanced apoptotic action of trichosanthin in HIV-1 infected cells,” Biochemical and Biophysical Research Communications, vol. 331, no. 4, pp. 1075–1080, 2005.
[176] W.-L. Zhao, D. Feng, J. Wu, and S.-F. Sui, “Trichosanthin inhibits integration of human immunodeficiency virus type 1 through depurinating the long-terminal repeats,” Molecular Biology Reports, vol. 37, no. 4, pp. 2093–2098, 2010.
[177] W. Zhao, D. Feng, S. Sun, T. Han, and S. Sui, “+e anti-viral protein of trichosanthin penetrates into human immunodeficiency virus type 1,” Acta Biochimica et Biophysica Sinica, vol. 42, no. 2, pp. 91–97, 2010.
[178] V. Byers, A. Levin, L. Waites et al., “A phase I/II study of trichostathin treatment of HIV desease,” Current Science, vol. 4, no. 2, pp. 1189–1196, 1990.
[179] V. S. Byers, A. S. Levin, A. Malvino, L. Waites, R. A. Robins, and R. W. Baldwin, “A phase II study of effect of addition of trichosanthin to zidovudine in patients with HIV disease and failing antiretroviral agents,” AIDS Research and Human Retroviruses, vol. 10, no. 4, pp. 413–420, 1994.
[180] J. O. Kahn, K. J. Gorelick, G. Gatti et al., “Safety, activity, and pharmacokinetics of GLQ223 in patients with AIDS and AIDS-related complex,” Antimicrobial Agents and Chemotherapy, vol. 38, no. 2, pp. 260–267, 1994.
[181] J. M. Zarling, P. A. Moran, O. Haffar et al., “Inhibition of HIV replication by pokeweed antiviral protein targeted to CD4+ cells by monoclonal antibodies,” Nature, vol. 347, no. 6288, pp. 92–95, 1990.
[182] J. M. Zarling, P. A. Moran, O. Haffar et al., “Inhibition of HIV-1 replication in seropositive patients’ CD4+ T-cells by pokeweed antiviral protein-monoclonal antibody conjugates,” International Journal of Immunopharmacology, vol. 13, no. 1, pp. 63–68, 1991.
[183] G. Krivdova and K. A. Hudak, “Pokeweed antiviral protein restores levels of cellular APOBEC3G during HIV-1 infection by depurinating Vif mRNA,” Antiviral Research, vol. 122, pp. 51–54, 2015.
[184] M. H. Pastrana Restrepo, S´ıntesis de derivados clorados y bromados de la l-tirosina y evaluacion in vitro de sus acti- ´ vidades antiparasitarias, Universidad de Antioquia, Antioquia, Colombia, 2016.
[185] P. Ciminiello, C. Dell’Aversano, E. Fattorusso, S. Magno, L. Carrano, and M. Pansini, “Chemistry of Verongida sponges. VII bromocompounds from the caribbean sponge Aplysina archeri,” Tetrahedron, vol. 52, no. 29, pp. 9863–9868, 1996.
dc.rights.license.none.fl_str_mv Atribución
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 22
dc.coverage.temporal.spa.fl_str_mv Volume 2021, Article ID 5552088
dc.publisher.spa.fl_str_mv Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Medicina, Medellín y Envigado
Hindawi
dc.publisher.program.spa.fl_str_mv Medicina
dc.publisher.place.spa.fl_str_mv Medellín
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/bba8f300-b351-4118-bd8f-60afe8fe0b8a/download
https://repository.ucc.edu.co/bitstreams/04ecd345-a27b-4413-a4d0-4f8447a8ca5d/download
https://repository.ucc.edu.co/bitstreams/5266e8dd-55aa-4ad5-9265-285eb94fff16/download
https://repository.ucc.edu.co/bitstreams/7506742d-2e76-410b-b381-0f0929002d89/download
bitstream.checksum.fl_str_mv 8ff075d273cc5447f801ad9c947ef0de
3bce4f7ab09dfc588f126e1e36e98a45
98de752122a31c84f1ab60b554bdd155
4daaaaba4fc6f8f7db965643860ef6b0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1811565469021241344
spelling Zapata Builes, WildemanSerna Arbeláez, Maria S.Flórez Sampedro, LauraOrozco, Lina P.Ramírez, KatherinGaleano, ElkinVolume 2021, Article ID 55520882021-08-02T22:38:24Z2021-08-02T22:38:24Z2021-05-301687-864710.1155/2021/5552088https://hdl.handle.net/20.500.12494/35509Serna-Arbeláez, M. S., Florez-Sampedro, Orozco, L. P., Ramírez, K., Galeano, E. y Zapata, W. (2021) Natural Products with Inhibitory Activity against Human Immunodeficiency Virus Type 1. Advances in Virology, vol. 2021, Article ID 5552088, 22 pages, 2021. https://doi.org/10.1155/2021/5552088Infections caused by human immunodeficiency virus (HIV) are considered one of the main public health problems worldwide. Antiretroviral therapy (ART) is the current modality of treatment for HIV-1 infection. It comprises the combined use of several drugs and can decrease the viral load and increase the CD4+ Tcell count in patients with HIV-1 infection, thereby proving to be an effective modality. This therapy significantly decreases the rate of morbidity and mortality owing to acquired immunodeficiency syndrome (AIDS) and prolongs and improves the quality of life of infected patients. However, nonadherence to ARTmay increase viral resistance to antiretroviral drugs and transmission of drug-resistant strains of HIV. +erefore, it is necessary to continue research for compounds with anti-HIV-1 activity, exhibiting a potential for the development of an alternative or complementary therapy to ARTwith low cost and fewer side effects. Natural products and their derivatives represent an excellent option owing to their therapeutic potential against HIV. Currently, the derivatives of natural products available as anti-HIV-1 agents include zidovudine, an arabinonucleoside derivative of the Caribbean marine sponge (Tectitethya crypta), which inhibits the reverse transcriptase of the virus. +is was the first antiviral agent approved for treatment of HIV infection. Additionally, bevirimat (isolated from Syzygium claviflorum) and calanolide A (isolated from Calophyllum sp.) are inhibitors of viral maturation and reverse transcription process, respectively. In the present review, we aimed to describe the wide repertoire of natural compounds exhibiting anti-HIV-1 activity that can be considered for designing new therapeutic strategies to curb the HIV pandemic.Infections caused by human immunodeficiency virus (HIV) are considered one of the main public health problems worldwide. Antiretroviral therapy (ART) is the current modality of treatment for HIV-1 infection. It comprises the combined use of several drugs and can decrease the viral load and increase the CD4+ Tcell count in patients with HIV-1 infection, thereby proving to be an effective modality. This therapy significantly decreases the rate of morbidity and mortality owing to acquired immunodeficiency syndrome (AIDS) and prolongs and improves the quality of life of infected patients. However, nonadherence to ARTmay increase viral resistance to antiretroviral drugs and transmission of drug-resistant strains of HIV. +erefore, it is necessary to continue research for compounds with anti-HIV-1 activity, exhibiting a potential for the development of an alternative or complementary therapy to ARTwith low cost and fewer side effects. Natural products and their derivatives represent an excellent option owing to their therapeutic potential against HIV. Currently, the derivatives of natural products available as anti-HIV-1 agents include zidovudine, an arabinonucleoside derivative of the Caribbean marine sponge (Tectitethya crypta), which inhibits the reverse transcriptase of the virus. +is was the first antiviral agent approved for treatment of HIV infection. Additionally, bevirimat (isolated from Syzygium claviflorum) and calanolide A (isolated from Calophyllum sp.) are inhibitors of viral maturation and reverse transcription process, respectively. In the present review, we aimed to describe the wide repertoire of natural compounds exhibiting anti-HIV-1 activity that can be considered for designing new therapeutic strategies to curb the HIV pandemic.https://scienti.minciencias.gov.co/cvlac/EnProdArticulo/query.do?cod_producto=73&cod_rh=0000157775https://orcid.org/0000-0002-7351-8738COL0112548wildeman.zapatab@campusucc.edu.cohttps://scholar.google.com.co/citations?hl=en&user=VLZxl1UAAAAJ22Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Medicina, Medellín y EnvigadoHindawiMedicinaMedellínhttps://www.hindawi.com/journals/av/2021/5552088/Advances in Virology[1] S. G. Deeks, S. R. Lewin, and D. V. Havlir, “+e end of AIDS: HIV infection as a chronic disease,” ?e Lancet, vol. 382, no. 9903, pp. 1525–1533, 2013[2] UNAIDS, Global HIV & AIDS Statistics-2020 Fact Sheet, UNAIDS, Geneva, Switzerland, unaids.org2020, 2020.[3] S. B. Laskey and R. F. Siliciano, “A mechanistic theory to explain the efficacy of antiretroviral therapy,” Nature Reviews Microbiology, vol. 12, no. 11, pp. 772–780, 2014.[4] T. B. Ng, B. Huang, W. P. Fong, and H. W. Yeung, “Antihuman immunodeficiency virus (anti-HIV) natural products with special emphasis on HIV reverse transcriptase inhibitors,” Life Sciences, vol. 61, no. 10, pp. 933–949, 1997.[5] Panel on Antiretroviral Guidelines for Adults and Adolescents, Guidelines for the Use of Antiretroviral Agents in Adults and Adolescents with HIV, Department of Health and Human Services, Washington, DC, USA, 2019.[6] Organization WH, Guideline on when to Start Antiretroviral ?erapy and on Pre-exposure Prophylaxis for HIV, 78 pages, World Health Organization, Geneva, Switzerland, 2015.[7] D. King, S. Tomkins, A. Waters et al., “Intracellular cytokines may model immunoregulation of abacavir hypersensitivity in HIV-infected subjects,” Journal of Allergy and Clinical Immunology, vol. 115, no. 5, pp. 1081–1087, 2005[8] J. Stekler, J. Maenza, C. Stevens et al., “Abacavir hypersensitivity reaction in primary HIV infection,” Aids, vol. 20, no. 9, pp. 1269–1274, 2006.[9] B. S. Peters and K. Conway, “+erapy for HIV,” Advances in Dental Research, vol. 23, no. 1, pp. 23–27, 2011.[10] V. Montessori, N. Press, M. Harris, L. Akagi, and J. S. Montaner, “Adverse effects of antiretroviral therapy for HIV infection,” CMAJ: Canadian Medical Association Journal, vol. 170, no. 2, pp. 229–238, 2004.[11] S. Esser, D. Helbig, U. Hillen, J. Dissemond, and S. Grabbe, “Side effects of HIV therapy,” JDDG, vol. 5, no. 9, pp. 745–754, 2007[12] L. Menendez-Arias, “Targeting HIV: antiretroviral therapy ´ and development of drug resistance,” Trends in Pharmacological Sciences, vol. 23, no. 8, pp. 381–388, 2002.[13] E. M. Gardner, W. J. Burman, J. F. Steiner, P. L. Anderson, and D. R. Bangsberg, “Antiretroviral medication adherence and the development of class-specific antiretroviral resistance,” AIDS, vol. 23, no. 9, pp. 1035–1046, 2009[14] J. B. Nachega, V. C. Marconi, G. U. van Zyl et al., “HIV treatment adherence, drug resistance, virologic failure: evolving concepts,” Infectious Disorders Drug Targets, vol. 11, no. 2, pp. 167–174, 2011.[15] P. Yeni, “Update on HAART in HIV,” Journal of Hepatology, vol. 44, 2006[16] F. Nakagawa, A. Miners, C. J. Smith et al., “Projected lifetime healthcare costs associated with HIV infection,” PLoS One, vol. 10, no. 4, Article ID e0125018, 2015.[17] N. E. +omford, D. A. Senthebane, A. Rowe et al., “Natural products for drug discovery in the 21st century: innovations for novel drug discovery,” International Journal of Molecular Sciences, vol. 19, no. 6, 2018.[18] L. Palmisano and S. Vella, “A brief history of antiretroviral therapy of HIV infection: success and challenges,” Annali dell’Istituto Superiore di Sanita, vol. 47, no. 1, pp. 44–48, 2011.[19] K. Vermani and S. Garg, “Herbal medicines for sexually transmitted diseases and AIDS,” Journal of Ethnopharmacology, vol. 80, no. 1, pp. 49–66, 2002.[20] D. Chattopadhyay, M. C. Sarkar, T. Chatterjee et al., “Recent advancements for the evaluation of anti-viral activities of natural products,” New Biotechnology, vol. 25, no. 5, pp. 347–368, 2009.[21] K. Yazaki, G.-i. Arimura, and T. Ohnishi, “Hidden’ terpenoids in plants: their biosynthesis, localization and ecological roles,” Plant and Cell Physiology, vol. 58, no. 10, pp. 1615–1621, 2017[22] D. +oll, “Biosynthesis and biological functions of terpenoids in plants,” Biotechnology of Isoprenoids, vol. 148, pp. 63–106, 2015.[23] J.-H. Yu, G.-C. Wang, Y.-S. Han, Y. Wu, M. A. Wainberg, and J.-M. Yue, “Limonoids with anti-HIV activity from Cipadessa cinerascens,” Journal of Natural Products, vol. 78, no. 6, pp. 1243–1252, 2015.[24] M. Shahidul Alam, M. A. Quader, and M. A. Rashid, “HIVinhibitory diterpenoid from Anisomeles indica,” Fitoterapia, vol. 71, no. 5, pp. 574–576, 2000.[25] S.-Z. Huang, X. Zhang, Q.-Y. Ma et al., “Terpenoids and their anti-HIV-1 activities from Excoecaria acerifolia,” Fitoterapia, vol. 91, pp. 224–230, 2013.[26] S.-Z. Huang, X. Zhang, Q.-Y. Ma et al., “Anti-HIV-1 tigliane diterpenoids from Excoecaria acertiflia Didr,” Fitoterapia, vol. 95, pp. 34–41, 2014.[27] S.-F. Li, Y. Zhang, N. Huang et al., “Daphnane diterpenoids from the stems of Trigonostemon lii and their anti-HIV-1 activity,” Phytochemistry, vol. 93, pp. 216–221, 2013.[28] Y.-Y. Cheng, H. Chen, H.-P. He et al., “Anti-HIV active daphnane diterpenoids from Trigonostemon thyrsoideum,” Phytochemistry, vol. 96, pp. 360–369, 2013.[29] T. Fujioka, Y. Kashiwada, R. E. Kilkuskie et al., “Anti-AIDS agents, 11. Betulinic acid and platanic acid as anti-HIV principles from Syzigium claviflorum, and the anti-HIV activity of structurally related triterpenoids,” Journal of Natural Products, vol. 57, no. 2, pp. 243–247, 1994.[30] T. Kanamoto, Y. Kashiwada, K. Kanbara et al., “Anti-human immunodeficiency virus activity of YK-FH312 (a betulinic acid derivative), a novel compound blocking viral maturation,” Antimicrobial Agents and Chemotherapy, vol. 45, no. 4, pp. 1225–1230, 2001.[31] F. Li, R. Goila-Gaur, K. Salzwedel et al., “PA-457: a potent HIV inhibitor that disrupts core condensation by targeting a late step in Gag processing,” Proceedings of the National Academy of Sciences, vol. 100, no. 23, pp. 13555–13560, 2003.[32] Y. Zhao, Q. Gu, S. L. Morris-Natschke, C.-H. Chen, and K.-H. Lee, “Incorporation of privileged structures into bevirimat can improve activity against wild-type and bevirimat-resistant HIV-1,” Journal of Medicinal Chemistry, vol. 59, no. 19, pp. 9262–9268, 2016.[33] F. Soler, C. Poujade, M. Evers et al., “Betulinic acid derivatives: a new class of specific inhibitors of human immunodeficiency virus type 1 entry,” Journal of Medicinal Chemistry, vol. 39, no. 5, pp. 1069–1083, 1996.[34] J. Tang, S. A. Jones, J. L. Jeffrey et al., “Discovery of a novel and potent class of anti-HIV-1 maturation inhibitors with improved virology profile against gag polymorphisms,” Bioorganic & Medicinal Chemistry Letters, vol. 27, no. 12, pp. 2689–2694, 2017.[35] H.-X. Xu, F.-Q. Zeng, M. Wan, and K.-Y. Sim, “Anti-HIV triterpene acids fromGeum japonicum,” Journal of Natural Products, vol. 59, no. 7, pp. 643–645, 1996.[36] Y. Kashiwada, T. Nagao, A. Hashimoto et al., “Anti-AIDS agents 38. Anti-HIV activity of 3-O-acyl ursolic acid Derivatives1,” Journal of Natural Products, vol. 63, no. 12, pp. 1619–1622, 2000[37] N. Kongkum, P. Tuchinda, M. Pohmakotr et al., “Cytotoxic, antitopoisomerase IIα, and anti-HIV-1 activities of triterpenoids isolated from leaves and twigs of Gardenia carinata,” Journal of Natural Products, vol. 76, no. 4, pp. 530–537, 2013.[38] S. el-Mekkawy, M. R. Meselhy, N. Nakamura et al., “AntiHIV-1 and anti-HIV-1-protease substances from Ganoderma lucidum,” Phytochemistry, vol. 49, no. 6, pp. 1651–1657, 1998.[39] B.-S. Min, N. Nakamura, H. Miyashiro, K.-W. Bae, and M. Hattori, “Triterpenes from the spores of Ganoderma lucidum and their inhibitory activity against HIV-1 protease,” Chemical and Pharmaceutical Bulletin, vol. 46, no. 10, pp. 1607–1612, 1998[40] T. Konoshima, I. Yasuda, Y. Kashiwada, L. M. Cosentino, and K.-H. Lee, “Anti-AIDS agents, 21. Triterpenoid saponins as anti-HIV principles from fruits of gleditsia japonica and gymnocladus chinesis, and a structure-activity correlation,” Journal of Natural Products, vol. 58, no. 9, pp. 1372–1377, 1995.[41] Y. Kashman, K. R. Gustafson, R. W. Fuller et al., “HIV inhibitory natural products. Part 7. +e calanolides, a novel HIV-inhibitory class of coumarin derivatives from the tropical rainforest tree, Calophyllum lanigerum,” Journal of Medicinal Chemistry, vol. 35, no. 15, pp. 2735–2743, 1992.[42] M. Huerta-Reyes, M. d. C. Basualdo, F. Abe, M. JimenezEstrada, C. Soler, and R. Reyes-Chilpa, “HIV-1 inhibitory compounds from Calophyllum brasiliense leaves,” Biological and Pharmaceutical Bulletin, vol. 27, no. 9, pp. 1471–1475, 2004[43] A. D. Patil, A. J. Freyer, D. S. Eggleston et al., “+e inophyllums, novel inhibitors of HIV-1 reverse transcriptase isolated from the Malaysian tree, Calophyllum inophyllum Linn,” Journal of Medicinal Chemistry, vol. 36, no. 26, pp. 4131–4138, 1993.[44] H. Dharmaratne, W. Wanigasekera, E. Mata-Greenwood, and J. Pezzuto, “Inhibition of human immunodeficiency virus type 1 reverse transcriptase activity by cordatolides isolated fromCalophyllum cordato-oblongum,” Planta Medica, vol. 64, no. 05, pp. 460-461, 1998.[45] H. R. W. Dharmaratne, G. T. Tan, G. P. K. Marasinghe, and J. M. Pezzuto, “Inhibition of HIV-1 reverse transcriptase and HIV-1 replication by Calophyllum coumarins and xanthones,” Planta Medica, vol. 68, no. 1, pp. 86-87, 2002.[46] E. Kudo, M. Taura, K. Matsuda et al., “Inhibition of HIV-1 replication by a tricyclic coumarin GUT-70 in acutely and chronically infected cells,” Bioorganic & Medicinal Chemistry Letters, vol. 23, no. 3, pp. 606–609, 2013.[47] P. Zhou, Y. Takaishi, H. Duan et al., “Coumarins and bicoumarin from Ferula sumbul: anti-HIV activity and inhibition of cytokine release,” Phytochemistry, vol. 53, no. 6, pp. 689–697, 2000.[48] N. Marquez, R. Sancho, L. M. Bedoya et al., “Mesuol, a natural occurring 4-phenylcoumarin, inhibits HIV-1 replication by targeting the NF-kappaB pathway,” Antiviral Research, vol. 66, no. 2-3, pp. 137–145, 2005.[49] Q. Wang, Z. Ding, J. Liu, and Y. Zheng, “Xanthohumol, a novel anti-HIV-1 agent purified from Hops Humulus lupulus,” Antiviral Research, vol. 64, no. 3, pp. 189–194, 2004.[50] D. C. Rowley, M. S. T. Hansen, D. Rhodes et al., “+alassiolins A-C: new marine-derived inhibitors of HIV cDNA integrase,” Bioorganic & Medicinal Chemistry, vol. 10, no. 11, pp. 3619–3625, 2002[51] N. Mahmood, C. Pizza, R. Aquino et al., “Inhibition of HIV infection by flavanoids,” Antiviral Research, vol. 22, no. 2-3, pp. 189–199, 1993.[52] S. Li, T. Hattori, and E. N. Kodama, “Epigallocatechin gallate inhibits the HIV reverse transcription step,” Antiviral Chemistry and Chemotherapy, vol. 21, no. 6, pp. 239–243, 2011.[53] K. Kitamura, M. Honda, H. Yoshizaki et al., “Baicalin, an inhibitor of HIV-1 production in vitro,” Antiviral Research, vol. 37, no. 2, pp. 131–140, 1998.[54] B. Q. Li, T. Fu, Y. Dongyan, J. A. Mikovits, F. W. Ruscetti, and J. M. Wang, “Flavonoid baicalin inhibits HIV-1 infection at the level of viral entry,” Biochemical and Biophysical Research Communications, vol. 276, no. 2, pp. 534–538, 2000.[55] S. Pasetto, V. Pardi, and R. M. Murata, “Anti-HIV-1 activity of flavonoid myricetin on HIV-1 infection in a dual-chamber in vitro model,” PLoS One, vol. 9, no. 12, Article ID e115323, 2014.[56] P. Chaniad, C. Wattanapiromsakul, S. Pianwanit, and S. Tewtrakul, “Anti-HIV-1 integrase compounds fromDioscorea bulbiferaand molecular docking study,” Pharmaceutical Biology, vol. 54, no. 6, pp. 1077–1085, 2016[57] J. T. Ortega, A. I. Suarez, M. L. Serrano, J. Baptista, F. H. Pujol, and H. R. Rangel, “+e role of the glycosyl moiety of myricetin derivatives in anti-HIV-1 activity in vitro,” AIDS Research and ?erapy, vol. 14, no. 1, 57 pages, 2017.[58] A. Mazumder, K. Raghavan, J. Weinstein, K. W. Kohn, and Y. Pommier, “Inhibition of human immunodeficiency virus type-1 integrase by curcumin,” Biochemical Pharmacology, vol. 49, no. 8, pp. 1165–1170, 1995.[59] A. Mazumder, N. Neamati, S. Sunder et al., “Curcumin analogs with altered potencies against HIV-1 integrase as probes for biochemical mechanisms of drug action,” Journal of Medicinal Chemistry, vol. 40, no. 19, pp. 3057– 3063, 1997.[60] N. Kumari, A. A. Kulkarni, X. Lin et al., “Inhibition of HIV-1 by curcumin A, a novel curcumin analog,” Drug Design, Development and ?erapy, vol. 9, pp. 5051–5060, 2015.[61] R. A. Reinke, D. J. Lee, B. R. McDougall et al., “L-chicoric acid inhibits human immunodeficiency virus type 1 integration in vivo and is a noncompetitive but reversible inhibitor of HIV-1 integrase in vitro,” Virology, vol. 326, no. 2, pp. 203–219, 2004.[62] Y.-J. Zou, H.-X. Wang, T.-B. Ng, C.-Y. Huang, and J.-X. Zhang, “Purification and characterization of a novel laccase from the edible mushroom Hericium coralloides,” ?e Journal of Microbiology, vol. 50, no. 1, pp. 72–78, 2012.[63] H. X. Wang and T. B. Ng, “A new laccase from dried fruiting bodies of the monkey head mushroom Hericium erinaceum,” Biochemical and Biophysical Research Communications, vol. 322, no. 1, pp. 17–21, 2004.[64] M. Li, G. Zhang, H. Wang, and T. Ng, “Purification and characterization of a laccase from the edible wild mushroom Tricholoma mongolicum,” Journal of Microbiology and Biotechnology, vol. 20, no. 7, pp. 1069–1076, 2010.[65] H. X. Wang and T. B. Ng, “A laccase from the medicinal mushroom Ganoderma lucidum,” Applied Microbiology and Biotechnology, vol. 72, no. 3, pp. 508–513, 2006[66] J. Sun, Q. J. Chen, Q. Q. Cao et al., “A laccase with antiproliferative and HIV-I reverse transcriptase inhibitory activities from the mycorrhizal fungus Agaricus placomyces,” Journal of Biomedicine & Biotechnology, vol. 2012, Article ID 736472, 12 pages, 2012.[67] D. D. Hu, R. Y. Zhang, G. Q. Zhang, H. X. Wang, and T. B. Ng, “A laccase with antiproliferative activity against tumor cells from an edible mushroom, white common Agrocybe cylindracea,” Phytomedicine, vol. 18, no. 5, pp. 374–379, 2011[68] H. X. Wang and T. B. Ng, “Purification of a novel lowmolecular-mass laccase with HIV-1 reverse transcriptase inhibitory activity from the mushroom Tricholoma giganteum,” Biochemical and Biophysical Research Communications, vol. 315, no. 2, pp. 450–454, 2004.[69] S. Zhao, C. B. Rong, C. Kong et al., “A novel laccase with potent antiproliferative and HIV-1 reverse transcriptase inhibitory activities from mycelia of mushroom Coprinus comatus,” BioMed Research International, vol. 2014, Article ID 417461, 8 pages, 2014.[70] X. Wu, C. Huang, Q. Chen, H. Wang, and J. Zhang, “A novel laccase with inhibitory activity towards HIV-I reverse transcriptase and antiproliferative effects on tumor cells from the fermentation broth of mushroomPleurotus cornucopiae,” Biomedical Chromatography, vol. 28, no. 4, pp. 548–553, 2014.[71] J. H. Wong, T. B. Ng, Y. Jiang, F. Liu, S. C. Sze, and K. Y. Zhang, “Purification and characterization of a Laccase with inhibitory activity toward HIV-1 reverse transcriptase and tumor cells from an edible mushroom (Pleurotus cornucopiae),” Protein and Peptide Letters, vol. 17, no. 8, pp. 1040–1047, 2010.[72] G.-Q. Zhang, Y.-F. Wang, X.-Q. Zhang, T. B. Ng, and H.-X. Wang, “Purification and characterization of a novel laccase from the edible mushroom Clitocybe maxima,” Process Biochemistry, vol. 45, no. 5, pp. 627–633, 2010.[73] L. Xu, H. Wang, and T. Ng, “A laccase with HIV-1 reverse transcriptase inhibitory activity from the broth of mycelial culture of the mushroom Lentinus tigrinus,” BioMed Research International, vol. 2012, Article ID 536725, 7 pages, 2012.[74] J. Sun, H. Wang, and T. B. Ng, “Isolation of a laccase with HIV-1 reverse transcriptase inhibitory activity from fresh fruiting bodies of the Lentinus edodes (Shiitake mushroom),” Indian Journal of Biochemistry & Biophysics, vol. 48, no. 2, pp. 88–94, 2011.[75] H. X. Wang and T. B. Ng, “Examination of lectins, polysaccharopeptide, polysaccharide, alkaloid, coumarin and trypsin inhibitors for inhibitory activity against human immunodeficiency virus reverse transcriptase and glycohydrolases,” Planta Medica, vol. 67, no. 7, pp. 669–672, 2001.[76] J. Balzarini, D. Schols, J. Neyts, E. Van Damme, W. Peumans, and E. De Clercq, “Alpha-(1-3)- and alpha-(1-6)-D-mannose-specific plant lectins are markedly inhibitory to human immunodeficiency virus and cytomegalovirus infections in vitro,” Antimicrobial Agents and Chemotherapy, vol. 35, no. 3, pp. 410–416, 1991.[77] J. Balzarini, J. Neyts, D. Schols et al., “+e mannose-specific plant lectins from Cymbidium hybrid and Epipactis helleborine and the (N-acetylglucosamine)n-specific plant lectin from Urtica dioica are potent and selective inhibitors of human immunodeficiency virus and cytomegalovirus replication in vitro,” Antiviral Research, vol. 18, no. 2, pp. 191–207, 1992.[78] R. D. Charan, M. H. G. Munro, B. R. O’Keefe et al., “Isolation and characterization ofMyrianthus holstiiLectin, a potent HIV-1 inhibitory protein from the PlantMyrianthus holstii1,” Journal of Natural Products, vol. 63, no. 8, pp. 1170–1174, 2000[79] G. Ferir, D. Huskens, S. Noppen, L. M. I. Koharudin, ´ A. M. Gronenborn, and D. Schols, “Broad anti-HIV activity of the Oscillatoria agardhii agglutinin homologue lectin family,” Journal of Antimicrobial Chemotherapy, vol. 69, no. 10, pp. 2746–2758, 2014.[80] T. Mori, B. R. O’Keefe, R. C. Sowder 2nd. et al., “Isolation and characterization of griffithsin, a novel HIV-inactivating protein, from the red alga Griffithsia sp,” Journal of Biological Chemistry, vol. 280, no. 10, pp. 9345–9353, 2005.[81] S. Zhao, Y. Zhao, S. Li et al., “A novel lectin with highly potent antiproliferative and HIV-1 reverse transcriptase inhibitory activities from the edible wild mushroom Russula delica,” Glycoconjugate Journal, vol. 27, no. 2, pp. 259–265, 2010.[82] Y. R. Li, Q. H. Liu, H. X. Wang, and T. B. Ng, “A novel lectin with potent antitumor, mitogenic and HIV-1 reverse transcriptase inhibitory activities from the edible mushroom Pleurotus citrinopileatus,” Biochimica et Biophysica Acta (BBA)-General Subjects, vol. 1780, no. 1, pp. 51–57, 2008.[83] C. H. Han, Q. H. Liu, T. B. Ng, and H. X. Wang, “A novel homodimeric lactose-binding lectin from the edible split gill medicinal mushroom Schizophyllum commune,” Biochemical and Biophysical Research Communications, vol. 336, no. 1, pp. 252–257, 2005.[84] G. Q. Zhang, J. Sun, H. X. Wang, and T. B. Ng, “A novel lectin with antiproliferative activity from the medicinal mushroom Pholiota adiposa,” Acta Biochimica Polonica, vol. 56, no. 3, pp. 415–421, 2009.[85] J. K. Zhao, H. X. Wang, and T. B. Ng, “Purification and characterization of a novel lectin from the toxic wild mushroom Inocybe umbrinella,” Toxicon, vol. 53, no. 3, pp. 360–366, 2009.[86] S. Zheng, C. Li, T. B. Ng, and H. X. Wang, “A lectin with mitogenic activity from the edible wild mushroom Boletus edulis,” Process Biochemistry, vol. 42, no. 12, pp. 1620–1624, 2007.[87] Y. Li, G. Zhang, T. B. Ng, and H. Wang, “A novel lectin with antiproliferative and HIV-1 reverse transcriptase inhibitory activities from dried fruiting bodies of the monkey head mushroom Hericium erinaceum,” BioMed Research International, vol. 2010, Article ID 716515, 9 pages, 2010.[88] H. Wang and T. B. Ng, “Isolation and characterization of velutin, a novel low-molecular-weight ribosome-inactivating protein from winter mushroom (Flammulina velutipes) fruiting bodies,” Life Sciences, vol. 68, no. 18, pp. 2151–2158, 2001.[89] S. K. Lam and T. B. Ng, “First simultaneous isolation of a ribosome inactivating protein and an antifungal protein from a mushroom (Lyophyllum shimeji) together with evidence for synergism of their antifungal effects,” Archives of Biochemistry and Biophysics, vol. 393, no. 2, pp. 271–280, 2001[90] S. K. Lam and T. B. Ng, “Hypsin, a novel thermostable ribosome-inactivating protein with antifungal and antiproliferative activities from fruiting bodies of the edible mushroom Hypsizigus marmoreus,” Biochemical and Biophysical Research Communications, vol. 285, no. 4, pp. 1071–1075, 2001.[91] J. H. Wong, H. X. Wang, and T. B. Ng, “Marmorin, a new ribosome inactivating protein with antiproliferative and HIV-1 reverse transcriptase inhibitory activities from the mushroom Hypsizigus marmoreus,” Applied Microbiology and Biotechnology, vol. 81, no. 4, pp. 669–674, 2008[92] Y.-M. Ng, Y. Yang, K.-H. Sze, X. Zhang, Y.-T. Zheng, and P.-C. Shaw, “Structural characterization and anti-HIV-1 activities of arginine/glutamate-rich polypeptide Luffin P1 from the seeds of sponge gourd (Luffa cylindrica),” Journal of Structural Biology, vol. 174, no. 1, pp. 164–172, 2011.[93] I. Kaur, M. Puri, Z. Ahmed, F. P. Blanchet, B. Mangeat, and V. Piguet, “Inhibition of HIV-1 replication by balsamin, a ribosome inactivating protein of Momordica balsamina,” PLoS One, vol. 8, no. 9, Article ID e73780, 2013.[94] F. Rajamohan, T. K. Venkatachalam, J. D. Irvin, and F. M. Uckun, “Pokeweed antiviral protein isoforms PAP-I, PAP-II, and PAP-III depurinate RNA of human immunodeficiency virus (HIV)-1,” Biochemical and Biophysical Research Communications, vol. 260, no. 2, pp. 453–458, 1999.[95] T. Ichiba, P. J. Scheuer, M. Kelly-borges, and F. Pierce, “+ree bromotyrosine derivatives, one terminating in an unprecedented diketocyclopentenylidene enamine,” ?e Journal of Organic Chemistry, vol. 58, no. 15, pp. 4149-4150, 1993.[96] D. Gochfeld, K. El Sayed, M. Yousaf et al., “Marine natural products as lead anti-HIV agents,” Mini-Reviews in Medicinal Chemistry, vol. 3, no. 5, pp. 401–424, 2003.[97] L. G. G´omez-Archila, W. Zapata, F. J. D´ıaz, M. T. Rugeles, E. Galeano, and A. Mart´ınez, “Bromotyrosine derivatives from marine sponges inhibit the HIV-1 replication in vitro,” Vitae, vol. 21, no. 2, pp. 114–125, 2014[98] S. A. Ross, J. D. Weete, R. F. Schinazi et al., “Mololipids, A new series of anti-HIV bromotyramine-derived compounds from a sponge of the order Verongida†,” Journal of Natural Products, vol. 63, no. 4, pp. 501–503, 2000.[99] P. Yogeeswari and D. Sriram, “Betulinic acid and its derivatives: a review on their biological properties,” Current Medicinal Chemistry, vol. 12, no. 6, pp. 657–666, 2005.[100] D. E. Martin, R. Blum, J. Wilton et al., “Safety and pharmacokinetics of Bevirimat (PA-457), a novel inhibitor of human immunodeficiency virus maturation, in healthy volunteers,” Antimicrobial Agents and Chemotherapy, vol. 51, no. 9, pp. 3063–3066, 2007.[101] D. E. Martin, R. Blum, J. Doto, H. Galbraith, and C. Ballow, “Multiple-dose pharmacokinetics and safety of bevirimat, a novel inhibitor of HIV Maturation, in healthy volunteers,” Clinical Pharmacokinetics, vol. 46, no. 7, pp. 589–598, 2007.[102] P. F. Smith, A. Ogundele, A. Forrest et al., “Phase I and II study of the safety, virologic effect, and pharmacokinetics/ pharmacodynamics of single-dose 3-O-(3′,3′-Dimethylsuccinyl)Betulinic acid (bevirimat) against human immunodeficiency virus infection,” Antimicrobial Agents and Chemotherapy, vol. 51, no. 10, pp. 3574–3581, 2007.[103] N. A. Margot, C. S. Gibbs, and M. D. Miller, “Phenotypic susceptibility to bevirimat in isolates from HIV-1-infected patients without prior exposure to bevirimat,” Antimicrobial Agents and Chemotherapy, vol. 54, no. 6, pp. 2345–2353, 2010.[104] A. Neyret, B. Gay, A. Cransac et al., “Insight into the mechanism of action of EP-39, a bevirimat derivative that inhibits HIV-1 maturation,” Antiviral Research, vol. 164, pp. 162–175, 2019.[105] B. Labrosse, O. Pleskoff, N. Sol, C. Jones, Y. H´enin, and M. Alizon, “Resistance to a drug blocking human immunodeficiency virus type 1 entry (RPR103611) is conferred by mutations in gp41,” Journal of Virology, vol. 71, no. 11, pp. 8230–8236, 1997.[106] B. Labrosse, C. Treboute, and M. Alizon, “Sensitivity to a nonpeptidic compound (RPR103611) blocking human immunodeficiency virus type 1 Env-mediated fusion depends on sequence and accessibility of the gp41 loop region,” Journal of Virology, vol. 74, no. 5, pp. 2142–2150, 2000.[107] I. Kostova, S. Raleva, P. Genova, and R. Argirova, “Structureactivity relationships of synthetic coumarins as HIV-1 inhibitors,” Bioinorganic Chemistry and Applications, vol. 2006, Article ID 68274, 9 pages, 2006.[108] B. Chenera, M. L. West, J. A. Finkelstein, and G. B. Dreyer’, “Total synthesis of (±)-calanolide A, a non-nucleoside inhibitor of HIV-1 reverse transcriptase,” ?e Journal of Organic Chemistry, vol. 58, no. 21, 1993.[109] A. Kucherenko, M. T. Flavin, W. A. Boulanger et al., “Novel approach for synthesis of (±)-calanolide a and its anti-HIV activity,” Tetrahedron Letters, vol. 36, no. 31, 1995.[110] M. T. Flavin, “Synthesis, chromatographic resolution, and anti-human immunodeficiency virus activity of (±)-Calanolide A and its enantiomers,” Journal of Medicinal Chemistry, vol. 39, no. 6, 1995[111] J. H. Cardellina, H. R. Bokesch, T. C. McKee, and M. R. Boyd, “Resolution and comparative anti-HIV evaluation of the enantiomers of calanolides A and B,” Bioorganic & Medicinal Chemistry Letters, vol. 5, no. 9, pp. 1011–1014, 1995[112] R. W. Buckheit Jr., E. L. White, V. Fliakas-Boltz et al., “Unique anti-human immunodeficiency virus activities of the nonnucleoside reverse transcriptase inhibitors calanolide A, costatolide, and dihydrocostatolide,” Antimicrobial Agents and Chemotherapy, vol. 43, no. 8, pp. 1827–1834, 1999[113] R. Buckheit Jr., V. Fliakasboltz, W. Decker et al., “Comparative anti-HIV evaluation of diverse HIV-1-specific reverse transcriptase inhibitor-resistant virus isolates demonstrates the existence of distinct phenotypic subgroups,” Antiviral Research, vol. 26, no. 2, pp. 117–132, 1995.[114] J. C. Garc´ıa Zebad´ua, G. A. Magos Guerrero, M. Mumbr´u Massip et al., “Inhibition of HIV-1 reverse transcriptase, toxicological and chemical profile of Calophyllum brasiliense extracts from Chiapas, Mexico,” Fitoterapia, vol. 82, no. 7, pp. 1027–1034, 2011.[115] T. Creagh, J. L. Ruckle, D. T. Tolbert et al., “Safety and pharmacokinetics of single doses of (+)-calanolide a, a novel, naturally occurring nonnucleoside reverse transcriptase inhibitor, in healthy, human immunodeficiency virus-negative human subjects,” Antimicrobial Agents and Chemotherapy, vol. 45, no. 5, pp. 1379–1386, 2001.[116] D. A. Eiznhamer, T. Creagh, J. L. Ruckle et al., “Safety and pharmacokinetic profile of multiple escalating doses of (+)-calanolide A, a naturally occurring nonnucleoside reverse transcriptase inhibitor, in healthy HIV-negative volunteers,” HIV Clinical Trials, vol. 3, no. 6, pp. 435–450, 2002.[117] K. Matsuda, S. Hattori, R. Kariya et al., “Inhibition of HIV-1 entry by the tricyclic coumarin GUT-70 through the modification of membrane fluidity,” Biochemical and Biophysical Research Communications, vol. 457, no. 3, pp. 288–294, 2015[118] H. Wang, Y. Liu, C. Huan et al., “NF-κB-Interacting long noncoding RNA regulates HIV-1 replication and latency by repressing NF-κB signaling,” Journal of Virology, vol. 94, no. 17, 2020.[119] P. Bremner and M. Heinrich, “Natural products as targeted modulators of the nuclear factor-kappaB pathway,” ?e Journal of Pharmacy and Pharmacology, vol. 54, no. 4, pp. 453–472, 2002.[120] M. Karin, Y. Yamamoto, and Q. M. Wang, “+e IKK NF-κB system: a treasure trove for drug development,” Nature Reviews Drug Discovery, vol. 3, no. 1, pp. 17–26, 2004.[121] R. Sancho, N. Marquez, M. G ´ omez-Gonzalo et al., ´ “Imperatorin inhibits HIV-1 replication through an Sp1- dependent pathway,” Journal of Biological Chemistry, vol. 279, no. 36, pp. 37349–37359, 2004.[122] E. Kozioł and K. Skalicka-Woz´niak, “Imperatorin–pharmacological meaning and analytical clues: profound investigation,” Phytochemistry Review, vol. 15, pp. 627–649, 2016.[123] M. Deng, L. Xie, L. Zhong, Y. Liao, L. Liu, and X. Li, “Imperatorin: a review of its pharmacology, toxicity and pharmacokinetics,” European Journal of Pharmacology, vol. 879, 2020.[124] G. Casano, A. Dum`etre, C. Pannecouque, S. Hutter, N. Azas, and M. Robin, “Anti-HIV and antiplasmodial activity of original flavonoid derivatives,” Bioorganic & Medicinal Chemistry, vol. 18, no. 16, pp. 6012–6023, 2010.[125] T. P. T. Cushnie and A. J. Lamb, “Antimicrobial activity of flavonoids,” International Journal of Antimicrobial Agents, vol. 26, no. 5, pp. 343–356, 2005.[126] X. Zhao, K. Jiang, B. Liang, and X. Huang, “Anticancer effect of xanthohumol induces growth inhibition and apoptosis of human liver cancer through NF-κB/p53-apoptosis signaling pathway,” Oncology Reports, vol. 35, no. 2, pp. 669–675, 2016.[127] B. W. Vanhoecke, F. Delporte, E. Van Braeckel et al., “A safety study of oral tangeretin and xanthohumol administration to laboratory mice,” Vivo, vol. 19, no. 1, pp. 103–107, 2005.[128] K. Yamaguchi, M. Honda, H. Ikigai, Y. Hara, and T. Shimamura, “Inhibitory effects of (−)-epigallocatechin gallate on the life cycle of human immunodeficiency virus type 1 (HIV-1),” Antiviral Research, vol. 53, no. 1, pp. 19–34, 2002.[129] K. Kawai, N. H. Tsuno, J. Kitayama et al., “Epigallocatechin gallate, the main component of tea polyphenol, binds to CD4 and interferes with gp120 binding,” Journal of Allergy and Clinical Immunology, vol. 112, no. 5, pp. 951–957, 2003.[130] C. L. Nance, E. B. Siwak, and W. T. Shearer, “Preclinical development of the green tea catechin, epigallocatechin gallate, as an HIV-1 therapy,” Journal of Allergy and Clinical Immunology, vol. 123, no. 2, pp. 459–465, 2009.[131] P. Anand, A. B. Kunnumakkara, R. A. Newman, and B. B. Aggarwal, “Bioavailability of curcumin: problems and promises,” Molecular Pharmaceutics, vol. 4, no. 6, pp. 807–818, 2007.[132] C. J. Li, L. J. Zhang, B. J. Dezube, C. S. Crumpacker, and A. B. Pardee, “+ree inhibitors of type 1 human immunodeficiency virus long terminal repeat-directed gene expression and virus replication,” Proceedings of the National Academy of Sciences, vol. 90, no. 5, pp. 1839–1842, 1993.[133] A. Ali and A. C. Banerjea, “Curcumin inhibits HIV-1 by promoting Tat protein degradation,” Scientific Reports, vol. 627539 pages, 2016.[134] A. L. Cheng, C. H. Hsu, J. K. Lin et al., “Phase I clinical trial of curcumin, a chemopreventive agent, in patients with highrisk or pre-malignant lesions,” Anticancer Research, vol. 21, no. 4b, pp. 2895–2900, 2001.[135] G. Shoba, D. Joy, T. Joseph, M. Majeed, R. Rajendran, and P. Srinivas, “Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers,” Planta Medica, vol. 64, no. 4, pp. 353–356, 1998.[136] P. Baldrian, “Fungal laccases-occurrence and properties,” FEMS Microbiology Reviews, vol. 30, no. 2, pp. 215–242, 2006.[137] P. Giardina, V. Faraco, C. Pezzella, A. Piscitelli, S. Vanhulle, and G. Sannia, “Laccases: a never-ending story,” Cellular and Molecular Life Sciences, vol. 67, no. 3, pp. 369–385, 2010.[138] M. Bottcher and F. Grosse, “HIV-1 protease inhibits its ¨ homologous reverse transcriptase by protein-protein interaction,” Nucleic Acids Research, vol. 25, pp. 1709–1714, 1997[139] T. B. Ng and H. X. Wang, “A homodimeric laccase with unique characteristics from the yellow mushroom Cantharellus cibarius,” Biochemical and Biophysical Research Communications, vol. 313, no. 1, pp. 37–41, 2004.[140] H. X. Wang and T. B. Ng, “A novel laccase with fair thermostability from the edible wild mushroom (Albatrella dispansus),” Biochemical and Biophysical Research Communications, vol. 319, no. 2, pp. 381–385, 2004.[141] A. E. Franco Molano and E. Uribe- Calle, “Hongos agricales y boletales de Colombia,” Biota Colombiana, vol. 1, no. 1, pp. 25–43, 2000.[142] C. Arboleda, A. I. Mej´ıa, A. E. Franco-Molano, G. A. Jim´enez, and J. Pm, “Autochthonous white rot fungi from the tropical forest of Colombia for dye decolourisation and ligninolytic enzymes production,” Sydowia, vol. 60, no. 2, pp. 165–180, 2008.[143] A. Ruiz and A. Varela, “Nuevos registros de Aphyllophorales (Basidiomicota) en bosque montano h´umedo y de niebla de Colombia,” Caldasia, vol. 28, no. 2, pp. 259–266, 2006.[144] L. Florez-sampedro, W. Zapata, W. Zapata et al., “In vitro ´ anti-HIV-1 activity of the enzymatic extract enriched with laccase produced by the fungi ganoderma sp. and lentinus sp,” Revista Vitae, vol. 23, no. 2, pp. 109–118, 2016.[145] R. Goldstein Ijh, M. Monsigny, T. Osawa, and N. Sharon, “What should be called a lectin?” Nature, vol. 285, no. 66, 1980.[146] H. Wang, T. B. Ng, and V. E. C. Ooi, “Lectins from mushrooms,” Mycological Research, vol. 102, no. 8, pp. 897–906, 1998.[147] J. Guillot and G. Konska, “Lectins in higher fungi,” Biochemical Systematics and Ecology, vol. 25, no. 3, pp. 203–230, 1997.[148] H. X. Wang, T. B. Ng, W. K. Liu, V. E. Ooi, and S. T. Chang, “Isolation and characterization of two distinct lectins with antiproliferative activity from the cultured mycelium of the edible mushroom Tricholoma mongolicum,” International Journal of Peptide and Protein Research, vol. 46, no. 6, pp. 508–513, 1995.[149] P. H. K. Ngai and T. B. Ng, “Lentin, a novel and potent antifungal protein from shitake mushroom with inhibitory effects on activity of human immunodeficiency virus-1 reverse transcriptase and proliferation of leukemia cells,” Life Sciences, vol. 73, no. 26, pp. 3363–3374, 2003.[150] H. Wang, T. B. Ng, and Q. Liu, “Isolation of a new heterodimeric lectin with mitogenic activity from fruiting bodies of the mushroom Agrocybe cyli[151] Q.-B. She, T.-B. Ng, and W.-K. Liu, “A novel lectin with potent immunomodulatory activity isolated from both fruiting bodies and cultured mycelia of the edible MushroomVolvariella volvacea,” Biochemical and Biophysical Research Communications, vol. 247, no. 1, pp. 106–111, 1998[152] S. Sueyoshi, T. Tsuji, and T. Osawa, “Purification and characterization of four isolectins of mushroom (Agaricus bisporus),” Biol Chem Hoppe Seyler, vol. 366, no. 3, pp. 213–221, 1985[153] S. Oguri, M. Yoshida, and Y. Nagata, “Isolation, crystallization, and characterization of a 16.5-kDa protein from fruit bodies of a lectin-deficient strain ofPleurotus cornucopiae,” Bioscience, Biotechnology, and Biochemistry, vol. 58, no. 3, pp. 502–506, 1994[154] T.-S. Vo and S.-K. Kim, “Potential anti-HIV agents from marine resources: an overview,” Marine Drugs, vol. 8, no. 12, pp. 2871–2892, 2010.[155] M. D. Swanson, H. C. Winter, I. J. Goldstein, and D. M. Markovitz, “A lectin isolated from bananas is a potent inhibitor of HIV replication,” Journal of Biological Chemistry, vol. 285, no. 12, pp. 8646–8655, 2010.[156] T. Mori, B. R. O’Keefe, R. C. Sowder 2nd. et al., “Isolation and characterization of griffithsin, a novel HIV-inactivating protein, from the red alga Griffithsia sp,” Journal of Biological Chemistry, vol. 280, no. 10, pp. 9345–9353, 2004.[157] K. B. Alexandre, E. S. Gray, B. E. Lambson et al., “Mannoserich glycosylation patterns on HIV-1 subtype C gp120 and sensitivity to the lectins, Griffithsin, Cyanovirin-N and Scytovirin,” Virology, vol. 402, no. 1, pp. 187–196, 2010.[158] P. Emau, B. Tian, B. R. O’keefe et al., “Griffithsin, a potent HIV entry inhibitor, is an excellent candidate for anti-HIV microbicide,” Journal of Medical Primatology, vol. 36, no. 4- 5, pp. 244–253, 2007.[159] B. R. O’Keefe, F. Vojdani, V. Buffa et al., “Scaleable manufacture of HIV-1 entry inhibitor griffithsin and validation of its safety and efficacy as a topical microbicide component,” Proceedings of the National Academy of Sciences, vol. 106, no. 15, pp. 6099–6104, 2009[160] J. C. Kouokam, D. Huskens, D. Schols et al., “Investigation of griffithsin’s interactions with human cells confirms its outstanding safety and efficacy profile as a microbicide candidate,” PLoS One, vol. 6, no. 8, Article ID e22635, 2011.[161] C. Barton, J. C. Kouokam, A. B. Lasnik et al., “Activity of and effect of subcutaneous treatment with the broad-spectrum antiviral lectin griffithsin in two laboratory rodent models,” Antimicrobial Agents and Chemotherapy, vol. 58, no. 1, pp. 120–127, 2014.[162] G. Ferir, K. E. Palmer, and D. Schols, “Synergistic activity ´ profile of griffithsin in combination with tenofovir, maraviroc and enfuvirtide against HIV-1 clade C,” Virology, vol. 417, no. 2, pp. 253–258, 2011.[163] L. F. Kramzer, K. T. Hamorsky, P. W. Graebing et al., “Preformulation characterization of griffithsin, a biopharmaceutical candidate for HIV prevention,” AAPS PharmSciTech, vol. 22, no. 3, 83 pages, 2021.[164] G. G¨unaydın, G. Edfeldt, D. A. Garber et al., “Impact of Q-Griffithsin anti-HIV microbicide gel in non-human primates: in situ analyses of epithelial and immune cell markers in rectal mucosa,” Scientific Reports, vol. 9, no.1, 18120 pages, 2019.[165] K. R. Crakes, C. Herrera, J. L. Morgan et al., “Efficacy of silk fibroin biomaterial vehicle for in vivo mucosal delivery of Griffithsin and protection against HIV and SHIV infection ex vivo,” Journal of the International AIDS Society, vol. 23, no. 10, Article ID e25628, 2020.[166] F. Minooei, J. R. Fried, J. L. Fuqua, K. E. Palmer, and J. M. Steinbach-Rankins, “In vitro study on synergistic interactions between free and encapsulated Q-griffithsin and antiretrovirals against HIV-1 infection,” International Journal of Nanomedicine, vol. 16, pp. 1189–1206, 2021[167] “Study to evaluate the safety of griffithsin in a carrageenan gel in healthy women clinicaltrials,” 2021, https://clinicaltrials. gov/ct2/show/study/NCT02875119.[168] “Griffithsin-based rectal microbicide for PREvention of viral ENTry,” 2021, https://clinicaltrials.gov/ct2/show/ NCT04032717[169] R. A. Collins, T. B. Ng, W. P. Fong, C. C. Wan, and H. W. Yeung, “A comparison of human immunodeficiency virus type 1 inhibition by partially purified aqueous extracts of Chinese medicinal herbs,” Life Sciences, vol. 60, no. 23, pp. Pl345–PL351, 1997.[170] Q.-Z. Yao, M. M. Yu, L. S. M. Ooi et al., “Isolation and characterization of a type 1 ribosome-inactivating protein from fruiting bodies of the edible mushroom (volvariella volvacea),” Journal of Agricultural and Food Chemistry, vol. 46, no. 2, pp. 788–792, 1998.[171] T. Girbes, J. Ferreras, F. Arias, and F. Stirpe, “Description, distribution, activity and phylogenetic relationship of ribosome-inactivating proteins in plants, fungi and bacteria,” Mini-Reviews in Medicinal Chemistry, vol. 4, no. 5, pp. 461–476, 2004[172] S. A. Kidwai, A. A. Ansari, and A. Salahuddin, “Effect of succinylation (3-carboxypropionylation) on the conformation and immunological activity of ovalbumin,” Biochemical Journal, vol. 155, no. 1, pp. 171–180, 1976[173] P.-C. Shaw, K.-M. Lee, and K.-B. Wong, “Recent advances in trichosanthin, a ribosome-inactivating protein with multiple pharmacological properties,” Toxicon, vol. 45, no. 6, pp. 683–689, 2005[174] M. S. McGrath, K. M. Hwang, S. E. Caldwell et al., “GLQ223: an inhibitor of human immunodeficiency virus replication in acutely and chronically infected cells of lymphocyte and mononuclear phagocyte lineage,” Proceedings of the National Academy of Sciences, vol. 86, no. 8, pp. 2844–2848, 1989[175] Y.-Y. Wang, D.-Y. Ouyang, H. Huang, H. Chan, S.-C. Tam, and Y.-T. Zheng, “Enhanced apoptotic action of trichosanthin in HIV-1 infected cells,” Biochemical and Biophysical Research Communications, vol. 331, no. 4, pp. 1075–1080, 2005.[176] W.-L. Zhao, D. Feng, J. Wu, and S.-F. Sui, “Trichosanthin inhibits integration of human immunodeficiency virus type 1 through depurinating the long-terminal repeats,” Molecular Biology Reports, vol. 37, no. 4, pp. 2093–2098, 2010.[177] W. Zhao, D. Feng, S. Sun, T. Han, and S. Sui, “+e anti-viral protein of trichosanthin penetrates into human immunodeficiency virus type 1,” Acta Biochimica et Biophysica Sinica, vol. 42, no. 2, pp. 91–97, 2010.[178] V. Byers, A. Levin, L. Waites et al., “A phase I/II study of trichostathin treatment of HIV desease,” Current Science, vol. 4, no. 2, pp. 1189–1196, 1990.[179] V. S. Byers, A. S. Levin, A. Malvino, L. Waites, R. A. Robins, and R. W. Baldwin, “A phase II study of effect of addition of trichosanthin to zidovudine in patients with HIV disease and failing antiretroviral agents,” AIDS Research and Human Retroviruses, vol. 10, no. 4, pp. 413–420, 1994.[180] J. O. Kahn, K. J. Gorelick, G. Gatti et al., “Safety, activity, and pharmacokinetics of GLQ223 in patients with AIDS and AIDS-related complex,” Antimicrobial Agents and Chemotherapy, vol. 38, no. 2, pp. 260–267, 1994.[181] J. M. Zarling, P. A. Moran, O. Haffar et al., “Inhibition of HIV replication by pokeweed antiviral protein targeted to CD4+ cells by monoclonal antibodies,” Nature, vol. 347, no. 6288, pp. 92–95, 1990.[182] J. M. Zarling, P. A. Moran, O. Haffar et al., “Inhibition of HIV-1 replication in seropositive patients’ CD4+ T-cells by pokeweed antiviral protein-monoclonal antibody conjugates,” International Journal of Immunopharmacology, vol. 13, no. 1, pp. 63–68, 1991.[183] G. Krivdova and K. A. Hudak, “Pokeweed antiviral protein restores levels of cellular APOBEC3G during HIV-1 infection by depurinating Vif mRNA,” Antiviral Research, vol. 122, pp. 51–54, 2015.[184] M. H. Pastrana Restrepo, S´ıntesis de derivados clorados y bromados de la l-tirosina y evaluacion in vitro de sus acti- ´ vidades antiparasitarias, Universidad de Antioquia, Antioquia, Colombia, 2016.[185] P. Ciminiello, C. Dell’Aversano, E. Fattorusso, S. Magno, L. Carrano, and M. Pansini, “Chemistry of Verongida sponges. VII bromocompounds from the caribbean sponge Aplysina archeri,” Tetrahedron, vol. 52, no. 29, pp. 9863–9868, 1996.HIV-1ARTAlternative therapyNatural productsAnti-HIV activityHIV-1ARTAlternative therapyNatural productsAnti-HIV activityNatural products with inhibitory activity against Human Immunodeficiency Virus Type 1Artículos Científicoshttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribucióninfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationORIGINALNatural Products with Inhibitory Activity against Human UCC_UdeA 2021.pdfNatural Products with Inhibitory Activity against Human UCC_UdeA 2021.pdfArtículoapplication/pdf2525288https://repository.ucc.edu.co/bitstreams/bba8f300-b351-4118-bd8f-60afe8fe0b8a/download8ff075d273cc5447f801ad9c947ef0deMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/04ecd345-a27b-4413-a4d0-4f8447a8ca5d/download3bce4f7ab09dfc588f126e1e36e98a45MD52THUMBNAILNatural Products with Inhibitory Activity against Human UCC_UdeA 2021.pdf.jpgNatural Products with Inhibitory Activity against Human UCC_UdeA 2021.pdf.jpgGenerated Thumbnailimage/jpeg5343https://repository.ucc.edu.co/bitstreams/5266e8dd-55aa-4ad5-9265-285eb94fff16/download98de752122a31c84f1ab60b554bdd155MD53TEXTNatural Products with Inhibitory Activity against Human UCC_UdeA 2021.pdf.txtNatural Products with Inhibitory Activity against Human UCC_UdeA 2021.pdf.txtExtracted texttext/plain101179https://repository.ucc.edu.co/bitstreams/7506742d-2e76-410b-b381-0f0929002d89/download4daaaaba4fc6f8f7db965643860ef6b0MD5420.500.12494/35509oai:repository.ucc.edu.co:20.500.12494/355092024-08-10 22:47:52.026restrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo=