A novel approach to create an antibacterial surface using titanium dioxide and a combination of dip-pen nanolithography and soft lithography

Soft lithography and Dip-Pen Nanolithography (DPN) are techniques that have been used to modify the surface of biomaterials. Modifed surfaces play a role in reducing bacterial adhesion and bioflm formation. Also, titanium dioxide has been reported as an antibacterial substance due to its photocataly...

Full description

Autores:
Arango Santander, Santiago
Arango Santander, Santiago
Peláez Vargas, Alejandro
Da Cunha Freitas, Sidónio Ricardo
García, Claudia
Tipo de recurso:
Article of journal
Fecha de publicación:
2018
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/7311
Acceso en línea:
https://doi.org/10.1038/s41598-018-34198-w
https://hdl.handle.net/20.500.12494/7311
Palabra clave:
Nanolitografía dip-pen
Litografía blanda
Adhesión bacteriana
Modificación superficial
TG 2018 ODO
Dip-pen nanolithography
Soft lithography
Bacterial adhesion
Surface modification
Rights
openAccess
License
Atribución
id COOPER2_be74ca17739bd6a8bf4087ec3e9a8c0e
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/7311
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.spa.fl_str_mv A novel approach to create an antibacterial surface using titanium dioxide and a combination of dip-pen nanolithography and soft lithography
title A novel approach to create an antibacterial surface using titanium dioxide and a combination of dip-pen nanolithography and soft lithography
spellingShingle A novel approach to create an antibacterial surface using titanium dioxide and a combination of dip-pen nanolithography and soft lithography
Nanolitografía dip-pen
Litografía blanda
Adhesión bacteriana
Modificación superficial
TG 2018 ODO
Dip-pen nanolithography
Soft lithography
Bacterial adhesion
Surface modification
title_short A novel approach to create an antibacterial surface using titanium dioxide and a combination of dip-pen nanolithography and soft lithography
title_full A novel approach to create an antibacterial surface using titanium dioxide and a combination of dip-pen nanolithography and soft lithography
title_fullStr A novel approach to create an antibacterial surface using titanium dioxide and a combination of dip-pen nanolithography and soft lithography
title_full_unstemmed A novel approach to create an antibacterial surface using titanium dioxide and a combination of dip-pen nanolithography and soft lithography
title_sort A novel approach to create an antibacterial surface using titanium dioxide and a combination of dip-pen nanolithography and soft lithography
dc.creator.fl_str_mv Arango Santander, Santiago
Arango Santander, Santiago
Peláez Vargas, Alejandro
Da Cunha Freitas, Sidónio Ricardo
García, Claudia
dc.contributor.advisor.none.fl_str_mv Arango Santander, Santiago
dc.contributor.author.none.fl_str_mv Arango Santander, Santiago
Arango Santander, Santiago
Peláez Vargas, Alejandro
Da Cunha Freitas, Sidónio Ricardo
García, Claudia
dc.subject.spa.fl_str_mv Nanolitografía dip-pen
Litografía blanda
Adhesión bacteriana
Modificación superficial
topic Nanolitografía dip-pen
Litografía blanda
Adhesión bacteriana
Modificación superficial
TG 2018 ODO
Dip-pen nanolithography
Soft lithography
Bacterial adhesion
Surface modification
dc.subject.classification.spa.fl_str_mv TG 2018 ODO
dc.subject.other.spa.fl_str_mv Dip-pen nanolithography
Soft lithography
Bacterial adhesion
Surface modification
description Soft lithography and Dip-Pen Nanolithography (DPN) are techniques that have been used to modify the surface of biomaterials. Modifed surfaces play a role in reducing bacterial adhesion and bioflm formation. Also, titanium dioxide has been reported as an antibacterial substance due to its photocatalytic efect. This work aimed at creating patterns on model surfaces using DPN and soft lithography combined with titanium dioxide to create functional antibacterial micropatterned surfaces, which were tested against Streptococcus mutans. DPN was used to create a master pattern onto a model surface and microstamping was performed to duplicate and transfer such patterns to medical-grade stainless steel 316L using a suspension of TiO2. Modifed SS316L plates were subjected to UVA black light as photocatalytic activator. Patterns were characterized by atomic force microscopy and biologically evaluated using S. mutans. A signifcant reduction of up to 60% in bacterial adhesion to TiO2-coated and -micropatterned surfaces was observed. Moreover, both TiO2 surfaces reduced the viability of adhered bacteria after UV exposure. TiO2 micropatterned demonstrated a synergic efect between physical and chemical modifcation against S. mutans. This dual efect was enhanced by increasing TiO2 concentration. This novel approach may be a promising alternative to reduce bacterial adhesion to surfaces.
publishDate 2018
dc.date.issued.none.fl_str_mv 2018-10-25
dc.date.accessioned.none.fl_str_mv 2019-02-08T15:52:54Z
dc.date.available.none.fl_str_mv 2019-02-08T15:52:54Z
dc.type.none.fl_str_mv Artículo
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 2045-2322
dc.identifier.uri.spa.fl_str_mv https://doi.org/10.1038/s41598-018-34198-w
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12494/7311
dc.identifier.bibliographicCitation.spa.fl_str_mv Arango-Santander, S., Pelaez-Vargas, A., Freitas, S., y García, C. (2018). A novel approach to create an antibacterial surface using titanium dioxide and a combination of dip-pen nanolithography and soft lithography. (Tesis de pregrado). Recuperado de: http://repository.ucc.edu.co
identifier_str_mv 2045-2322
Arango-Santander, S., Pelaez-Vargas, A., Freitas, S., y García, C. (2018). A novel approach to create an antibacterial surface using titanium dioxide and a combination of dip-pen nanolithography and soft lithography. (Tesis de pregrado). Recuperado de: http://repository.ucc.edu.co
url https://doi.org/10.1038/s41598-018-34198-w
https://hdl.handle.net/20.500.12494/7311
dc.relation.isversionof.spa.fl_str_mv file:///C:/Users/Estudiantes.ENV-W-A30411HPF/Downloads/s41598-018-34198-w.pdf
dc.relation.ispartofjournal.spa.fl_str_mv Scientific Reports
dc.relation.references.spa.fl_str_mv Klemm, P., Vejborg, R. M. & Hancock, V. Prevention of bacterial adhesion. Appl. Microbiol. Biotechnol. 88(2), 451–459 (2010).
Lorenzetti, M. et al. The influence of surface modification on bacterial adhesion to titanium-based substrates. ACS Appl. Mater. Interfaces. 7, 1644–51 (2015).
Rodrigues, L. R. Novel approaches to avoid microbial adhesion onto biomaterials. J. Biotechnol Biomater. 1, 104e (2011).
Glinel, K., Thebault, P., Humblot, V., Pradier, C. M. & Jouenne, T. Antibacterial surfaces developed from bio-inspired approaches. Acta Biomater. 8(5), 1670–1684 (2012).
Beloin, C., Renard, S., Ghigo, J. M. & Lebeaux, D. Novel approaches to combat bacterial biofilms. Curr. Opin. Pharmacol. 18, 61–68 (2014).
Chung, K. K. et al. Impact of engineered surface microtopography on biofilm formation of Staphylococcus aureus. Biointerphases. 2, 89–94 (2007).
Hochbaum, A. I. & Aizenberg, J. Bacteria pattern spontaneously on periodic nanostructure arrays. Nano Lett. 10, 3717–3721 (2010).
May, R. M. et al. Micro-patterned surfaces reduce bacterial colonization and biofilm formation in vitro: potential for enhancing endotracheal tube designs. Clin. Transl. Med. 3, 8 (2014).
Piner, R. D., Zhu, J., Xu, F., Hong, S. & Mirkin, C. A. “Dip-Pen” nanolithography. Science. 283, 661–663 (1999).
Ginger, D. S., Zhang, H. & Mirkin, C. A. The evolution of dip-pen nanolithography. Angew. Chemie - Int. Ed. 43(1), 30–45 (2004).
Xia, Y. & Whitesides, G. M. Soft lithography. Angew. Chemie Int. Ed. 37, 550–575 (1998).
Weibel, D. B., Diluzio, W. R. & Whitesides, G. M. Microfabrication meets microbiology. Nat. Rev. Microbiol. 5, 209–218 (2007).
Pelaez-Vargas, A. et al. Effects of density of anisotropic microstamped silica thin films on guided bone tissue regeneration—In vitro study. J. Biomed. Mater. Res. B Appl. Biomater. 101, 762–769 (2013).
Pelaez-Vargas, A., Ferrell, N., Fernandes, M. H., Hansford, D. J. & Monteiro, F. J. Cellular alignment induction during early in vitro culture stages using micropatterned glass coatings produced by sol-gel process. Key Eng. Mater. 396–398, 303–306 (2009).
Carvalho, A. et al. Micropatterned silica thin films with nanohydroxyapatite micro-aggregates for guided tissue regeneration. Dent. Mater. 28, 1250–1260 (2012).
Pelaez-Vargas, A. et al. Isotropic micropatterned silica coatings on zirconia induce guided cell growth for dental implants. Dent. Mater. 27, 581–589 (2011).
Qin, D., Xia, Y. & Whitesides, G. M. Soft lithography for micro- and nanoscale patterning. Nat. Protoc. 5, 491–502 (2010).
Whitesides, G. M., Ostuni, E., Takayama, S., Jiang, X. & Ingber, D. E. Soft lithography in biology and biochemistry. Annu. Rev. Biomed. Eng. 3, 335–373 (2001).
Tran, K. T. M. & Nguyen, T. D. Lithography-based methods to manufacture biomaterials at small scales. J. Sci. Adv. Mater. Devices. 2, 1–14 (2017).
Bazaka, K., Jacob, M. V., Crawford, R. J. & Ivanova, E. P. Efficient surface modification of biomaterial to prevent biofilm formation and the attachment of microorganisms. Appl. Microbiol. Biotechnol. 95(2), 299–311 (2012).
Li, Y. H. et al. A quorum-sensing signaling system essential for genetic competence in Streptococcus mutans is involved in biofilm formation. J. Bacteriol. 184, 2699–2708 (2002).
Garrett, T. R., Bhakoo, M. & Zhang, Z. Bacterial adhesion and biofilms on surfaces. Prog. Nat. Sci. 18, 1049–56 (2008).
De Faria, A. F. et al. Anti-adhesion and antibacterial activity of silver nanoparticles supported on graphene oxide sheets. Colloids Surf. B Biointerfaces. 113, 115–124 (2014).
Besinis, A., De Peralta, T. & Handy, R. D. Inhibition of biofilm formation and antibacterial properties of a silver nano-coating on human dentine. Nanotoxicology. 8(7), 745–754 (2014).
Lemire, J. A., Harrison, J. J. & Turner, R. J. Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat. Rev. Microbiol. 11, 371–384 (2013).
Cloutier, M., Mantovani, D. & Rosei, F. Antibacterial coatings: challenges, perspectives, and opportunities. Trends Biotechnol. 33(11), 637–652 (2015).
Scuderi, V. et al. Photocatalytic and antibacterial properties of titanium dioxide flat film. Mater. Sci. Semicond. Process. 42, 32–35 (2016).
Yu, J. C., Ho, W., Lin, J., Yip, H. & Wong, P. K. Photocatalytic activity, antibacterial effect, and photoinduced hydrophilicity of TiO2 films coated on a stainless steel substrate. Environ. Sci. Technol. 37, 2296–2301 (2003).
Fujishima, A., Zhang, X. Titanium dioxide photocatalysis: present situation and future approaches. Comptes Rendus Chim. 9(5-6), 750–760 (2006).
Han, C., Lalley, J., Namboodiri, D., Cromer, K. & Nadagouda, M. N. Titanium dioxide-based antibacterial surfaces for water treatment. Curr. Opin. Chem. Eng. 11, 46–51 (2016).
Schneider, J., Bahnemman, D., Ye, J., LiPuma, G., Dionysiou, D.D. Photocatalysis: Fundamentals and Perspectives. Royal Society of Chemistry (2016).
Fujishima, A., Zhang, X. & Tryk, D. A. TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 63(12), 515–582 (2008).
Linsebigler, A. L., Lu, G. & Yates, J. T. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 95, 735–758 (1995).
Tanaka, K., Capule, M. F. V. & Hisanaga, T. Effect of crystallinity of TiO2 on its photocatalytic action. Chem. Phys. Lett. 187, 73–6 (1991).
Maness, P. C. et al. Bactericidal activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanism. Appl. Environ. Microbiol. 65, 4094–4098 (1999).
Kumar, R. V. & Raza, G. Photocatalytic disinfection of water with Ag-TiO2 nanocrystalline composite. Ionics (Kiel). 15, 579–587 (2009).
Shah, A. G., Shetty, P. C., Ramachandra, C. S., Bhat, N. S. & Laxmikanth, S. M. In vitro assessment of photocatalytic titanium oxide surface modified stainless steel orthodontic brackets for antiadherent and antibacterial properties against Lactobacillus acidophilus. Angle Orthod. 81, 1028–1035 (2011).
Choi, J.-Y., Chung, C. J., Oh, K., Choi, Y. & Kim, K. Photocatalytic antibacterial effect of TiO(2) film of TiAg on Streptococcus mutans. Angle Orthod. 79, 528–532 (2009).
García, C., Ceré, S. & Durán, A. Bioactive coatings prepared by sol-gel on stainless steel 316L. J. Non. Cryst. Solids. 348, 218–224 (2004).
García, C., Ceré, S. & Durán, A. Bioactive coatings deposited on titanium alloys. J. Non. Cryst. Solids. 352, 3488–3495 (2006).
Wetchakun, N., Incessungvorn, B., Wetchakun, K. & Phanichphant, S. Influence of calcination temperature on anatase to rutile phase transformation in TiO2 nanoparticles synthesized by the modified sol–gel method. Mater. Lett. 82, 195–198 (2012).
Arango-Santander, S., Pelaez-Vargas, A., Freitas, C. S. & García, C. Silica sol-gel patterned surfaces based on dip-pen nanolithography and microstamping. A comparison in resolution and throughput. Key Eng Mater. 720, 264–268 (2016).
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 9, 671–675 (2012).
Horcas, I. et al. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 78(1), 013705 (2007).
Chun, M. J. et al. Surface modification of orthodontic wires with photocatalytic titanium oxide for its antiadherent and antibacterial properties. Angle Orthod. 77, 483–488 (2007).
Naghili, H. et al. Validation of drop plate technique for bacterial enumeration by parametric and nonparametric tests. Vet Res Forum. 4, 179–183 (2013).
Csucs, G., Künzler, T., Feldman, K., Robin, F. & Spencer, N. D. Microcontact printing of macromolecules with submicrometer resolution by means of polyolefin stamps. Langmuir. 19, 6104–6109 (2003).
Aykent, F. et al. Effect of different finishing techniques for restorative materials on surface roughness and bacterial adhesion. J. Prosthet. Dent. 103, 221–227 (2010).
Mei, L., Busscher, H. J., Van Der Mei, H. C. & Ren, Y. Influence of surface roughness on streptococcal adhesion forces to composite resins. Dent. Mater. 27, 770–778 (2011).
Al-Marzok, M. I. & Al-Azzawi, H. J. The effect of the surface roughness of porcelain on the adhesion of oral Streptococcus mutans. J. Contemp. Dent. Pract. 10, 17–24 (2009).
Simoes, L. C., Simoes, M. & Vieira, M. J. Adhesion and biofilm formation on polystyrene by drinking water-isolated bacteria. Antonie van Leeuwenhoek. 98, 317–329 (2010).
Ready, D. et al. In vitro evaluation of the antibiofilm properties of chlorhexidine and delmopinol on dental implant surfaces. Int. J. Antimicrob. Agents. 45, 662–666 (2015).
Satou, J., Fukunaga, A., Satou, N., Shintani, H. & Okuda, K. Streptococcal adherence on various restorative materials. J. Dent. Res. 67, 588–591 (1988).
Erdural, B., Bolukbasi, U. & Karakas, G. Photocatalytic antibacterial activity of TiO2-SiO2thin films: the effect of composition on cell adhesion and antibacterial activity. J. Photochem. Photobiol. A Chem. 283, 29–37 (2014).
dc.rights.license.none.fl_str_mv Atribución
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 10
dc.coverage.temporal.spa.fl_str_mv 8
dc.publisher.spa.fl_str_mv Nature
Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Odontología, Medellín y Envigado
dc.publisher.program.spa.fl_str_mv Odontología
dc.publisher.place.spa.fl_str_mv Medellín
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/1c86f927-279f-4c8b-a66a-3763c81d670e/download
https://repository.ucc.edu.co/bitstreams/48f958aa-8895-4df2-8915-2f41715b6214/download
https://repository.ucc.edu.co/bitstreams/92695a68-9148-4583-a38b-38ed57e7c002/download
https://repository.ucc.edu.co/bitstreams/c2c1750c-a437-47f2-bdb0-1514b7c560e9/download
bitstream.checksum.fl_str_mv 74db2661c3bd0d3ae9924563dbc5a504
88a20c9ced718d17af2e29e6ef8b2c68
3bce4f7ab09dfc588f126e1e36e98a45
756644cadb297d8485a2e08f4a10d8a9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1814247049171828736
spelling Arango Santander, SantiagoArango Santander, SantiagoArango Santander, SantiagoPeláez Vargas, AlejandroDa Cunha Freitas, Sidónio RicardoGarcía, Claudia82019-02-08T15:52:54Z2019-02-08T15:52:54Z2018-10-252045-2322https://doi.org/10.1038/s41598-018-34198-whttps://hdl.handle.net/20.500.12494/7311Arango-Santander, S., Pelaez-Vargas, A., Freitas, S., y García, C. (2018). A novel approach to create an antibacterial surface using titanium dioxide and a combination of dip-pen nanolithography and soft lithography. (Tesis de pregrado). Recuperado de: http://repository.ucc.edu.coSoft lithography and Dip-Pen Nanolithography (DPN) are techniques that have been used to modify the surface of biomaterials. Modifed surfaces play a role in reducing bacterial adhesion and bioflm formation. Also, titanium dioxide has been reported as an antibacterial substance due to its photocatalytic efect. This work aimed at creating patterns on model surfaces using DPN and soft lithography combined with titanium dioxide to create functional antibacterial micropatterned surfaces, which were tested against Streptococcus mutans. DPN was used to create a master pattern onto a model surface and microstamping was performed to duplicate and transfer such patterns to medical-grade stainless steel 316L using a suspension of TiO2. Modifed SS316L plates were subjected to UVA black light as photocatalytic activator. Patterns were characterized by atomic force microscopy and biologically evaluated using S. mutans. A signifcant reduction of up to 60% in bacterial adhesion to TiO2-coated and -micropatterned surfaces was observed. Moreover, both TiO2 surfaces reduced the viability of adhered bacteria after UV exposure. TiO2 micropatterned demonstrated a synergic efect between physical and chemical modifcation against S. mutans. This dual efect was enhanced by increasing TiO2 concentration. This novel approach may be a promising alternative to reduce bacterial adhesion to surfaces.santiago.arango@campusucc.edu.coalejandro.pelaezv@campusucc.edu.cosidonio.freitas@campusucc.edu.cocpgarcia@unal.edu.co10NatureUniversidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Odontología, Medellín y EnvigadoOdontologíaMedellínfile:///C:/Users/Estudiantes.ENV-W-A30411HPF/Downloads/s41598-018-34198-w.pdfScientific ReportsKlemm, P., Vejborg, R. M. & Hancock, V. Prevention of bacterial adhesion. Appl. Microbiol. Biotechnol. 88(2), 451–459 (2010).Lorenzetti, M. et al. The influence of surface modification on bacterial adhesion to titanium-based substrates. ACS Appl. Mater. Interfaces. 7, 1644–51 (2015).Rodrigues, L. R. Novel approaches to avoid microbial adhesion onto biomaterials. J. Biotechnol Biomater. 1, 104e (2011).Glinel, K., Thebault, P., Humblot, V., Pradier, C. M. & Jouenne, T. Antibacterial surfaces developed from bio-inspired approaches. Acta Biomater. 8(5), 1670–1684 (2012).Beloin, C., Renard, S., Ghigo, J. M. & Lebeaux, D. Novel approaches to combat bacterial biofilms. Curr. Opin. Pharmacol. 18, 61–68 (2014).Chung, K. K. et al. Impact of engineered surface microtopography on biofilm formation of Staphylococcus aureus. Biointerphases. 2, 89–94 (2007).Hochbaum, A. I. & Aizenberg, J. Bacteria pattern spontaneously on periodic nanostructure arrays. Nano Lett. 10, 3717–3721 (2010).May, R. M. et al. Micro-patterned surfaces reduce bacterial colonization and biofilm formation in vitro: potential for enhancing endotracheal tube designs. Clin. Transl. Med. 3, 8 (2014).Piner, R. D., Zhu, J., Xu, F., Hong, S. & Mirkin, C. A. “Dip-Pen” nanolithography. Science. 283, 661–663 (1999).Ginger, D. S., Zhang, H. & Mirkin, C. A. The evolution of dip-pen nanolithography. Angew. Chemie - Int. Ed. 43(1), 30–45 (2004).Xia, Y. & Whitesides, G. M. Soft lithography. Angew. Chemie Int. Ed. 37, 550–575 (1998).Weibel, D. B., Diluzio, W. R. & Whitesides, G. M. Microfabrication meets microbiology. Nat. Rev. Microbiol. 5, 209–218 (2007).Pelaez-Vargas, A. et al. Effects of density of anisotropic microstamped silica thin films on guided bone tissue regeneration—In vitro study. J. Biomed. Mater. Res. B Appl. Biomater. 101, 762–769 (2013).Pelaez-Vargas, A., Ferrell, N., Fernandes, M. H., Hansford, D. J. & Monteiro, F. J. Cellular alignment induction during early in vitro culture stages using micropatterned glass coatings produced by sol-gel process. Key Eng. Mater. 396–398, 303–306 (2009).Carvalho, A. et al. Micropatterned silica thin films with nanohydroxyapatite micro-aggregates for guided tissue regeneration. Dent. Mater. 28, 1250–1260 (2012).Pelaez-Vargas, A. et al. Isotropic micropatterned silica coatings on zirconia induce guided cell growth for dental implants. Dent. Mater. 27, 581–589 (2011).Qin, D., Xia, Y. & Whitesides, G. M. Soft lithography for micro- and nanoscale patterning. Nat. Protoc. 5, 491–502 (2010).Whitesides, G. M., Ostuni, E., Takayama, S., Jiang, X. & Ingber, D. E. Soft lithography in biology and biochemistry. Annu. Rev. Biomed. Eng. 3, 335–373 (2001).Tran, K. T. M. & Nguyen, T. D. Lithography-based methods to manufacture biomaterials at small scales. J. Sci. Adv. Mater. Devices. 2, 1–14 (2017).Bazaka, K., Jacob, M. V., Crawford, R. J. & Ivanova, E. P. Efficient surface modification of biomaterial to prevent biofilm formation and the attachment of microorganisms. Appl. Microbiol. Biotechnol. 95(2), 299–311 (2012).Li, Y. H. et al. A quorum-sensing signaling system essential for genetic competence in Streptococcus mutans is involved in biofilm formation. J. Bacteriol. 184, 2699–2708 (2002).Garrett, T. R., Bhakoo, M. & Zhang, Z. Bacterial adhesion and biofilms on surfaces. Prog. Nat. Sci. 18, 1049–56 (2008).De Faria, A. F. et al. Anti-adhesion and antibacterial activity of silver nanoparticles supported on graphene oxide sheets. Colloids Surf. B Biointerfaces. 113, 115–124 (2014).Besinis, A., De Peralta, T. & Handy, R. D. Inhibition of biofilm formation and antibacterial properties of a silver nano-coating on human dentine. Nanotoxicology. 8(7), 745–754 (2014).Lemire, J. A., Harrison, J. J. & Turner, R. J. Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat. Rev. Microbiol. 11, 371–384 (2013).Cloutier, M., Mantovani, D. & Rosei, F. Antibacterial coatings: challenges, perspectives, and opportunities. Trends Biotechnol. 33(11), 637–652 (2015).Scuderi, V. et al. Photocatalytic and antibacterial properties of titanium dioxide flat film. Mater. Sci. Semicond. Process. 42, 32–35 (2016).Yu, J. C., Ho, W., Lin, J., Yip, H. & Wong, P. K. Photocatalytic activity, antibacterial effect, and photoinduced hydrophilicity of TiO2 films coated on a stainless steel substrate. Environ. Sci. Technol. 37, 2296–2301 (2003).Fujishima, A., Zhang, X. Titanium dioxide photocatalysis: present situation and future approaches. Comptes Rendus Chim. 9(5-6), 750–760 (2006).Han, C., Lalley, J., Namboodiri, D., Cromer, K. & Nadagouda, M. N. Titanium dioxide-based antibacterial surfaces for water treatment. Curr. Opin. Chem. Eng. 11, 46–51 (2016).Schneider, J., Bahnemman, D., Ye, J., LiPuma, G., Dionysiou, D.D. Photocatalysis: Fundamentals and Perspectives. Royal Society of Chemistry (2016).Fujishima, A., Zhang, X. & Tryk, D. A. TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 63(12), 515–582 (2008).Linsebigler, A. L., Lu, G. & Yates, J. T. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 95, 735–758 (1995).Tanaka, K., Capule, M. F. V. & Hisanaga, T. Effect of crystallinity of TiO2 on its photocatalytic action. Chem. Phys. Lett. 187, 73–6 (1991).Maness, P. C. et al. Bactericidal activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanism. Appl. Environ. Microbiol. 65, 4094–4098 (1999).Kumar, R. V. & Raza, G. Photocatalytic disinfection of water with Ag-TiO2 nanocrystalline composite. Ionics (Kiel). 15, 579–587 (2009).Shah, A. G., Shetty, P. C., Ramachandra, C. S., Bhat, N. S. & Laxmikanth, S. M. In vitro assessment of photocatalytic titanium oxide surface modified stainless steel orthodontic brackets for antiadherent and antibacterial properties against Lactobacillus acidophilus. Angle Orthod. 81, 1028–1035 (2011).Choi, J.-Y., Chung, C. J., Oh, K., Choi, Y. & Kim, K. Photocatalytic antibacterial effect of TiO(2) film of TiAg on Streptococcus mutans. Angle Orthod. 79, 528–532 (2009).García, C., Ceré, S. & Durán, A. Bioactive coatings prepared by sol-gel on stainless steel 316L. J. Non. Cryst. Solids. 348, 218–224 (2004).García, C., Ceré, S. & Durán, A. Bioactive coatings deposited on titanium alloys. J. Non. Cryst. Solids. 352, 3488–3495 (2006).Wetchakun, N., Incessungvorn, B., Wetchakun, K. & Phanichphant, S. Influence of calcination temperature on anatase to rutile phase transformation in TiO2 nanoparticles synthesized by the modified sol–gel method. Mater. Lett. 82, 195–198 (2012).Arango-Santander, S., Pelaez-Vargas, A., Freitas, C. S. & García, C. Silica sol-gel patterned surfaces based on dip-pen nanolithography and microstamping. A comparison in resolution and throughput. Key Eng Mater. 720, 264–268 (2016).Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 9, 671–675 (2012).Horcas, I. et al. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 78(1), 013705 (2007).Chun, M. J. et al. Surface modification of orthodontic wires with photocatalytic titanium oxide for its antiadherent and antibacterial properties. Angle Orthod. 77, 483–488 (2007).Naghili, H. et al. Validation of drop plate technique for bacterial enumeration by parametric and nonparametric tests. Vet Res Forum. 4, 179–183 (2013).Csucs, G., Künzler, T., Feldman, K., Robin, F. & Spencer, N. D. Microcontact printing of macromolecules with submicrometer resolution by means of polyolefin stamps. Langmuir. 19, 6104–6109 (2003).Aykent, F. et al. Effect of different finishing techniques for restorative materials on surface roughness and bacterial adhesion. J. Prosthet. Dent. 103, 221–227 (2010).Mei, L., Busscher, H. J., Van Der Mei, H. C. & Ren, Y. Influence of surface roughness on streptococcal adhesion forces to composite resins. Dent. Mater. 27, 770–778 (2011).Al-Marzok, M. I. & Al-Azzawi, H. J. The effect of the surface roughness of porcelain on the adhesion of oral Streptococcus mutans. J. Contemp. Dent. Pract. 10, 17–24 (2009).Simoes, L. C., Simoes, M. & Vieira, M. J. Adhesion and biofilm formation on polystyrene by drinking water-isolated bacteria. Antonie van Leeuwenhoek. 98, 317–329 (2010).Ready, D. et al. In vitro evaluation of the antibiofilm properties of chlorhexidine and delmopinol on dental implant surfaces. Int. J. Antimicrob. Agents. 45, 662–666 (2015).Satou, J., Fukunaga, A., Satou, N., Shintani, H. & Okuda, K. Streptococcal adherence on various restorative materials. J. Dent. Res. 67, 588–591 (1988).Erdural, B., Bolukbasi, U. & Karakas, G. Photocatalytic antibacterial activity of TiO2-SiO2thin films: the effect of composition on cell adhesion and antibacterial activity. J. Photochem. Photobiol. A Chem. 283, 29–37 (2014).Nanolitografía dip-penLitografía blandaAdhesión bacterianaModificación superficialTG 2018 ODODip-pen nanolithographySoft lithographyBacterial adhesionSurface modificationA novel approach to create an antibacterial surface using titanium dioxide and a combination of dip-pen nanolithography and soft lithographyArtículohttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribucióninfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationTEXT2018_Surface_Modification_bacteria.pdf.txt2018_Surface_Modification_bacteria.pdf.txtExtracted texttext/plain42389https://repository.ucc.edu.co/bitstreams/1c86f927-279f-4c8b-a66a-3763c81d670e/download74db2661c3bd0d3ae9924563dbc5a504MD53ORIGINAL2018_Surface_Modification_bacteria.pdf2018_Surface_Modification_bacteria.pdfTrabajo de grado_articuloapplication/pdf1958605https://repository.ucc.edu.co/bitstreams/48f958aa-8895-4df2-8915-2f41715b6214/download88a20c9ced718d17af2e29e6ef8b2c68MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/92695a68-9148-4583-a38b-38ed57e7c002/download3bce4f7ab09dfc588f126e1e36e98a45MD52THUMBNAIL2018_Surface_Modification_bacteria.pdf.jpg2018_Surface_Modification_bacteria.pdf.jpgGenerated Thumbnailimage/jpeg6510https://repository.ucc.edu.co/bitstreams/c2c1750c-a437-47f2-bdb0-1514b7c560e9/download756644cadb297d8485a2e08f4a10d8a9MD5420.500.12494/7311oai:repository.ucc.edu.co:20.500.12494/73112024-08-10 22:41:07.434open.accesshttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.com