Efecto de la ciclicidad ovárica de las hembras ovinas sobre la tasa de recuperación, competencia ovocitaria y producción de embriones in vitro

Este proyecto se realizó con el objetivo de evaluar la influencia de la ciclicidad ovárica en hembras ovinas sobre la tasa de recuperación y competencia ovocitaria y sobre la producción in vitro de embriones. Se obtuvieron pares de ovarios hembras ovinas provenientes de una planta de beneficio ubica...

Full description

Autores:
Triana Gelvez, Lina Marcela
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2021
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/33708
Acceso en línea:
https://hdl.handle.net/20.500.12494/33708
Palabra clave:
calidad morfológica de CCOs
Tasa clivaje
Maduración ovocitaria
Estandarización del medio de fertilización
TG 2021 MVZ 33708
morphological quality of CCOs
Cleavage rate
Oocyte maturation
Standardization of the fertilization medium
Rights
openAccess
License
Atribución – No comercial – Sin Derivar
id COOPER2_c130fecf4199d1394485b40c062a246f
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/33708
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.spa.fl_str_mv Efecto de la ciclicidad ovárica de las hembras ovinas sobre la tasa de recuperación, competencia ovocitaria y producción de embriones in vitro
title Efecto de la ciclicidad ovárica de las hembras ovinas sobre la tasa de recuperación, competencia ovocitaria y producción de embriones in vitro
spellingShingle Efecto de la ciclicidad ovárica de las hembras ovinas sobre la tasa de recuperación, competencia ovocitaria y producción de embriones in vitro
calidad morfológica de CCOs
Tasa clivaje
Maduración ovocitaria
Estandarización del medio de fertilización
TG 2021 MVZ 33708
morphological quality of CCOs
Cleavage rate
Oocyte maturation
Standardization of the fertilization medium
title_short Efecto de la ciclicidad ovárica de las hembras ovinas sobre la tasa de recuperación, competencia ovocitaria y producción de embriones in vitro
title_full Efecto de la ciclicidad ovárica de las hembras ovinas sobre la tasa de recuperación, competencia ovocitaria y producción de embriones in vitro
title_fullStr Efecto de la ciclicidad ovárica de las hembras ovinas sobre la tasa de recuperación, competencia ovocitaria y producción de embriones in vitro
title_full_unstemmed Efecto de la ciclicidad ovárica de las hembras ovinas sobre la tasa de recuperación, competencia ovocitaria y producción de embriones in vitro
title_sort Efecto de la ciclicidad ovárica de las hembras ovinas sobre la tasa de recuperación, competencia ovocitaria y producción de embriones in vitro
dc.creator.fl_str_mv Triana Gelvez, Lina Marcela
dc.contributor.advisor.none.fl_str_mv Moreno Jerez, Edgar Ricardo
dc.contributor.author.none.fl_str_mv Triana Gelvez, Lina Marcela
dc.subject.spa.fl_str_mv calidad morfológica de CCOs
Tasa clivaje
Maduración ovocitaria
Estandarización del medio de fertilización
topic calidad morfológica de CCOs
Tasa clivaje
Maduración ovocitaria
Estandarización del medio de fertilización
TG 2021 MVZ 33708
morphological quality of CCOs
Cleavage rate
Oocyte maturation
Standardization of the fertilization medium
dc.subject.classification.spa.fl_str_mv TG 2021 MVZ 33708
dc.subject.other.spa.fl_str_mv morphological quality of CCOs
Cleavage rate
Oocyte maturation
Standardization of the fertilization medium
description Este proyecto se realizó con el objetivo de evaluar la influencia de la ciclicidad ovárica en hembras ovinas sobre la tasa de recuperación y competencia ovocitaria y sobre la producción in vitro de embriones. Se obtuvieron pares de ovarios hembras ovinas provenientes de una planta de beneficio ubicada en la ciudad de Bucaramanga. Primeramente, fueron clasificados de acuerdo a la presencia de cuerpo lúteo (CL) en tres grupos de la siguiente manera: NCL (No Cuerpos Lúteos) o anovulatorios, Monovulatorios y poliovulatorios. Posteriormente, para establecer la influencia directa del CL, los ovarios se estratificaron en 5 subgrupos o tratamientos de la siguiente manera: NCL, M+, M-, P+ y P-. Luego, se procedió a recuperar los ovocitos por ovario por grupo experimental, y evaluar la calidad del ovocito. Posteriormente, los ovocitos clasificados como tipo I y tipo II se sometieron a maduración in vitro (MIV). La maduración de los CCOs se realizó en incubadora durante 22-24 horas, en gotas de 100 μL de medio de maduración, cada una marcada con su grupo correspondiente, siendo recubiertas por aceite mineral (SIGMA) previamente filtrado. Una vez transcurrido el tiempo de maduración los ovocitos tipo I y tipo II fueron recuperados de los ovarios y se fertilizaron con espermatozoides de ovino durante 18-22 horas en FIV. Los posibles embriones fueron cultivados in vitro (CIV), estuvieron en cultivo durante 7 días. Se evaluó la tasa de clivaje a las 48 h del CIV y a los 8 días de cultivo se determinó la tasa de blastocistos. Se realizaron dos experimentos, el primero evaluó la tasa de Recuperación, calidad morfológica y competencia nuclear y citoplasmática de ovocitos y el segundo experimento evaluó efecto de la presencia del cuerpo lúteo, sobre la tasa de recuperación ovocitaria. Los resultados mostraron que el mayor porcentaje de ovocitos recuperados lo obtuvo el grupo P+ y M- y el menor porcentaje de ovocitos recuperados fueron los grupos NCL. En la tasa de clivaje se observó que de la misma forma el grupo que tuvo mayor porcentaje fue el P+. Se concluye que la ciclicidad ovárica causa un efecto sobre la competencia de desarrollo ovocitario, afectando también el porcentaje de clivaje y el desarrollo embrionario. Y el manejo de las células en cocultivo causan un efecto positivo sobre la producción de embriones in vitro.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-03-24T21:14:01Z
dc.date.available.none.fl_str_mv 2021-03-24T21:14:01Z
dc.date.issued.none.fl_str_mv 2021-03-24
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12494/33708
dc.identifier.bibliographicCitation.spa.fl_str_mv Triana Gelvez, L. M. (2021). Efecto de la ciclicidad ovárica de las hembras ovinas sobre la tasa de recuperación, competencia ovocitaria y producción de embriones in vitro. [tesis de pregrado, Universidad Cooperativa de Colombia]. Repositorio Institucional UCC. http://hdl.handle.net/20.500.12494/33708
url https://hdl.handle.net/20.500.12494/33708
identifier_str_mv Triana Gelvez, L. M. (2021). Efecto de la ciclicidad ovárica de las hembras ovinas sobre la tasa de recuperación, competencia ovocitaria y producción de embriones in vitro. [tesis de pregrado, Universidad Cooperativa de Colombia]. Repositorio Institucional UCC. http://hdl.handle.net/20.500.12494/33708
dc.relation.references.spa.fl_str_mv Agronews Castilla y León. "Beneficios y propiedades de la carne de cordero".
FAOSTAT-DATA. Live Animals.
Zhu J, Moawad AR, Wang CY, Li HF, Ren JY, Dai YF. Advances in in vitro production of sheep embryos. International Journal of Veterinary Science and Medicine. 2018; p. S15-S26.
Viana J. 2018 Statistics of embryo production and transfer in domestic farm animals. The International Embryo Transfer Society (IETS), Data Retrieval Committee.
Gonçalves de Souza-Fabjan JM, Panneau B, Duffard N, Locatelli Y, de Figueiredo JR, de Figueirêdo-Freitas VJ, et al. In vitro production of small ruminant embryos: Late improvements and further research. Theriogenology. 2014; p. 1149-1162.
Marsico T, de Camargo J, Valente RS, Sudano MJ. Embryo competence and cryosurvival: Molecular and cellular features. Animal Reproduction. 2019; p. 423–439.
Reader K, Stanton JA, Juengel J. The Role of Oocyte Organelles in Determining Developmental Competence. Biology (Basel). 2017.
Graña-Baumgartner A, Meikle A, Fernández-Foren A, Neimaur K, Barrera N, Cuadro F, et al. Local influence of the corpus luteum on the ipsilateral oviduct and early embryo development in the ewe. Theriogenology. 2020; p. 7-15.
Niswender GD, Juengel JL, Silva PJ, Rollyson MK, McIntush EW. Mechanisms controlling the function and life span of the corpus luteum. Physiol Rev. 2000; p. 1-29.
Manjunatha BM, Gupta PSP, Ravindra JP, Devaraj M, Ramesh HS, Nandi S. In vitro developmental competence of buffalo oocytes collected at various stages of the estrous cycle. Theriogenology. 2007; p. 882-888.
Pirestani A, Hosseini SM, Hajian M, Forouzanfar M, Moulavi F, Abedi P, et al. Effect of ovarian cyclic status on in vitro embryo production in cattle. Int J Fertil Steril. 2011; p. 172-175.
Gonzalez-Bulnes A, Berlinguer F, Cocero MJ, Garcia-Garcia RM, Leoni G, Naitana S, et al. Induction of the presence of corpus luteum during superovulatory treatments enhances in vivo and in vitro blastocysts output in sheep. Theriogenology. 2005; p. 1392-1403.
Contreras-Solis I, Diaz T, Lopez G, Caigua A, Lopez-Sebastian A, Gonzalez-Bulnes A. Systemic and intraovarian effects of corpus luteum on follicular dynamics during estrous cycle in hair breed sheep. Anim. Reprod. Science. 2008; p. 47-55.
Shabankareha H, Habibizadb J, Sarsaifia K, Cheghamirzac K, Kazemein V. The effect of the absence or presence of a corpus luteum on the ovarian follicular population and serum o estradiol concentrations during the estrous cycle in Sanjabi ewes. Small Ruminant Research. 2010;: p. 180–185.
Argudo D, Tenemaza M, Merchán S, Balvoa J, Méndez M, Soria M, et al. Intraovarian influence of bovine corpus luteum on oocyte morphometry and developmental competence, embryo production and cryotolerance. Theriogenology. 2020; p. 232-239.
Rizos D, Clemente M, Bermejo‐Alvarez P, de La Fuente J, Lonergan P, Gutiérrez‐Adán A. Consequences of in vitro culture conditions on embryo development and quality. Reproduction in Domestic Animals. 2008; p. 44-50.
Penitente-Filho J M, Carrascal E, Oliveira FA, Zolini AM, Oliveira C, Costa Soares ÍA, et al. Influence of Dominant Follicle and Corpus luteum on Recovery of Good Quality Oocytes for In vitro Embryo Production in Cattle. Br Biotechnol J. 2014; p. 1305-1312.
Pfeifer LFM, Campos H, Miguel Jr JC, Silveira LL, Schneider A, Correa MN, et al. Aumento da qualidade de ovócitos recuperados por punção folicular de vacas submetidas previamente à superovulação Increasing of oocytes quality retrieved by ovum pick-up from cows previously superovulated.. Rev. Bras Reprod Anim. 2011; p. 363-367.
Yamamoto T, Iwata H, Goto H, Shiratuki S, Tanaka H, Monji Y, et al. Effect of Maternal Age on the Developmental Competence and Progression of Nuclear Maturation in Bovine Oocytes.. Molecular Reproduction & Development. 2010; p. 595–604.
Moreno J ER. Efecto del Estatus Ovárico sobre la Producción in vitro en Embriones Bovinos. Tesis de Maestría. Universidad Nacional de Córdoba, Facultad de Ciencias Agropecuarias.
Hajarian H, Shahsavari M, Karami S H, Dashtizad M. The presence of corpus luteum may have a negative impact on in vitro developmental competency of bovine oocytes. Reproductive Biology. 2016; p. 47-52.
Paramino MT, Izquierdo D. Recent advances in in vitro embryo production in small ruminants. Theriogenology. 2016; 86(1): p. 152-159.
Godke R, Sansinena M, Youngs C. Assisted Reproductive Technologies and Embryo Culture Methods for Farm Animals. Transgenic Animal Technology (Third Edition). 2014; p. 581-638.
Chavez-Zapana JD. Efecto del Suero de Oveja Súper Ovulada sobre la Maduración y Fertilización in vitro de Ovocitos de Ovino. Tesis de Pregrado. Universidad Nacional del Altiplano - PUNO, Facultad de Medicina Veterinaria y Zootecnia.
Maalouf WE, Lee JH, Campbell KHS. Effects of caffeine, cumulus cell removal and aging on polyspermy and embryo development on in vitro matured and fertilized ovine oocytes. Theriogenology. 2009; p. 1083-1092.
Sutton-McDowall ML, Gilchrist RB, Thompson JG. The pivotal role of glucose metabolism in determining oocyte developmental competence. Reproduction. 2010; p. 1741–7899.
Khurana N, Niemann H. Effects of oocyte quality, oxygen tension, embryo density, cumulus cells and energy substrates on cleavage and morula/blastocyst formation of bovine embryos. Theriogenology. 2000; p. 741-756.
Colonna R, Cecconi S, Buccione R, Mangia F. Amino acid transport systems in growing mouse oocytes. Cell Biology International Reports. 1983; p. 1007-1015.
Al-Mutary M, Al-Ghadi M, Al-himaidi , A , Iwamoto D, Al-anazi Y, et al. Using RT-PCR and glutathione level to study the effect of follicular fluid on in vitro maturation and gene expression of sheep oocytes. Saudi Journal of Biological Sciences. 2019; p. 1216-1222.
Lojkic M, Getz I, Samardzija M, Matkovic M, Bacic G, Karadjole T, et al. Effect of cysteamine supplementation during in vitro culture of early-stage bovine embryos on blastocyst rate and quality. Acta Veterinaria Brno. 2012; p. 229-234.
Sirard MA, Richard F, Blondin P, Robert C. Contribution of the oocyte to embryo quality. Theriogenology. 2006; p. 126-136.
Swain JE, Pool TB. ART failure: oocyte contributions to unsuccessful fertilization. Human Reproduction Update. 2008; p. 431-446.
Labrecque R, Sirard MA. The study of mammalian oocyte competence by transcriptome analysis: progress and challenges. Molecular Human Reproduction. 2014; p. 103-116.
Krisher R. The effect of oocyte quality on development. Journal of Animal Science. 2004; p. 14-23.
Conti M, Franciosi F. Acquisition of oocyte competence to develop as an embryo: integrated nuclear and cytoplasmic events. Hum Reprod Update. 2018; p. 245–266.
Aguila L, Treulen F, Therrien J, Felmer R, Valdivia M, Smith L. Oocyte Selection for In vitro Embryo Production in Bovine Species: Noninvasive Approaches for New Challenges of Oocyte Competence. Animals. 2020.
Lonergan P, Fair T. Maduración de ovocitos in vitro. Revisión anual de biociencias animales. 2016; p. 255-268.
Rizos D, Ward F, Duffy PAT, Boland MP, Lonergan P. Consequences of bovine oocyte maturation, fertilization or early embryo development in vitro versus in vivo: implications for blastocyst yield and blastocyst quality. Molecular reproduction and development. 2002; p. 234-248.
Dumollard R, Duchen M, Carroll J. The role of mitochondrial function in the oocyte and embryo. Current Topics in Developmental Biology. 2007; p. 21-49.
Reader K, Cox N, Stanton JA, Juengel J. Mitochondria and vesicles differ between adult and prepubertal sheep oocytes during IVM. Reproduction, Fertility and Development. 2015; p. 513-522.
Galloway C, Lee H, Yoon Y. Mitochondrial morphology-emerging role in bioenergetics. Free Radical Biology & Medicine. 2012; p. 2218-2228.
Brevini T, Vassena R, Francisci C, Gandolfi F. Role of adenosine triphosphate, active mitochondria, and microtubules in the acquisition of developmental competence of parthenogenetically activated pig oocytes. Biology of Reproduction. 2005; p. 1218-1223.
Stojkovic M, Machado S, Stojkovic P, Zakhartchenko V, Hutzler P, Gonçalves P, et al. Mitochondrial distribution and adenosine triphosphate content of bovine oocytes before and after in vitro maturation: correlation with morphological criteria and developmental capacity after in vitro fertilization and culture. Biology of Reproduction. 2001; p. 904-909.
Lee HS, Ma H, Cervera R, Tachibana M, Sparman M, Woodward J, et al. Rapid mitochondrial DNA segregation in primate preimplantation embryos precedes somatic and germline bottleneck. Cells Reports. 2012; p. 506-515.
Wakefield SL, Lane M, Mitchell M. Impaired mitochondrial function in the preimplantation embryo perturbs fetal and placental development in the mouse. Biology of Reproduction. 2011;: p. 572-580.
Latham KE. Endoplasmic reticulum stress signaling in mammalian oocytes and embryos: life in balance. International Review of Cell and Molecular Biology. 2015; p. 227-265.
Luo S, Mao C, Lee B, Lee AS. GRP78/BiP is required for cell proliferation and protecting the inner cell mass from apoptosis during early mouse embryonic development. Molecular and Cellurar Biology. 2006; p. 5688-5697.
Penitente-Filho J, Jiménez C, Zolini A, Carrascal E, Azevedo J, Silveira C, et al. Influence of corpus luteum and ovarian volume on the number and quality of bovine oocytes. Animal science journal = Nihon chikusan Gakkaihō. 2015; p. 148-152.
Bartlewski PM, Beard AP, Rawlings NC. Ultrasonographic study of the effects of the corpus luteum on antral follicular development in unilaterally ovulating western white-faced ewes. Animal Reproduction Science. 2001; p. 231-244.
Islam MR, Khandoker MAMY, Afroz S, Rahman MGM, Khan RI. Qualitative and quantitative analysis of goat ovaries, follicles and oocytes in view of in vitro production of embryos. Journal of Zhejiang University SCIENCE B. 2007; p. 465-469.
Quezada-Casasola A, Martínez-Armendáriz KE, Itzá-Ortiz MF, Escárcega-Ávila AM, Pérez-Eguía E, Filipiak Y, et al. Effect of presence of corpora lutea on cumulus expansion of in vitro matured bovine oocytes selected by trypan blue and brilliant cresyl blue tests. Journal of Applied Animal Research. 2018; p. 967-972.
Peralta-Torres J, Aké-López J, Segura-Correa J, Aké-Villanueva J. Effect of season on follicular population, quality and nuclear maturation of bovine oocytes under tropical conditions. Animal reproduction science. 2017; p. 47-53.
Abdelnaby EA, Abo El-Maaty AM, Ragab RSA, Seida AA. Dynamics of uterine and ovarian arteries flow velocity waveforms and their relation to follicular and luteal growth and blood flow vascularization during the estrous cycle in Friesian cows. Theriogenology. 2018; p. 112-121.
Shabankareh HK, Kor NM, Hajarian H. The influence of the corpus luteum on metabolites composition of follicular fluid from different sized follicles and their relationship to serum concentrations in dairy cows. Animal reproduction science. 2013; p. 109-114.
Quezada-Casasola A, Roldán-Domínguez HP, Cano-Reagan DE, Escárcega-Ávila AM, Itza-Ortiz MF, Carrera-Chávez J, et al. Corpora lutea affect in vitro maturation of bovine cumulus-oocyte complexes and embryonic development after fertilization with sex-sorted or conventional semen. Tropical Animal Health and Production. 2020; p. 3493–3499.
Marchal R, Vigneron C, Perreau C, Bali-Papp A, Mermillod P. Effect of follicular size on meiotic and developmental competence of porcine oocytes. Theriogenology. 2002; p. 1523-1532.
Annes K, Müller D, Vilela JA, Valente RS, Caetano DP, Cibin FW, et al. Influence of follicle size on bovine oocyte lipid composition, follicular metabolic and stress markers, embryo development and blastocyst lipid content. Reproduction, Fertility and Development. 2019; p. 462-472.
Alves GP, Cordeiro FB, de Lima CB, Annes K, dos Santos ÉC, Ispada J, et al. Follicular environment as a predictive tool for embryo development and kinetics in cattle. Reproduction, Fertility and Development. 2019; p. 451-461.
Tan JH, Wang HL, Sol XS, Liu Y, Sui HS, Zhang J. Chromatin configurations in the germinal vesicle of mammalian oocytes. Molecular Human Reproduction. 2009; p. 1-9.
Quan GB, Wu GQ, Wang YJ, Ma Y, Lv CR, Hong QH. Meiotic maturation and developmental capability of ovine oocytes at germinal vesicle stage following vitrification using different cryodevice. Cryobiology. 2016; p. 33-40.
Cecconi S, Mauro A, Capacchietti G, Berardinelli P, Bernabò N, Di Vincenzo A, et al. Meiotic maturation of incompetent prepubertal sheep oocytes is induced by paracrine factor(s) released by gonadotropin-stimulated oocyte-cumulus cell complexes and involves mitogen-activated protein kinase activation. Endocrinology. 2008; p. 100-107.
De Wit AAC, Wurth YA, Kruip TA. Effect of ovarian phase and follicle quality on morphology and developmental capacity of the bovine cumulus-oocyte complex. Journal of animal science. 2000; p. 1277-1283.
McKeegan PJ, Sturmey RG. The role of fatty acids in oocyte and early embryo development. Reproduction, Fertility and Development. 2011; p. 59-67.
Sturmey R, Reis A, Leese H, McEvoy T. Role of fatty acids in energy provision during oocyte maturation and early embryo development. Reproduction in Domestic Animals. 2009; p. 50-58.
Dadarwal D, Honparkhe M, Dias FCF, Alce T, Lessard C, Singh J. Effect of superstimulation protocols on nuclear maturation and distribution of lipid droplets in bovine oocytes. Reproduction, Fertility and Development. 2015; p. 1137-1146.
Dunning KR, Russell DL, Robker RL. Lipids and oocyte developmental competence: the role of fatty acids and β-oxidation. Reproduction. 2014; p. R15-27.
Salamone DF, Canel NG, Rodríguez MB. Intracytoplasmic sperm injection in domestic and wild mammals. Reproduction. 2017; p. F111-F124.
Nagano M. Acquisition of developmental competence and in vitro growth culture of bovine oocytes. Journal of Reproduction and Development. 2019.
McEvoy T, Coull G, Broadbent P, Hutchinson J, Speake B. Fatty acid composition of lipids in immature cattle, pig and sheep oocytes with intact zona pellucida. Journal of Reproduction and Fertility. 2000; p. 163–170.
Genicot G, Leroy J, Soom A, Donnay I. The use of a fluorescent dye, Nile red, to evaluate the lipid content of single mammalian oocytes. Theriogenology. 2005; p. 1181–1194.
Kim J, Kinoshita M, Ohnishi M, Fukui Y. Lipid and fatty acid analysis of fresh and frozen–thawed immature and in vitro matured bovine oocytes. Reproduction. 2001; p. 131–138.
Su Y, Sugiura K, Wigglesworth K, O'Brien M, Affourtit J, Pangas S, et al. Oocyte regulation of metabolic cooperativity between mouse cumulus cells and oocytes: BMP15 and GDF9 control cholesterol biosynthesis in cumulus cells. Development. 2008; p. 111–121.
Zhu J, Moawad AR, Wang CY, Li HF, Ren JY, Dai YF. Advances in in vitro production of sheep embryos. International Journal of Veterinary Science and Medicine. 2018; p. S15-S26.
Mara L, Sanna D, Casu S, Dattena M, Muñoz IM. Blastocyst rate of in vitro embryo production in sheep is affected by season. Zygote. 2014.
Shi JM, Yi JY, Tian XZ, Wang F, Lian ZX, Han HB, et al. Effects of seasonal changes on the ovulation rate and embryo quality in superovulated Black Suffolk ewes. Neuroendocrinology Letters. 2015.
Ahmadi E, Nazari H, Hossini-Fahraji H. Low developmental competence and high tolerance to thermal stress of ovine oocytes in the warm compared with the cold season. Tropical Animal Health and Production. 2019; p. 1611–1618.
Hansen P. Reproductive physiology of the heat-stressed dairy cow: implications for fertility and assisted reproduction. Animal Reproduction. 2019; p. 497-507.
Paes V, Vieira L, Correia H, Sa N, Moura A, Sales A, et al. Effect of heat stress on the survival and development of in vitro cultured bovine preantral follicles and on in vitro maturation of cumulus-oocyte complex. Theriogenology. 2016; p. 994-1003.
Roth Z. Stress-induced alterations in oocyte transcripts are further expressed in the developing blastocyst. Molecular Reproduction and Development. 2018; p. 821-835.
Pérez R, Cruz U, Avendaño-Reyes L, Correa-Calderón A, López-Baca M, Lara-Rivera A. Heat stress impacts in hair sheep production. Review. Revista Mexicana de Ciencias Pecuarias. 2018.
Iwata H, Goto H, Tanaka H, Sakaguchi Y, Kimura K, Kuwayama T, et al. Effect of maternal age on mitochondrial DNA copy number, ATP content and IVF outcome of bovine oocytes. Reproduction, Fertility and Development. 2011; p. 424-432.
Armstrong D. Effects of maternal age on oocyte developmental competence. Theriogenology. 2001; p. 1303-1322.
Ptak G, Matsukawa K, Palmieri C, Della Salda L, Scapolo PA, Loi P. Developmental and functional evidence of nuclear immaturity in prepubertal oocytes. Human Reproduction. 2006; p. 2228-2237.
Rodríguez-Cornejo WF. Estandarización de Procesos para la Produccion in vitro de Embriones Ovinos en el Laboratorio de Reprodución Animal en el Centro Académico Guatiguará-Piedecuesta. Tesis de Pregrado. Universidad Cooperativa de Colombia, Facultad de Medicina Veterianaria y Zootecnia.
Kaczmarek M, Schams D, Ziecik A. Role of vascular endothelial growth factor in ovarian physiology – an overview. Reprod Biol. 2005; p. 111-136.
García-Arévalo J, Restrepo-González S, Gómez-Sánchez N, Moreno-Jerez E, Dubeibe-Marín D, Mogollón-Waltero E. Manual de Procedimientos para la Producción y Vitrificación de Embriones Bovinos en Laboratorios de Reproducción Animal. Servicio Nacional de Aprendizaje – SENA, Universidad Cooperativa de Colombia - UCC.
Hernández Pichardo JERSJL, Sánchez Martínez C, Ramírez Franco R. Efecto de técnicas de separación espermática en la viabilidad y estado acrosomal de espermatozoides posdescongelados de ovinos. Revista de Salud Animal. 2015; p. 15-20.
Wan Pc, Hao Zd, Zhou P, Wu Y, Yang L, Cui Ms, et al. Effects of SOF and CR1 media on developmental competence and cell apoptosis of ovine in vitro fertilization embryos. Animal Reproduction Science. 2009; p. 279-288.
Souza-Fabjan JM, Locatelli Y, Duffard N, Corbin E, Touzé JL, Perreau C, et al. In vitro embryo production in goats: Slaughterhouse and laparoscopic ovum pick up–derived oocytes have different kinetics and requirements regarding maturation media. Theriogenology. 2014; p. 1021-1031.
dos Santos-Neto PC, Vilariño M, Cuadro F, Barrera N, Crispo M, Menchaca A. Cumulus cells during in vitro fertilization and oocyte vitrification in sheep: Remove, maintain or add? Cryobiology. 2020; p. 161-167.
Paramino T, Izquierdo D. Recent advances in in vitro embryo production in small ruminants. Theriogenology. 2016; p. 152-159.
Hajariana H, Aghaz F, Karami-Shabankareha H. Replacement of serum with sericin in in vitro maturation and culture media: Effects on embryonic developmental competence of Sanjabi sheep embryo during breeding season. Theriogenology. 2017; p. 144-148.
Sánchez-Ajofrín I, Iniesta-Cuerda M, Sánchez-Calabuig M, Peris-Frau P, Martín-Maestro A, Ortiz J, et al. Oxygen tension during in vitro oocyte maturation and fertilization affects embryo quality in sheep and deer. Anim Reprod Ciencia. 2020.
Reza-Ebrahimi M, Mara L, Parham A, Dattena M. Reduced effect of mineral oil toxicity using four-well culture dish in sheep embryo production. Small Ruminant Research. 2020.
dc.rights.license.none.fl_str_mv Atribución – No comercial – Sin Derivar
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución – No comercial – Sin Derivar
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 71 p.
dc.publisher.spa.fl_str_mv Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Medicina Veterinaría y Zootecnia, Bucaramanga
dc.publisher.program.spa.fl_str_mv Medicina veterinaria y zootecnia
dc.publisher.place.spa.fl_str_mv Bucaramanga
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/5aee9bb3-4edb-4e11-ae8c-ecdd7bb528ce/download
https://repository.ucc.edu.co/bitstreams/65bc37f6-ddfb-43bb-9c33-618fc8cfa629/download
https://repository.ucc.edu.co/bitstreams/af391fd4-4e82-4c71-a005-ae6861bac7ec/download
https://repository.ucc.edu.co/bitstreams/6a6aabdc-b193-4d62-af70-f3432b838148/download
https://repository.ucc.edu.co/bitstreams/e7dfb427-0022-4267-a3e8-f54819027b7f/download
https://repository.ucc.edu.co/bitstreams/f06b497c-95ed-4c59-b80d-6104c93cb476/download
https://repository.ucc.edu.co/bitstreams/e1fbb293-30f6-4809-bdc8-2f225def595b/download
bitstream.checksum.fl_str_mv 033d14baeb24e5c131fb7ec8644c77d8
6a9b2ddd4a1cb0cd7964332983222a8d
3bce4f7ab09dfc588f126e1e36e98a45
bda4110f6f6a327290b99b66d7104ba3
c32655569c42ac5a83dfdc5522f20307
2fe210c7496f8307cb0e1a3423b3afa7
0ec7505925d273c271f5102a3f95c337
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1814246705959272448
spelling Moreno Jerez, Edgar RicardoTriana Gelvez, Lina Marcela2021-03-24T21:14:01Z2021-03-24T21:14:01Z2021-03-24https://hdl.handle.net/20.500.12494/33708Triana Gelvez, L. M. (2021). Efecto de la ciclicidad ovárica de las hembras ovinas sobre la tasa de recuperación, competencia ovocitaria y producción de embriones in vitro. [tesis de pregrado, Universidad Cooperativa de Colombia]. Repositorio Institucional UCC. http://hdl.handle.net/20.500.12494/33708Este proyecto se realizó con el objetivo de evaluar la influencia de la ciclicidad ovárica en hembras ovinas sobre la tasa de recuperación y competencia ovocitaria y sobre la producción in vitro de embriones. Se obtuvieron pares de ovarios hembras ovinas provenientes de una planta de beneficio ubicada en la ciudad de Bucaramanga. Primeramente, fueron clasificados de acuerdo a la presencia de cuerpo lúteo (CL) en tres grupos de la siguiente manera: NCL (No Cuerpos Lúteos) o anovulatorios, Monovulatorios y poliovulatorios. Posteriormente, para establecer la influencia directa del CL, los ovarios se estratificaron en 5 subgrupos o tratamientos de la siguiente manera: NCL, M+, M-, P+ y P-. Luego, se procedió a recuperar los ovocitos por ovario por grupo experimental, y evaluar la calidad del ovocito. Posteriormente, los ovocitos clasificados como tipo I y tipo II se sometieron a maduración in vitro (MIV). La maduración de los CCOs se realizó en incubadora durante 22-24 horas, en gotas de 100 μL de medio de maduración, cada una marcada con su grupo correspondiente, siendo recubiertas por aceite mineral (SIGMA) previamente filtrado. Una vez transcurrido el tiempo de maduración los ovocitos tipo I y tipo II fueron recuperados de los ovarios y se fertilizaron con espermatozoides de ovino durante 18-22 horas en FIV. Los posibles embriones fueron cultivados in vitro (CIV), estuvieron en cultivo durante 7 días. Se evaluó la tasa de clivaje a las 48 h del CIV y a los 8 días de cultivo se determinó la tasa de blastocistos. Se realizaron dos experimentos, el primero evaluó la tasa de Recuperación, calidad morfológica y competencia nuclear y citoplasmática de ovocitos y el segundo experimento evaluó efecto de la presencia del cuerpo lúteo, sobre la tasa de recuperación ovocitaria. Los resultados mostraron que el mayor porcentaje de ovocitos recuperados lo obtuvo el grupo P+ y M- y el menor porcentaje de ovocitos recuperados fueron los grupos NCL. En la tasa de clivaje se observó que de la misma forma el grupo que tuvo mayor porcentaje fue el P+. Se concluye que la ciclicidad ovárica causa un efecto sobre la competencia de desarrollo ovocitario, afectando también el porcentaje de clivaje y el desarrollo embrionario. Y el manejo de las células en cocultivo causan un efecto positivo sobre la producción de embriones in vitro.This project was carried out with the objective of evaluating the influence of ovarian cyclicity in ovine females on the recovery rate and oocyte competition and on the in vitro production of embryos. Pairs of ovine female ovaries were obtained from a processing plant located in the city of Bucaramanga. First, they were classified according to the presence of the corpus luteum (CL) into three groups as follows: NCL (No Corpus Luteum) or anovulatory, Monovulatory and poliovulatory. Subsequently, to establish the direct influence of CL, the ovaries were stratified into 5 subgroups or treatments as follows: NCL, M +, M-, P + and P-. Then, the oocytes were recovered per ovary per experimental group, and the quality of the oocyte was evaluated. Subsequently, the oocytes classified as type I and type II were subjected to in vitro maturation (IVM). The maturation of the CCOs was carried out in an incubator for 22-24 hours, in drops of 100 μL of maturation medium, each one marked with its corresponding group, being covered by mineral oil (SIGMA) previously filtered. Once the maturation time had elapsed, type I and type II oocytes were retrieved from the ovaries and fertilized with ovine sperm for 18-22 hours in IVF. The probable embryos were cultured in vitro (CIV), they were in culture for 7 days. The cleavage rate was evaluated at 48 h after VSD and at 8 days of culture, the blastocyst rate was determined. Two experiments were carried out, the first one evaluated the recovery rate, morphological quality and nuclear and cytoplasmic competence of oocytes and the second experiment evaluated the effect of the presence of the corpus luteum on the oocyte recovery rate. The results showed that the highest percentage of recovered oocytes was obtained by the P + and M- group and the lowest percentage of recovered oocytes were the NCL groups. In the cleavage rate, it was observed that, in the same way, the group with the highest percentage was the P +. It is concluded that ovarian cyclicity causes an effect on oocyte development competence, also affecting the cleavage percentage and embryonic development. And the handling of cells in coculture causes a positive effect on the production of embryos in vitro.Resumen. -- Introducción. -- 1. Planteamiento del Problema. -- 2. Justificación. -- 3. Objetivos. -- 3.1 Objetivo General. -- 3.2 Objetivos Específicos. -- 4. Marco Teórico. -- 4.1 Etapas de la Producción in vitro de Embriones. -- 4.1.1 Maduración Ovocitaria. -- 4.1.2 Preparación Espermática. -- 4.1.3 Fertilización in vitro. -- 4.1.4 Cultivo in vitro. -- 4.2 Competencia ovocitaria. -- 4.2.1 Factores que afectan la competencia ovocitaria. -- 5. Materiales y métodos. -- 5.1 Recolección de ovarios. -- 5.2 Selección de los ovarios por tratamiento. -- 5.3 Grupos experimentales. -- 5.4 Recuperación y clasificación de los CCOs. -- 5.5 Maduración in vitro de los ovocitos. -- 5.6 Fertilización in vitro. -- 5.7 Cultivo in vitro. -- 5.8 Evaluación de la tasa de clivaje y producción de blastocistos. -- 5.9 Diseño experimental. -- 5.10 Análisis estadístico. -- 6. Resultados y Discusión. -- 6.1 Recuperación y clasificación de ovarios y complejos cúmulos ovocitos. -- 6.2 Fertilización in vitro y gradientes de PERCOLL. -- 7. Conclusiones. -- 8. Recomendaciones. -- 9. Referencias Bibliográficas.lina.trianag@campusucc.edu.co71 p.Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Medicina Veterinaría y Zootecnia, BucaramangaMedicina veterinaria y zootecniaBucaramangacalidad morfológica de CCOsTasa clivajeMaduración ovocitariaEstandarización del medio de fertilizaciónTG 2021 MVZ 33708morphological quality of CCOsCleavage rateOocyte maturationStandardization of the fertilization mediumEfecto de la ciclicidad ovárica de las hembras ovinas sobre la tasa de recuperación, competencia ovocitaria y producción de embriones in vitroTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionAtribución – No comercial – Sin Derivarinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Agronews Castilla y León. "Beneficios y propiedades de la carne de cordero".FAOSTAT-DATA. Live Animals.Zhu J, Moawad AR, Wang CY, Li HF, Ren JY, Dai YF. Advances in in vitro production of sheep embryos. International Journal of Veterinary Science and Medicine. 2018; p. S15-S26.Viana J. 2018 Statistics of embryo production and transfer in domestic farm animals. The International Embryo Transfer Society (IETS), Data Retrieval Committee.Gonçalves de Souza-Fabjan JM, Panneau B, Duffard N, Locatelli Y, de Figueiredo JR, de Figueirêdo-Freitas VJ, et al. In vitro production of small ruminant embryos: Late improvements and further research. Theriogenology. 2014; p. 1149-1162.Marsico T, de Camargo J, Valente RS, Sudano MJ. Embryo competence and cryosurvival: Molecular and cellular features. Animal Reproduction. 2019; p. 423–439.Reader K, Stanton JA, Juengel J. The Role of Oocyte Organelles in Determining Developmental Competence. Biology (Basel). 2017.Graña-Baumgartner A, Meikle A, Fernández-Foren A, Neimaur K, Barrera N, Cuadro F, et al. Local influence of the corpus luteum on the ipsilateral oviduct and early embryo development in the ewe. Theriogenology. 2020; p. 7-15.Niswender GD, Juengel JL, Silva PJ, Rollyson MK, McIntush EW. Mechanisms controlling the function and life span of the corpus luteum. Physiol Rev. 2000; p. 1-29.Manjunatha BM, Gupta PSP, Ravindra JP, Devaraj M, Ramesh HS, Nandi S. In vitro developmental competence of buffalo oocytes collected at various stages of the estrous cycle. Theriogenology. 2007; p. 882-888.Pirestani A, Hosseini SM, Hajian M, Forouzanfar M, Moulavi F, Abedi P, et al. Effect of ovarian cyclic status on in vitro embryo production in cattle. Int J Fertil Steril. 2011; p. 172-175.Gonzalez-Bulnes A, Berlinguer F, Cocero MJ, Garcia-Garcia RM, Leoni G, Naitana S, et al. Induction of the presence of corpus luteum during superovulatory treatments enhances in vivo and in vitro blastocysts output in sheep. Theriogenology. 2005; p. 1392-1403.Contreras-Solis I, Diaz T, Lopez G, Caigua A, Lopez-Sebastian A, Gonzalez-Bulnes A. Systemic and intraovarian effects of corpus luteum on follicular dynamics during estrous cycle in hair breed sheep. Anim. Reprod. Science. 2008; p. 47-55.Shabankareha H, Habibizadb J, Sarsaifia K, Cheghamirzac K, Kazemein V. The effect of the absence or presence of a corpus luteum on the ovarian follicular population and serum o estradiol concentrations during the estrous cycle in Sanjabi ewes. Small Ruminant Research. 2010;: p. 180–185.Argudo D, Tenemaza M, Merchán S, Balvoa J, Méndez M, Soria M, et al. Intraovarian influence of bovine corpus luteum on oocyte morphometry and developmental competence, embryo production and cryotolerance. Theriogenology. 2020; p. 232-239.Rizos D, Clemente M, Bermejo‐Alvarez P, de La Fuente J, Lonergan P, Gutiérrez‐Adán A. Consequences of in vitro culture conditions on embryo development and quality. Reproduction in Domestic Animals. 2008; p. 44-50.Penitente-Filho J M, Carrascal E, Oliveira FA, Zolini AM, Oliveira C, Costa Soares ÍA, et al. Influence of Dominant Follicle and Corpus luteum on Recovery of Good Quality Oocytes for In vitro Embryo Production in Cattle. Br Biotechnol J. 2014; p. 1305-1312.Pfeifer LFM, Campos H, Miguel Jr JC, Silveira LL, Schneider A, Correa MN, et al. Aumento da qualidade de ovócitos recuperados por punção folicular de vacas submetidas previamente à superovulação Increasing of oocytes quality retrieved by ovum pick-up from cows previously superovulated.. Rev. Bras Reprod Anim. 2011; p. 363-367.Yamamoto T, Iwata H, Goto H, Shiratuki S, Tanaka H, Monji Y, et al. Effect of Maternal Age on the Developmental Competence and Progression of Nuclear Maturation in Bovine Oocytes.. Molecular Reproduction & Development. 2010; p. 595–604.Moreno J ER. Efecto del Estatus Ovárico sobre la Producción in vitro en Embriones Bovinos. Tesis de Maestría. Universidad Nacional de Córdoba, Facultad de Ciencias Agropecuarias.Hajarian H, Shahsavari M, Karami S H, Dashtizad M. The presence of corpus luteum may have a negative impact on in vitro developmental competency of bovine oocytes. Reproductive Biology. 2016; p. 47-52.Paramino MT, Izquierdo D. Recent advances in in vitro embryo production in small ruminants. Theriogenology. 2016; 86(1): p. 152-159.Godke R, Sansinena M, Youngs C. Assisted Reproductive Technologies and Embryo Culture Methods for Farm Animals. Transgenic Animal Technology (Third Edition). 2014; p. 581-638.Chavez-Zapana JD. Efecto del Suero de Oveja Súper Ovulada sobre la Maduración y Fertilización in vitro de Ovocitos de Ovino. Tesis de Pregrado. Universidad Nacional del Altiplano - PUNO, Facultad de Medicina Veterinaria y Zootecnia.Maalouf WE, Lee JH, Campbell KHS. Effects of caffeine, cumulus cell removal and aging on polyspermy and embryo development on in vitro matured and fertilized ovine oocytes. Theriogenology. 2009; p. 1083-1092.Sutton-McDowall ML, Gilchrist RB, Thompson JG. The pivotal role of glucose metabolism in determining oocyte developmental competence. Reproduction. 2010; p. 1741–7899.Khurana N, Niemann H. Effects of oocyte quality, oxygen tension, embryo density, cumulus cells and energy substrates on cleavage and morula/blastocyst formation of bovine embryos. Theriogenology. 2000; p. 741-756.Colonna R, Cecconi S, Buccione R, Mangia F. Amino acid transport systems in growing mouse oocytes. Cell Biology International Reports. 1983; p. 1007-1015.Al-Mutary M, Al-Ghadi M, Al-himaidi , A , Iwamoto D, Al-anazi Y, et al. Using RT-PCR and glutathione level to study the effect of follicular fluid on in vitro maturation and gene expression of sheep oocytes. Saudi Journal of Biological Sciences. 2019; p. 1216-1222.Lojkic M, Getz I, Samardzija M, Matkovic M, Bacic G, Karadjole T, et al. Effect of cysteamine supplementation during in vitro culture of early-stage bovine embryos on blastocyst rate and quality. Acta Veterinaria Brno. 2012; p. 229-234.Sirard MA, Richard F, Blondin P, Robert C. Contribution of the oocyte to embryo quality. Theriogenology. 2006; p. 126-136.Swain JE, Pool TB. ART failure: oocyte contributions to unsuccessful fertilization. Human Reproduction Update. 2008; p. 431-446.Labrecque R, Sirard MA. The study of mammalian oocyte competence by transcriptome analysis: progress and challenges. Molecular Human Reproduction. 2014; p. 103-116.Krisher R. The effect of oocyte quality on development. Journal of Animal Science. 2004; p. 14-23.Conti M, Franciosi F. Acquisition of oocyte competence to develop as an embryo: integrated nuclear and cytoplasmic events. Hum Reprod Update. 2018; p. 245–266.Aguila L, Treulen F, Therrien J, Felmer R, Valdivia M, Smith L. Oocyte Selection for In vitro Embryo Production in Bovine Species: Noninvasive Approaches for New Challenges of Oocyte Competence. Animals. 2020.Lonergan P, Fair T. Maduración de ovocitos in vitro. Revisión anual de biociencias animales. 2016; p. 255-268.Rizos D, Ward F, Duffy PAT, Boland MP, Lonergan P. Consequences of bovine oocyte maturation, fertilization or early embryo development in vitro versus in vivo: implications for blastocyst yield and blastocyst quality. Molecular reproduction and development. 2002; p. 234-248.Dumollard R, Duchen M, Carroll J. The role of mitochondrial function in the oocyte and embryo. Current Topics in Developmental Biology. 2007; p. 21-49.Reader K, Cox N, Stanton JA, Juengel J. Mitochondria and vesicles differ between adult and prepubertal sheep oocytes during IVM. Reproduction, Fertility and Development. 2015; p. 513-522.Galloway C, Lee H, Yoon Y. Mitochondrial morphology-emerging role in bioenergetics. Free Radical Biology & Medicine. 2012; p. 2218-2228.Brevini T, Vassena R, Francisci C, Gandolfi F. Role of adenosine triphosphate, active mitochondria, and microtubules in the acquisition of developmental competence of parthenogenetically activated pig oocytes. Biology of Reproduction. 2005; p. 1218-1223.Stojkovic M, Machado S, Stojkovic P, Zakhartchenko V, Hutzler P, Gonçalves P, et al. Mitochondrial distribution and adenosine triphosphate content of bovine oocytes before and after in vitro maturation: correlation with morphological criteria and developmental capacity after in vitro fertilization and culture. Biology of Reproduction. 2001; p. 904-909.Lee HS, Ma H, Cervera R, Tachibana M, Sparman M, Woodward J, et al. Rapid mitochondrial DNA segregation in primate preimplantation embryos precedes somatic and germline bottleneck. Cells Reports. 2012; p. 506-515.Wakefield SL, Lane M, Mitchell M. Impaired mitochondrial function in the preimplantation embryo perturbs fetal and placental development in the mouse. Biology of Reproduction. 2011;: p. 572-580.Latham KE. Endoplasmic reticulum stress signaling in mammalian oocytes and embryos: life in balance. International Review of Cell and Molecular Biology. 2015; p. 227-265.Luo S, Mao C, Lee B, Lee AS. GRP78/BiP is required for cell proliferation and protecting the inner cell mass from apoptosis during early mouse embryonic development. Molecular and Cellurar Biology. 2006; p. 5688-5697.Penitente-Filho J, Jiménez C, Zolini A, Carrascal E, Azevedo J, Silveira C, et al. Influence of corpus luteum and ovarian volume on the number and quality of bovine oocytes. Animal science journal = Nihon chikusan Gakkaihō. 2015; p. 148-152.Bartlewski PM, Beard AP, Rawlings NC. Ultrasonographic study of the effects of the corpus luteum on antral follicular development in unilaterally ovulating western white-faced ewes. Animal Reproduction Science. 2001; p. 231-244.Islam MR, Khandoker MAMY, Afroz S, Rahman MGM, Khan RI. Qualitative and quantitative analysis of goat ovaries, follicles and oocytes in view of in vitro production of embryos. Journal of Zhejiang University SCIENCE B. 2007; p. 465-469.Quezada-Casasola A, Martínez-Armendáriz KE, Itzá-Ortiz MF, Escárcega-Ávila AM, Pérez-Eguía E, Filipiak Y, et al. Effect of presence of corpora lutea on cumulus expansion of in vitro matured bovine oocytes selected by trypan blue and brilliant cresyl blue tests. Journal of Applied Animal Research. 2018; p. 967-972.Peralta-Torres J, Aké-López J, Segura-Correa J, Aké-Villanueva J. Effect of season on follicular population, quality and nuclear maturation of bovine oocytes under tropical conditions. Animal reproduction science. 2017; p. 47-53.Abdelnaby EA, Abo El-Maaty AM, Ragab RSA, Seida AA. Dynamics of uterine and ovarian arteries flow velocity waveforms and their relation to follicular and luteal growth and blood flow vascularization during the estrous cycle in Friesian cows. Theriogenology. 2018; p. 112-121.Shabankareh HK, Kor NM, Hajarian H. The influence of the corpus luteum on metabolites composition of follicular fluid from different sized follicles and their relationship to serum concentrations in dairy cows. Animal reproduction science. 2013; p. 109-114.Quezada-Casasola A, Roldán-Domínguez HP, Cano-Reagan DE, Escárcega-Ávila AM, Itza-Ortiz MF, Carrera-Chávez J, et al. Corpora lutea affect in vitro maturation of bovine cumulus-oocyte complexes and embryonic development after fertilization with sex-sorted or conventional semen. Tropical Animal Health and Production. 2020; p. 3493–3499.Marchal R, Vigneron C, Perreau C, Bali-Papp A, Mermillod P. Effect of follicular size on meiotic and developmental competence of porcine oocytes. Theriogenology. 2002; p. 1523-1532.Annes K, Müller D, Vilela JA, Valente RS, Caetano DP, Cibin FW, et al. Influence of follicle size on bovine oocyte lipid composition, follicular metabolic and stress markers, embryo development and blastocyst lipid content. Reproduction, Fertility and Development. 2019; p. 462-472.Alves GP, Cordeiro FB, de Lima CB, Annes K, dos Santos ÉC, Ispada J, et al. Follicular environment as a predictive tool for embryo development and kinetics in cattle. Reproduction, Fertility and Development. 2019; p. 451-461.Tan JH, Wang HL, Sol XS, Liu Y, Sui HS, Zhang J. Chromatin configurations in the germinal vesicle of mammalian oocytes. Molecular Human Reproduction. 2009; p. 1-9.Quan GB, Wu GQ, Wang YJ, Ma Y, Lv CR, Hong QH. Meiotic maturation and developmental capability of ovine oocytes at germinal vesicle stage following vitrification using different cryodevice. Cryobiology. 2016; p. 33-40.Cecconi S, Mauro A, Capacchietti G, Berardinelli P, Bernabò N, Di Vincenzo A, et al. Meiotic maturation of incompetent prepubertal sheep oocytes is induced by paracrine factor(s) released by gonadotropin-stimulated oocyte-cumulus cell complexes and involves mitogen-activated protein kinase activation. Endocrinology. 2008; p. 100-107.De Wit AAC, Wurth YA, Kruip TA. Effect of ovarian phase and follicle quality on morphology and developmental capacity of the bovine cumulus-oocyte complex. Journal of animal science. 2000; p. 1277-1283.McKeegan PJ, Sturmey RG. The role of fatty acids in oocyte and early embryo development. Reproduction, Fertility and Development. 2011; p. 59-67.Sturmey R, Reis A, Leese H, McEvoy T. Role of fatty acids in energy provision during oocyte maturation and early embryo development. Reproduction in Domestic Animals. 2009; p. 50-58.Dadarwal D, Honparkhe M, Dias FCF, Alce T, Lessard C, Singh J. Effect of superstimulation protocols on nuclear maturation and distribution of lipid droplets in bovine oocytes. Reproduction, Fertility and Development. 2015; p. 1137-1146.Dunning KR, Russell DL, Robker RL. Lipids and oocyte developmental competence: the role of fatty acids and β-oxidation. Reproduction. 2014; p. R15-27.Salamone DF, Canel NG, Rodríguez MB. Intracytoplasmic sperm injection in domestic and wild mammals. Reproduction. 2017; p. F111-F124.Nagano M. Acquisition of developmental competence and in vitro growth culture of bovine oocytes. Journal of Reproduction and Development. 2019.McEvoy T, Coull G, Broadbent P, Hutchinson J, Speake B. Fatty acid composition of lipids in immature cattle, pig and sheep oocytes with intact zona pellucida. Journal of Reproduction and Fertility. 2000; p. 163–170.Genicot G, Leroy J, Soom A, Donnay I. The use of a fluorescent dye, Nile red, to evaluate the lipid content of single mammalian oocytes. Theriogenology. 2005; p. 1181–1194.Kim J, Kinoshita M, Ohnishi M, Fukui Y. Lipid and fatty acid analysis of fresh and frozen–thawed immature and in vitro matured bovine oocytes. Reproduction. 2001; p. 131–138.Su Y, Sugiura K, Wigglesworth K, O'Brien M, Affourtit J, Pangas S, et al. Oocyte regulation of metabolic cooperativity between mouse cumulus cells and oocytes: BMP15 and GDF9 control cholesterol biosynthesis in cumulus cells. Development. 2008; p. 111–121.Zhu J, Moawad AR, Wang CY, Li HF, Ren JY, Dai YF. Advances in in vitro production of sheep embryos. International Journal of Veterinary Science and Medicine. 2018; p. S15-S26.Mara L, Sanna D, Casu S, Dattena M, Muñoz IM. Blastocyst rate of in vitro embryo production in sheep is affected by season. Zygote. 2014.Shi JM, Yi JY, Tian XZ, Wang F, Lian ZX, Han HB, et al. Effects of seasonal changes on the ovulation rate and embryo quality in superovulated Black Suffolk ewes. Neuroendocrinology Letters. 2015.Ahmadi E, Nazari H, Hossini-Fahraji H. Low developmental competence and high tolerance to thermal stress of ovine oocytes in the warm compared with the cold season. Tropical Animal Health and Production. 2019; p. 1611–1618.Hansen P. Reproductive physiology of the heat-stressed dairy cow: implications for fertility and assisted reproduction. Animal Reproduction. 2019; p. 497-507.Paes V, Vieira L, Correia H, Sa N, Moura A, Sales A, et al. Effect of heat stress on the survival and development of in vitro cultured bovine preantral follicles and on in vitro maturation of cumulus-oocyte complex. Theriogenology. 2016; p. 994-1003.Roth Z. Stress-induced alterations in oocyte transcripts are further expressed in the developing blastocyst. Molecular Reproduction and Development. 2018; p. 821-835.Pérez R, Cruz U, Avendaño-Reyes L, Correa-Calderón A, López-Baca M, Lara-Rivera A. Heat stress impacts in hair sheep production. Review. Revista Mexicana de Ciencias Pecuarias. 2018.Iwata H, Goto H, Tanaka H, Sakaguchi Y, Kimura K, Kuwayama T, et al. Effect of maternal age on mitochondrial DNA copy number, ATP content and IVF outcome of bovine oocytes. Reproduction, Fertility and Development. 2011; p. 424-432.Armstrong D. Effects of maternal age on oocyte developmental competence. Theriogenology. 2001; p. 1303-1322.Ptak G, Matsukawa K, Palmieri C, Della Salda L, Scapolo PA, Loi P. Developmental and functional evidence of nuclear immaturity in prepubertal oocytes. Human Reproduction. 2006; p. 2228-2237.Rodríguez-Cornejo WF. Estandarización de Procesos para la Produccion in vitro de Embriones Ovinos en el Laboratorio de Reprodución Animal en el Centro Académico Guatiguará-Piedecuesta. Tesis de Pregrado. Universidad Cooperativa de Colombia, Facultad de Medicina Veterianaria y Zootecnia.Kaczmarek M, Schams D, Ziecik A. Role of vascular endothelial growth factor in ovarian physiology – an overview. Reprod Biol. 2005; p. 111-136.García-Arévalo J, Restrepo-González S, Gómez-Sánchez N, Moreno-Jerez E, Dubeibe-Marín D, Mogollón-Waltero E. Manual de Procedimientos para la Producción y Vitrificación de Embriones Bovinos en Laboratorios de Reproducción Animal. Servicio Nacional de Aprendizaje – SENA, Universidad Cooperativa de Colombia - UCC.Hernández Pichardo JERSJL, Sánchez Martínez C, Ramírez Franco R. Efecto de técnicas de separación espermática en la viabilidad y estado acrosomal de espermatozoides posdescongelados de ovinos. Revista de Salud Animal. 2015; p. 15-20.Wan Pc, Hao Zd, Zhou P, Wu Y, Yang L, Cui Ms, et al. Effects of SOF and CR1 media on developmental competence and cell apoptosis of ovine in vitro fertilization embryos. Animal Reproduction Science. 2009; p. 279-288.Souza-Fabjan JM, Locatelli Y, Duffard N, Corbin E, Touzé JL, Perreau C, et al. In vitro embryo production in goats: Slaughterhouse and laparoscopic ovum pick up–derived oocytes have different kinetics and requirements regarding maturation media. Theriogenology. 2014; p. 1021-1031.dos Santos-Neto PC, Vilariño M, Cuadro F, Barrera N, Crispo M, Menchaca A. Cumulus cells during in vitro fertilization and oocyte vitrification in sheep: Remove, maintain or add? Cryobiology. 2020; p. 161-167.Paramino T, Izquierdo D. Recent advances in in vitro embryo production in small ruminants. Theriogenology. 2016; p. 152-159.Hajariana H, Aghaz F, Karami-Shabankareha H. Replacement of serum with sericin in in vitro maturation and culture media: Effects on embryonic developmental competence of Sanjabi sheep embryo during breeding season. Theriogenology. 2017; p. 144-148.Sánchez-Ajofrín I, Iniesta-Cuerda M, Sánchez-Calabuig M, Peris-Frau P, Martín-Maestro A, Ortiz J, et al. Oxygen tension during in vitro oocyte maturation and fertilization affects embryo quality in sheep and deer. Anim Reprod Ciencia. 2020.Reza-Ebrahimi M, Mara L, Parham A, Dattena M. Reduced effect of mineral oil toxicity using four-well culture dish in sheep embryo production. Small Ruminant Research. 2020.PublicationORIGINAL2021_efecto_ciclicidad_ovarica-FormatoLicenciaUso.pdf2021_efecto_ciclicidad_ovarica-FormatoLicenciaUso.pdfapplication/pdf622503https://repository.ucc.edu.co/bitstreams/5aee9bb3-4edb-4e11-ae8c-ecdd7bb528ce/download033d14baeb24e5c131fb7ec8644c77d8MD512021_efecto_ciclicidad_ovarica.pdf2021_efecto_ciclicidad_ovarica.pdfapplication/pdf716456https://repository.ucc.edu.co/bitstreams/65bc37f6-ddfb-43bb-9c33-618fc8cfa629/download6a9b2ddd4a1cb0cd7964332983222a8dMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/af391fd4-4e82-4c71-a005-ae6861bac7ec/download3bce4f7ab09dfc588f126e1e36e98a45MD53THUMBNAIL2021_efecto_ciclicidad_ovarica-FormatoLicenciaUso.pdf.jpg2021_efecto_ciclicidad_ovarica-FormatoLicenciaUso.pdf.jpgGenerated Thumbnailimage/jpeg5175https://repository.ucc.edu.co/bitstreams/6a6aabdc-b193-4d62-af70-f3432b838148/downloadbda4110f6f6a327290b99b66d7104ba3MD542021_efecto_ciclicidad_ovarica.pdf.jpg2021_efecto_ciclicidad_ovarica.pdf.jpgGenerated Thumbnailimage/jpeg3110https://repository.ucc.edu.co/bitstreams/e7dfb427-0022-4267-a3e8-f54819027b7f/downloadc32655569c42ac5a83dfdc5522f20307MD55TEXT2021_efecto_ciclicidad_ovarica-FormatoLicenciaUso.pdf.txt2021_efecto_ciclicidad_ovarica-FormatoLicenciaUso.pdf.txtExtracted texttext/plain5920https://repository.ucc.edu.co/bitstreams/f06b497c-95ed-4c59-b80d-6104c93cb476/download2fe210c7496f8307cb0e1a3423b3afa7MD562021_efecto_ciclicidad_ovarica.pdf.txt2021_efecto_ciclicidad_ovarica.pdf.txtExtracted texttext/plain101545https://repository.ucc.edu.co/bitstreams/e1fbb293-30f6-4809-bdc8-2f225def595b/download0ec7505925d273c271f5102a3f95c337MD5720.500.12494/33708oai:repository.ucc.edu.co:20.500.12494/337082024-08-09 12:47:15.667restrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo=