Influence of composition of ß-TCP and borate bioglass scaffolds on cell proliferation of adipose tissue-derived mesenchymal stem cells: osteogenic differentiation
Scaffolds with Schwarz D geometry based on triply periodic minimal surfaces (TPMS) were obtained by 3D printing with a biodegradable and bioactive paste (66.5% calcium phosphate with and without magnesium, 28.5% bioglass borate (BGBS), 3% attapulgite, and 2% water by weight). The osteogenic differen...
- Autores:
-
Jaramillo, N
Moreno, A
Sanchez, R
Ospina, V
Peláez Vargas, Alejandro
García, Claudia
Paucar, Carlos
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Universidad Cooperativa de Colombia
- Repositorio:
- Repositorio UCC
- Idioma:
- OAI Identifier:
- oai:repository.ucc.edu.co:20.500.12494/46672
- Acceso en línea:
- https://doi.org/10.1557/s43580-021-00036-x
https://hdl.handle.net/20.500.12494/46672
- Palabra clave:
- Andamios
Biocompatibilidad
Bioceramicos
Scaffolds
Biocompatibility
Bioceramics
- Rights
- openAccess
- License
- Atribución
id |
COOPER2_bb092cd35503110d31481dd733ec503e |
---|---|
oai_identifier_str |
oai:repository.ucc.edu.co:20.500.12494/46672 |
network_acronym_str |
COOPER2 |
network_name_str |
Repositorio UCC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Influence of composition of ß-TCP and borate bioglass scaffolds on cell proliferation of adipose tissue-derived mesenchymal stem cells: osteogenic differentiation |
title |
Influence of composition of ß-TCP and borate bioglass scaffolds on cell proliferation of adipose tissue-derived mesenchymal stem cells: osteogenic differentiation |
spellingShingle |
Influence of composition of ß-TCP and borate bioglass scaffolds on cell proliferation of adipose tissue-derived mesenchymal stem cells: osteogenic differentiation Andamios Biocompatibilidad Bioceramicos Scaffolds Biocompatibility Bioceramics |
title_short |
Influence of composition of ß-TCP and borate bioglass scaffolds on cell proliferation of adipose tissue-derived mesenchymal stem cells: osteogenic differentiation |
title_full |
Influence of composition of ß-TCP and borate bioglass scaffolds on cell proliferation of adipose tissue-derived mesenchymal stem cells: osteogenic differentiation |
title_fullStr |
Influence of composition of ß-TCP and borate bioglass scaffolds on cell proliferation of adipose tissue-derived mesenchymal stem cells: osteogenic differentiation |
title_full_unstemmed |
Influence of composition of ß-TCP and borate bioglass scaffolds on cell proliferation of adipose tissue-derived mesenchymal stem cells: osteogenic differentiation |
title_sort |
Influence of composition of ß-TCP and borate bioglass scaffolds on cell proliferation of adipose tissue-derived mesenchymal stem cells: osteogenic differentiation |
dc.creator.fl_str_mv |
Jaramillo, N Moreno, A Sanchez, R Ospina, V Peláez Vargas, Alejandro García, Claudia Paucar, Carlos |
dc.contributor.advisor.none.fl_str_mv |
Peláez Vargas, Alejandro |
dc.contributor.author.none.fl_str_mv |
Jaramillo, N Moreno, A Sanchez, R Ospina, V Peláez Vargas, Alejandro García, Claudia Paucar, Carlos |
dc.subject.spa.fl_str_mv |
Andamios Biocompatibilidad Bioceramicos |
topic |
Andamios Biocompatibilidad Bioceramicos Scaffolds Biocompatibility Bioceramics |
dc.subject.other.spa.fl_str_mv |
Scaffolds Biocompatibility Bioceramics |
description |
Scaffolds with Schwarz D geometry based on triply periodic minimal surfaces (TPMS) were obtained by 3D printing with a biodegradable and bioactive paste (66.5% calcium phosphate with and without magnesium, 28.5% bioglass borate (BGBS), 3% attapulgite, and 2% water by weight). The osteogenic differentiation of mesenchymal stem cells (hMSC) was performed from human adipose tissue (ADSCs) in the presence of the scaffolds, which were characterized by degradability (International Organization for Standar ISO 10993—Part: 14), in vitro bioactivity by immersion tests in SBF arranged by Kokubo at different time intervals, cell proliferation, and osteogenic differentiation by alkaline phosphatase activity. Calcium phosphate is associated with β-tricalcium phosphate (β-TCP), in addition to amorphous Bioglass Borate. Scaffolds with calcium and magnesium phosphate (β-TCP/Mg) showed better degradability and bioactivity than scaffolds without Mg. Both scaffolds showed porosity and pore interconnectivity. Mesenchymal stem cells showed good adhesion and cell proliferation in contact with the scaffolds. Scaffolds doped with Mg were better promoters of cellular proliferation, additionally they did not show a cytotoxic effect. Differentiation of the osteogenic environment was verified by alkaline phosphatase activity. |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021-04-02 |
dc.date.accessioned.none.fl_str_mv |
2022-10-10T17:40:19Z |
dc.date.available.none.fl_str_mv |
2022-10-10T17:40:19Z |
dc.type.none.fl_str_mv |
Artículo |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
20598521 |
dc.identifier.uri.spa.fl_str_mv |
https://doi.org/10.1557/s43580-021-00036-x |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12494/46672 |
dc.identifier.bibliographicCitation.spa.fl_str_mv |
Jaramillo N, Moreno A, Sánchez R, Ospina V, Peláez-Vargas A, García C, P. C. (2021). Influence of composition of β-TCP and borate bioglass scaffolds on cell proliferation of adipose tissue-derived mesenchymal stem cells: osteogenic differentiation. MRS Advances, 6, 434–443.https://repository.ucc.edu.co/handle/20.500.12494/46672 |
identifier_str_mv |
20598521 Jaramillo N, Moreno A, Sánchez R, Ospina V, Peláez-Vargas A, García C, P. C. (2021). Influence of composition of β-TCP and borate bioglass scaffolds on cell proliferation of adipose tissue-derived mesenchymal stem cells: osteogenic differentiation. MRS Advances, 6, 434–443.https://repository.ucc.edu.co/handle/20.500.12494/46672 |
url |
https://doi.org/10.1557/s43580-021-00036-x https://hdl.handle.net/20.500.12494/46672 |
dc.relation.isversionof.spa.fl_str_mv |
https://link.springer.com/article/10.1557/s43580-021-00036-x |
dc.relation.ispartofjournal.spa.fl_str_mv |
MRS Advances |
dc.relation.references.spa.fl_str_mv |
J. Pärssinen, H. Hammarén, R. Rahikainen, V. Sencadas, C. Ribeiro, S. Vanhatupa et al., Enhancement of adhesion and promotion of osteogenic differentiation of human adipose stem cells by poled electroactive poly(vinylidene fluoride). J. Biomed. Mater. Res. A. 103(3), 919–928 (2015) M. Mebarki, L. Coquelin, P. Layrolle, S. Battaglia, M. Tossou, P. Hernigou et al., Enhanced human bone marrow mesenchymal stromal cell adhesion on scaffolds promotes cell survival and bone formation. Acta Biomater. 59, 94–107 (2017) G. Turnbull, J. Clarke, F. Picard, P. Riches, L. Jia, F. Han et al., 3D bioactive composite scaffolds for bone tissue engineering. Bioact. Mater. 3(3), 278–314 (2018). https://doi-org.bbibliograficas.ucc.edu.co/10.1016/j.bioactmat.2017.10.001 R. Bou Assaf, M. Fayyad-Kazan, F. Al-Nemer, R. Makki, H. Fayyad-Kazan, B. Badran et al., Evaluation of the osteogenic potential of different scaffolds embedded with human stem cells originated from Schneiderian membrane: an in vitro study. Biomed. Res. Int. 2019, 2868673 (2019) C.-C. Hung, A. Chaya, K. Liu, K. Verdelis, C. Sfeir, The role of magnesium ions in bone regeneration involves the canonical Wnt signaling pathway. Acta Biomater. 98, 246–255 (2019) M. Fantini, M. Curto, F. De Crescenzio, TPMS for interactive modelling of trabecular scaffolds for bone tissue engineering, in Advances on Mechanics, Design Engineering and Manufacturing (Springer, Cham, 2017), pp. 425–435 J.A. Ramírez, V. Ospina, A.A. Rozo, M.I. Viana, S. Ocampo, S. Restrepo, N.A. Vásquez, C. Paucar, C. García, Influence of geometry on cell proliferation of PLA and alumina scaffolds constructed by additive manufacturing. J. Mater. Res. 34(22), 3757–3765 (2019) S.C. Han, J.M. Choi, G. Liu, K. Kang, A microscopic shell structure with Schwarz’s D-surface. Sci. Rep. 7(1), 13405 (2017). https://doi-org.bbibliograficas.ucc.edu.co/10.1038/s41598-017-13618-3 J.C. Ra, I.S. Shin, S.H. Kim, S.K. Kang, B.C. Kang, H.Y. Lee et al., Safety of intravenous infusion of human adipose tissue-derived mesenchymal stem cells in animals and humans. Stem Cells Dev. 20(8), 1297–1308 (2011). https://doi-org.bbibliograficas.ucc.edu.co/10.1089/scd.2010.0466 A.W. Robert, A.B.B. Angulski, L. Spangenberg, P. Shigunov, I.T. Pereira, P.S.L. Bettes et al., Gene expression analysis of human adipose tissue-derived stem cells during the initial steps of in vitro osteogenesis. Sci. Rep. 8(1), 4739 (2018). https://doi-org.bbibliograficas.ucc.edu.co/10.1038/s41598-018-22991-6 L.-Y. Sun, C.-Y. Pang, D.-K. Li, C.-H. Liao, W.-C. Huang, C.-C. Wu et al., Antioxidants cause rapid expansion of human adipose-derived mesenchymal stem cells via CDK and CDK inhibitor regulation. J. Biomed. Sci. 20(1), 53 (2013). https://doi-org.bbibliograficas.ucc.edu.co/10.1186/1423-0127-20-53 J.B. Park, The effects of dexamethasone, ascorbic acid, and β-glycerophosphate on osteoblastic differentiation by regulating estrogen receptor and osteopontin expression. J. Surg. Res. 173(1), 99–104 (2012). https://doi-org.bbibliograficas.ucc.edu.co/10.1016/j.jss.2010.09.010 C. Wang, X. Cao, Y. Zhang, A novel bioactive osteogenesis scaffold delivers ascorbic acid, beta-glycerophosphate, and dexamethasone in vivo to promote bone regeneration. Oncotarget. 8(19), 31612–31625 (2017) R.T. Franceschi, B.S. Iyer, Y. Cui, Effects of ascorbic acid on collagen matrix formation and osteoblast differentiation in murine MC3T3-E1 cells. J. Bone Miner. Res. 9(6), 843–854 (1994) A. Shioi, Y. Nishizawa, S. Jono, H. Koyama, M. Hosoi, H. Morii, Beta-glycerophosphate accelerates calcification in cultured bovine vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 15(11), 2003–2009 (1995) C.H. Chung, E.E. Golub, E. Forbes, T. Tokuoka, I.M. Shapiro, Mechanism of action of beta-glycerophosphate on bone cell mineralization. Calcif. Tissue Int. 51(4), 305–311 (1992) X. Ma, X. Zhang, Y. Jia, S. Zu, S. Han, D. Xiao et al., Dexamethasone induces osteogenesis via regulation of hedgehog signalling molecules in rat mesenchymal stem cells. Int. Orthop. 37(7), 1399–1404 (2013) C.M. Park, M. Xian, Use of phosphorodithioate-based compounds as hydrogen sulfide donors. Methods Enzymol. 554, 127–142 (2015). https://doi-org.bbibliograficas.ucc.edu.co/10.1016/bs.mie.2014.11.032 N.W. Tietz, A.D. Rinker, L.M. Shaw, IFCC methods for the measurement of catalytic concentration of enzymes, Part 5. IFCC method for alkaline phosphatase (orthophosphoric-monoester phosphohydrolase, alkaline optimum, EC 3.1.3.1). J. Clin. Chem. Clin. Biochem. 21(11), 731–748 (1983) G.N. Bowers Jr., R.B. McComb, Measurement of total alkaline phosphatase activity in human serum. Clin. Chem. 21(13), 1988–1995 (1975) H. Bergmeyer, M. Horder, R. Rej, Approved recommendation (1985) on IFCC methods for the measurement of catalytic concentration of enzymes. Part 2. IFCC method for aspartate aminotransferase (L-aspartate: 2-oxoglutarate aminotransferase, EC 2.6.1.1). J. Clin. Chem. Clin. Biochem. 24, 497–508 (1986) M. Goldberg, V. Smirnov, P. Protsenko, O. Antonova, S.V. Smirnov, A.A. Fomina et al., Influence of aluminum substitutions on phase composition and morphology of β-tricalcium phosphate nanopowders. Ceram. Int. 43(16), 13881–13884 (2017) D. Zhou, C. Qi, Y.-X. Chen, Y.-J. Zhu, T.-W. Sun, F. Chen et al., Comparative study of porous hydroxyapatite/chitosan and whitlockite/chitosan scaffolds for bone regeneration in calvarial defects. Int. J. Nanomed. 12, 2673–2687 (2017). https://doi-org.bbibliograficas.ucc.edu.co/10.2147/IJN.S131251 M. Seidenstuecker, Y. Mrestani, R. Neubert, A. Bernstein, H. Mayr, Release kinetics and antibacterial efficacy of microporous—TCP coatings. J. Nanomater. 1–8, 2013 (2013) M. Huang, T. Li, T. Pan, N. Zhao, Y. Yao, Z. Zhai et al., Controlling the strontium-doping in calcium phosphate microcapsules through yeast-regulated biomimetic mineralization. Regen. Biomater. 3(5), 269–276 (2016) Biological evaluation of medical devices—part 14: identification and quantification of degradation products from ceramics 10993-14. International Organization for Standardization. ISO 2001 K.P. Schlingmann, M. Konrad, Magnesium homeostasis, in Principles of Bone Biology, 4th edn (Academic Press, New York, 2020), pp. 509–525. ISBN 9780128148419 A. Elghazel, R. Taktak, J. Bouaziz, S. Charfi, H. Keskes, TCP-fluorapatite composite scaffolds: mechanical characterization and in vitro/in vivo testing, in Scaffolds in Tissue Engineering Materials, Technologies and Clinical Applications (IntechOpen, London, 2017), p. 129 A. Priya, S. Nath, K. Biswas, B. Basu, In vitro dissolution of calcium phosphate-mullite composite in simulated body fluid. J. Mater. Sci. Mater. Med. 21, 1817–1828 (2010) J. Ma, N. Zhao, D. Zhu, Biphasic responses of human vascular smooth muscle cells to magnesium ion. J. Biomed. Mater. Res. A 104(2), 347–356 (2016). https://doi-org.bbibliograficas.ucc.edu.co/10.1002/jbm.a.35570 H. Zreiqat, C.R. Howlett, A. Zannettino, P. Evans, G. Schulze-Tanzil, C. Knabe, M. Shakibaei, Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. J. Biomed. Mater. Res. 62(2), 175–184 (2002). https://doi-org.bbibliograficas.ucc.edu.co/10.1002/jbm.10270 X. Nie, X. Sun, C. Wang, J. Yang, Effect of magnesium ions/Type I collagen promote the biological behavior of osteoblasts and its mechanism. Regen. Biomater. 7(1), 53–61 (2020). https://doi-org.bbibliograficas.ucc.edu.co/10.1093/rb/rbz033 B. Nelson Sathy, A. Natarajan, D. Menon, V. Bhaskaran, U. Mony, S. Nair, Gelatin nanoparticles loaded poly([Formula: see text]-caprolactone) nanofibrous semi-synthetic scaffolds for bone tissue engineering. Biomed. Mater. 7, 65001 (2012) |
dc.rights.license.none.fl_str_mv |
Atribución |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
434–443 |
dc.coverage.temporal.spa.fl_str_mv |
6 |
dc.publisher.spa.fl_str_mv |
Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Odontología, Medellín y Envigado |
dc.publisher.program.spa.fl_str_mv |
Odontología |
dc.publisher.place.spa.fl_str_mv |
Medellín |
institution |
Universidad Cooperativa de Colombia |
bitstream.url.fl_str_mv |
https://repository.ucc.edu.co/bitstreams/2938e780-565d-415f-bc49-a60a4ffb90a5/download https://repository.ucc.edu.co/bitstreams/ca5e9392-8da2-45ed-b86c-0fd0b89cc82f/download https://repository.ucc.edu.co/bitstreams/4534e813-1943-4d1f-be23-fda297ba612d/download https://repository.ucc.edu.co/bitstreams/d6e09b97-8897-4c04-9710-d1aa35b96bda/download https://repository.ucc.edu.co/bitstreams/ce19b9c8-2e59-4a23-ac49-84de25665cd5/download https://repository.ucc.edu.co/bitstreams/d143d7f5-4f2d-4e8f-8823-d3703f1f9758/download https://repository.ucc.edu.co/bitstreams/0ca64a3b-7b82-4bcf-8275-4cdc2fc650d7/download |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 c2c6d175f84c97c014737b4b1305a69a 32712d0f421e7652eb63c24753eff693 7b373245a69e0bbffb4c9349d6b8f87a fe57fcc0c21e047bc135cdbfd4e94804 4d2e38c48c39eebf43fd2162ffceedf7 57e1008101f308c0290a02631fed187f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Cooperativa de Colombia |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1814246791148732416 |
spelling |
Peláez Vargas, AlejandroJaramillo, NMoreno, ASanchez, ROspina, VPeláez Vargas, AlejandroGarcía, ClaudiaPaucar, Carlos62022-10-10T17:40:19Z2022-10-10T17:40:19Z2021-04-0220598521https://doi.org/10.1557/s43580-021-00036-xhttps://hdl.handle.net/20.500.12494/46672Jaramillo N, Moreno A, Sánchez R, Ospina V, Peláez-Vargas A, García C, P. C. (2021). Influence of composition of β-TCP and borate bioglass scaffolds on cell proliferation of adipose tissue-derived mesenchymal stem cells: osteogenic differentiation. MRS Advances, 6, 434–443.https://repository.ucc.edu.co/handle/20.500.12494/46672Scaffolds with Schwarz D geometry based on triply periodic minimal surfaces (TPMS) were obtained by 3D printing with a biodegradable and bioactive paste (66.5% calcium phosphate with and without magnesium, 28.5% bioglass borate (BGBS), 3% attapulgite, and 2% water by weight). The osteogenic differentiation of mesenchymal stem cells (hMSC) was performed from human adipose tissue (ADSCs) in the presence of the scaffolds, which were characterized by degradability (International Organization for Standar ISO 10993—Part: 14), in vitro bioactivity by immersion tests in SBF arranged by Kokubo at different time intervals, cell proliferation, and osteogenic differentiation by alkaline phosphatase activity. Calcium phosphate is associated with β-tricalcium phosphate (β-TCP), in addition to amorphous Bioglass Borate. Scaffolds with calcium and magnesium phosphate (β-TCP/Mg) showed better degradability and bioactivity than scaffolds without Mg. Both scaffolds showed porosity and pore interconnectivity. Mesenchymal stem cells showed good adhesion and cell proliferation in contact with the scaffolds. Scaffolds doped with Mg were better promoters of cellular proliferation, additionally they did not show a cytotoxic effect. Differentiation of the osteogenic environment was verified by alkaline phosphatase activity.https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000141070434–443Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Odontología, Medellín y EnvigadoOdontologíaMedellínhttps://link.springer.com/article/10.1557/s43580-021-00036-xMRS AdvancesJ. Pärssinen, H. Hammarén, R. Rahikainen, V. Sencadas, C. Ribeiro, S. Vanhatupa et al., Enhancement of adhesion and promotion of osteogenic differentiation of human adipose stem cells by poled electroactive poly(vinylidene fluoride). J. Biomed. Mater. Res. A. 103(3), 919–928 (2015)M. Mebarki, L. Coquelin, P. Layrolle, S. Battaglia, M. Tossou, P. Hernigou et al., Enhanced human bone marrow mesenchymal stromal cell adhesion on scaffolds promotes cell survival and bone formation. Acta Biomater. 59, 94–107 (2017)G. Turnbull, J. Clarke, F. Picard, P. Riches, L. Jia, F. Han et al., 3D bioactive composite scaffolds for bone tissue engineering. Bioact. Mater. 3(3), 278–314 (2018). https://doi-org.bbibliograficas.ucc.edu.co/10.1016/j.bioactmat.2017.10.001R. Bou Assaf, M. Fayyad-Kazan, F. Al-Nemer, R. Makki, H. Fayyad-Kazan, B. Badran et al., Evaluation of the osteogenic potential of different scaffolds embedded with human stem cells originated from Schneiderian membrane: an in vitro study. Biomed. Res. Int. 2019, 2868673 (2019)C.-C. Hung, A. Chaya, K. Liu, K. Verdelis, C. Sfeir, The role of magnesium ions in bone regeneration involves the canonical Wnt signaling pathway. Acta Biomater. 98, 246–255 (2019)M. Fantini, M. Curto, F. De Crescenzio, TPMS for interactive modelling of trabecular scaffolds for bone tissue engineering, in Advances on Mechanics, Design Engineering and Manufacturing (Springer, Cham, 2017), pp. 425–435J.A. Ramírez, V. Ospina, A.A. Rozo, M.I. Viana, S. Ocampo, S. Restrepo, N.A. Vásquez, C. Paucar, C. García, Influence of geometry on cell proliferation of PLA and alumina scaffolds constructed by additive manufacturing. J. Mater. Res. 34(22), 3757–3765 (2019)S.C. Han, J.M. Choi, G. Liu, K. Kang, A microscopic shell structure with Schwarz’s D-surface. Sci. Rep. 7(1), 13405 (2017). https://doi-org.bbibliograficas.ucc.edu.co/10.1038/s41598-017-13618-3J.C. Ra, I.S. Shin, S.H. Kim, S.K. Kang, B.C. Kang, H.Y. Lee et al., Safety of intravenous infusion of human adipose tissue-derived mesenchymal stem cells in animals and humans. Stem Cells Dev. 20(8), 1297–1308 (2011). https://doi-org.bbibliograficas.ucc.edu.co/10.1089/scd.2010.0466A.W. Robert, A.B.B. Angulski, L. Spangenberg, P. Shigunov, I.T. Pereira, P.S.L. Bettes et al., Gene expression analysis of human adipose tissue-derived stem cells during the initial steps of in vitro osteogenesis. Sci. Rep. 8(1), 4739 (2018). https://doi-org.bbibliograficas.ucc.edu.co/10.1038/s41598-018-22991-6L.-Y. Sun, C.-Y. Pang, D.-K. Li, C.-H. Liao, W.-C. Huang, C.-C. Wu et al., Antioxidants cause rapid expansion of human adipose-derived mesenchymal stem cells via CDK and CDK inhibitor regulation. J. Biomed. Sci. 20(1), 53 (2013). https://doi-org.bbibliograficas.ucc.edu.co/10.1186/1423-0127-20-53J.B. Park, The effects of dexamethasone, ascorbic acid, and β-glycerophosphate on osteoblastic differentiation by regulating estrogen receptor and osteopontin expression. J. Surg. Res. 173(1), 99–104 (2012). https://doi-org.bbibliograficas.ucc.edu.co/10.1016/j.jss.2010.09.010C. Wang, X. Cao, Y. Zhang, A novel bioactive osteogenesis scaffold delivers ascorbic acid, beta-glycerophosphate, and dexamethasone in vivo to promote bone regeneration. Oncotarget. 8(19), 31612–31625 (2017)R.T. Franceschi, B.S. Iyer, Y. Cui, Effects of ascorbic acid on collagen matrix formation and osteoblast differentiation in murine MC3T3-E1 cells. J. Bone Miner. Res. 9(6), 843–854 (1994)A. Shioi, Y. Nishizawa, S. Jono, H. Koyama, M. Hosoi, H. Morii, Beta-glycerophosphate accelerates calcification in cultured bovine vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 15(11), 2003–2009 (1995)C.H. Chung, E.E. Golub, E. Forbes, T. Tokuoka, I.M. Shapiro, Mechanism of action of beta-glycerophosphate on bone cell mineralization. Calcif. Tissue Int. 51(4), 305–311 (1992)X. Ma, X. Zhang, Y. Jia, S. Zu, S. Han, D. Xiao et al., Dexamethasone induces osteogenesis via regulation of hedgehog signalling molecules in rat mesenchymal stem cells. Int. Orthop. 37(7), 1399–1404 (2013)C.M. Park, M. Xian, Use of phosphorodithioate-based compounds as hydrogen sulfide donors. Methods Enzymol. 554, 127–142 (2015). https://doi-org.bbibliograficas.ucc.edu.co/10.1016/bs.mie.2014.11.032N.W. Tietz, A.D. Rinker, L.M. Shaw, IFCC methods for the measurement of catalytic concentration of enzymes, Part 5. IFCC method for alkaline phosphatase (orthophosphoric-monoester phosphohydrolase, alkaline optimum, EC 3.1.3.1). J. Clin. Chem. Clin. Biochem. 21(11), 731–748 (1983)G.N. Bowers Jr., R.B. McComb, Measurement of total alkaline phosphatase activity in human serum. Clin. Chem. 21(13), 1988–1995 (1975)H. Bergmeyer, M. Horder, R. Rej, Approved recommendation (1985) on IFCC methods for the measurement of catalytic concentration of enzymes. Part 2. IFCC method for aspartate aminotransferase (L-aspartate: 2-oxoglutarate aminotransferase, EC 2.6.1.1). J. Clin. Chem. Clin. Biochem. 24, 497–508 (1986)M. Goldberg, V. Smirnov, P. Protsenko, O. Antonova, S.V. Smirnov, A.A. Fomina et al., Influence of aluminum substitutions on phase composition and morphology of β-tricalcium phosphate nanopowders. Ceram. Int. 43(16), 13881–13884 (2017)D. Zhou, C. Qi, Y.-X. Chen, Y.-J. Zhu, T.-W. Sun, F. Chen et al., Comparative study of porous hydroxyapatite/chitosan and whitlockite/chitosan scaffolds for bone regeneration in calvarial defects. Int. J. Nanomed. 12, 2673–2687 (2017). https://doi-org.bbibliograficas.ucc.edu.co/10.2147/IJN.S131251M. Seidenstuecker, Y. Mrestani, R. Neubert, A. Bernstein, H. Mayr, Release kinetics and antibacterial efficacy of microporous—TCP coatings. J. Nanomater. 1–8, 2013 (2013)M. Huang, T. Li, T. Pan, N. Zhao, Y. Yao, Z. Zhai et al., Controlling the strontium-doping in calcium phosphate microcapsules through yeast-regulated biomimetic mineralization. Regen. Biomater. 3(5), 269–276 (2016)Biological evaluation of medical devices—part 14: identification and quantification of degradation products from ceramics 10993-14. International Organization for Standardization. ISO 2001K.P. Schlingmann, M. Konrad, Magnesium homeostasis, in Principles of Bone Biology, 4th edn (Academic Press, New York, 2020), pp. 509–525. ISBN 9780128148419A. Elghazel, R. Taktak, J. Bouaziz, S. Charfi, H. Keskes, TCP-fluorapatite composite scaffolds: mechanical characterization and in vitro/in vivo testing, in Scaffolds in Tissue Engineering Materials, Technologies and Clinical Applications (IntechOpen, London, 2017), p. 129A. Priya, S. Nath, K. Biswas, B. Basu, In vitro dissolution of calcium phosphate-mullite composite in simulated body fluid. J. Mater. Sci. Mater. Med. 21, 1817–1828 (2010)J. Ma, N. Zhao, D. Zhu, Biphasic responses of human vascular smooth muscle cells to magnesium ion. J. Biomed. Mater. Res. A 104(2), 347–356 (2016). https://doi-org.bbibliograficas.ucc.edu.co/10.1002/jbm.a.35570H. Zreiqat, C.R. Howlett, A. Zannettino, P. Evans, G. Schulze-Tanzil, C. Knabe, M. Shakibaei, Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. J. Biomed. Mater. Res. 62(2), 175–184 (2002). https://doi-org.bbibliograficas.ucc.edu.co/10.1002/jbm.10270X. Nie, X. Sun, C. Wang, J. Yang, Effect of magnesium ions/Type I collagen promote the biological behavior of osteoblasts and its mechanism. Regen. Biomater. 7(1), 53–61 (2020). https://doi-org.bbibliograficas.ucc.edu.co/10.1093/rb/rbz033B. Nelson Sathy, A. Natarajan, D. Menon, V. Bhaskaran, U. Mony, S. Nair, Gelatin nanoparticles loaded poly([Formula: see text]-caprolactone) nanofibrous semi-synthetic scaffolds for bone tissue engineering. Biomed. Mater. 7, 65001 (2012)AndamiosBiocompatibilidadBioceramicosScaffoldsBiocompatibilityBioceramicsInfluence of composition of ß-TCP and borate bioglass scaffolds on cell proliferation of adipose tissue-derived mesenchymal stem cells: osteogenic differentiationArtículohttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribucióninfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repository.ucc.edu.co/bitstreams/2938e780-565d-415f-bc49-a60a4ffb90a5/download8a4605be74aa9ea9d79846c1fba20a33MD55ORIGINAL2021_Jaramillo_Influence_composition_βTCP_borate_Anexo.pdf2021_Jaramillo_Influence_composition_βTCP_borate_Anexo.pdfAnexo articuloapplication/pdf2915296https://repository.ucc.edu.co/bitstreams/ca5e9392-8da2-45ed-b86c-0fd0b89cc82f/downloadc2c6d175f84c97c014737b4b1305a69aMD532021_Jaramillo_Influence_composition_βTCP_borate_Licencia.pdf2021_Jaramillo_Influence_composition_βTCP_borate_Licencia.pdfLicenciaapplication/pdf206610https://repository.ucc.edu.co/bitstreams/4534e813-1943-4d1f-be23-fda297ba612d/download32712d0f421e7652eb63c24753eff693MD54THUMBNAIL2021_Jaramillo_Influence_composition_βTCP_borate_Anexo.pdf.jpg2021_Jaramillo_Influence_composition_βTCP_borate_Anexo.pdf.jpgGenerated Thumbnailimage/jpeg4784https://repository.ucc.edu.co/bitstreams/d6e09b97-8897-4c04-9710-d1aa35b96bda/download7b373245a69e0bbffb4c9349d6b8f87aMD562021_Jaramillo_Influence_composition_βTCP_borate_Licencia.pdf.jpg2021_Jaramillo_Influence_composition_βTCP_borate_Licencia.pdf.jpgGenerated Thumbnailimage/jpeg5367https://repository.ucc.edu.co/bitstreams/ce19b9c8-2e59-4a23-ac49-84de25665cd5/downloadfe57fcc0c21e047bc135cdbfd4e94804MD57TEXT2021_Jaramillo_Influence_composition_βTCP_borate_Anexo.pdf.txt2021_Jaramillo_Influence_composition_βTCP_borate_Anexo.pdf.txtExtracted texttext/plain20https://repository.ucc.edu.co/bitstreams/d143d7f5-4f2d-4e8f-8823-d3703f1f9758/download4d2e38c48c39eebf43fd2162ffceedf7MD582021_Jaramillo_Influence_composition_βTCP_borate_Licencia.pdf.txt2021_Jaramillo_Influence_composition_βTCP_borate_Licencia.pdf.txtExtracted texttext/plain5859https://repository.ucc.edu.co/bitstreams/0ca64a3b-7b82-4bcf-8275-4cdc2fc650d7/download57e1008101f308c0290a02631fed187fMD5920.500.12494/46672oai:repository.ucc.edu.co:20.500.12494/466722024-08-10 22:40:47.802restrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |