Influence of composition of ß-TCP and borate bioglass scaffolds on cell proliferation of adipose tissue-derived mesenchymal stem cells: osteogenic differentiation

Scaffolds with Schwarz D geometry based on triply periodic minimal surfaces (TPMS) were obtained by 3D printing with a biodegradable and bioactive paste (66.5% calcium phosphate with and without magnesium, 28.5% bioglass borate (BGBS), 3% attapulgite, and 2% water by weight). The osteogenic differen...

Full description

Autores:
Jaramillo, N
Moreno, A
Sanchez, R
Ospina, V
Peláez Vargas, Alejandro
García, Claudia
Paucar, Carlos
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/46672
Acceso en línea:
https://doi.org/10.1557/s43580-021-00036-x
https://hdl.handle.net/20.500.12494/46672
Palabra clave:
Andamios
Biocompatibilidad
Bioceramicos
Scaffolds
Biocompatibility
Bioceramics
Rights
openAccess
License
Atribución
id COOPER2_bb092cd35503110d31481dd733ec503e
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/46672
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.spa.fl_str_mv Influence of composition of ß-TCP and borate bioglass scaffolds on cell proliferation of adipose tissue-derived mesenchymal stem cells: osteogenic differentiation
title Influence of composition of ß-TCP and borate bioglass scaffolds on cell proliferation of adipose tissue-derived mesenchymal stem cells: osteogenic differentiation
spellingShingle Influence of composition of ß-TCP and borate bioglass scaffolds on cell proliferation of adipose tissue-derived mesenchymal stem cells: osteogenic differentiation
Andamios
Biocompatibilidad
Bioceramicos
Scaffolds
Biocompatibility
Bioceramics
title_short Influence of composition of ß-TCP and borate bioglass scaffolds on cell proliferation of adipose tissue-derived mesenchymal stem cells: osteogenic differentiation
title_full Influence of composition of ß-TCP and borate bioglass scaffolds on cell proliferation of adipose tissue-derived mesenchymal stem cells: osteogenic differentiation
title_fullStr Influence of composition of ß-TCP and borate bioglass scaffolds on cell proliferation of adipose tissue-derived mesenchymal stem cells: osteogenic differentiation
title_full_unstemmed Influence of composition of ß-TCP and borate bioglass scaffolds on cell proliferation of adipose tissue-derived mesenchymal stem cells: osteogenic differentiation
title_sort Influence of composition of ß-TCP and borate bioglass scaffolds on cell proliferation of adipose tissue-derived mesenchymal stem cells: osteogenic differentiation
dc.creator.fl_str_mv Jaramillo, N
Moreno, A
Sanchez, R
Ospina, V
Peláez Vargas, Alejandro
García, Claudia
Paucar, Carlos
dc.contributor.advisor.none.fl_str_mv Peláez Vargas, Alejandro
dc.contributor.author.none.fl_str_mv Jaramillo, N
Moreno, A
Sanchez, R
Ospina, V
Peláez Vargas, Alejandro
García, Claudia
Paucar, Carlos
dc.subject.spa.fl_str_mv Andamios
Biocompatibilidad
Bioceramicos
topic Andamios
Biocompatibilidad
Bioceramicos
Scaffolds
Biocompatibility
Bioceramics
dc.subject.other.spa.fl_str_mv Scaffolds
Biocompatibility
Bioceramics
description Scaffolds with Schwarz D geometry based on triply periodic minimal surfaces (TPMS) were obtained by 3D printing with a biodegradable and bioactive paste (66.5% calcium phosphate with and without magnesium, 28.5% bioglass borate (BGBS), 3% attapulgite, and 2% water by weight). The osteogenic differentiation of mesenchymal stem cells (hMSC) was performed from human adipose tissue (ADSCs) in the presence of the scaffolds, which were characterized by degradability (International Organization for Standar ISO 10993—Part: 14), in vitro bioactivity by immersion tests in SBF arranged by Kokubo at different time intervals, cell proliferation, and osteogenic differentiation by alkaline phosphatase activity. Calcium phosphate is associated with β-tricalcium phosphate (β-TCP), in addition to amorphous Bioglass Borate. Scaffolds with calcium and magnesium phosphate (β-TCP/Mg) showed better degradability and bioactivity than scaffolds without Mg. Both scaffolds showed porosity and pore interconnectivity. Mesenchymal stem cells showed good adhesion and cell proliferation in contact with the scaffolds. Scaffolds doped with Mg were better promoters of cellular proliferation, additionally they did not show a cytotoxic effect. Differentiation of the osteogenic environment was verified by alkaline phosphatase activity.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-04-02
dc.date.accessioned.none.fl_str_mv 2022-10-10T17:40:19Z
dc.date.available.none.fl_str_mv 2022-10-10T17:40:19Z
dc.type.none.fl_str_mv Artículo
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 20598521
dc.identifier.uri.spa.fl_str_mv https://doi.org/10.1557/s43580-021-00036-x
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12494/46672
dc.identifier.bibliographicCitation.spa.fl_str_mv Jaramillo N, Moreno A, Sánchez R, Ospina V, Peláez-Vargas A, García C, P. C. (2021). Influence of composition of β-TCP and borate bioglass scaffolds on cell proliferation of adipose tissue-derived mesenchymal stem cells: osteogenic differentiation. MRS Advances, 6, 434–443.https://repository.ucc.edu.co/handle/20.500.12494/46672
identifier_str_mv 20598521
Jaramillo N, Moreno A, Sánchez R, Ospina V, Peláez-Vargas A, García C, P. C. (2021). Influence of composition of β-TCP and borate bioglass scaffolds on cell proliferation of adipose tissue-derived mesenchymal stem cells: osteogenic differentiation. MRS Advances, 6, 434–443.https://repository.ucc.edu.co/handle/20.500.12494/46672
url https://doi.org/10.1557/s43580-021-00036-x
https://hdl.handle.net/20.500.12494/46672
dc.relation.isversionof.spa.fl_str_mv https://link.springer.com/article/10.1557/s43580-021-00036-x
dc.relation.ispartofjournal.spa.fl_str_mv MRS Advances
dc.relation.references.spa.fl_str_mv J. Pärssinen, H. Hammarén, R. Rahikainen, V. Sencadas, C. Ribeiro, S. Vanhatupa et al., Enhancement of adhesion and promotion of osteogenic differentiation of human adipose stem cells by poled electroactive poly(vinylidene fluoride). J. Biomed. Mater. Res. A. 103(3), 919–928 (2015)
M. Mebarki, L. Coquelin, P. Layrolle, S. Battaglia, M. Tossou, P. Hernigou et al., Enhanced human bone marrow mesenchymal stromal cell adhesion on scaffolds promotes cell survival and bone formation. Acta Biomater. 59, 94–107 (2017)
G. Turnbull, J. Clarke, F. Picard, P. Riches, L. Jia, F. Han et al., 3D bioactive composite scaffolds for bone tissue engineering. Bioact. Mater. 3(3), 278–314 (2018). https://doi-org.bbibliograficas.ucc.edu.co/10.1016/j.bioactmat.2017.10.001
R. Bou Assaf, M. Fayyad-Kazan, F. Al-Nemer, R. Makki, H. Fayyad-Kazan, B. Badran et al., Evaluation of the osteogenic potential of different scaffolds embedded with human stem cells originated from Schneiderian membrane: an in vitro study. Biomed. Res. Int. 2019, 2868673 (2019)
C.-C. Hung, A. Chaya, K. Liu, K. Verdelis, C. Sfeir, The role of magnesium ions in bone regeneration involves the canonical Wnt signaling pathway. Acta Biomater. 98, 246–255 (2019)
M. Fantini, M. Curto, F. De Crescenzio, TPMS for interactive modelling of trabecular scaffolds for bone tissue engineering, in Advances on Mechanics, Design Engineering and Manufacturing (Springer, Cham, 2017), pp. 425–435
J.A. Ramírez, V. Ospina, A.A. Rozo, M.I. Viana, S. Ocampo, S. Restrepo, N.A. Vásquez, C. Paucar, C. García, Influence of geometry on cell proliferation of PLA and alumina scaffolds constructed by additive manufacturing. J. Mater. Res. 34(22), 3757–3765 (2019)
S.C. Han, J.M. Choi, G. Liu, K. Kang, A microscopic shell structure with Schwarz’s D-surface. Sci. Rep. 7(1), 13405 (2017). https://doi-org.bbibliograficas.ucc.edu.co/10.1038/s41598-017-13618-3
J.C. Ra, I.S. Shin, S.H. Kim, S.K. Kang, B.C. Kang, H.Y. Lee et al., Safety of intravenous infusion of human adipose tissue-derived mesenchymal stem cells in animals and humans. Stem Cells Dev. 20(8), 1297–1308 (2011). https://doi-org.bbibliograficas.ucc.edu.co/10.1089/scd.2010.0466
A.W. Robert, A.B.B. Angulski, L. Spangenberg, P. Shigunov, I.T. Pereira, P.S.L. Bettes et al., Gene expression analysis of human adipose tissue-derived stem cells during the initial steps of in vitro osteogenesis. Sci. Rep. 8(1), 4739 (2018). https://doi-org.bbibliograficas.ucc.edu.co/10.1038/s41598-018-22991-6
L.-Y. Sun, C.-Y. Pang, D.-K. Li, C.-H. Liao, W.-C. Huang, C.-C. Wu et al., Antioxidants cause rapid expansion of human adipose-derived mesenchymal stem cells via CDK and CDK inhibitor regulation. J. Biomed. Sci. 20(1), 53 (2013). https://doi-org.bbibliograficas.ucc.edu.co/10.1186/1423-0127-20-53
J.B. Park, The effects of dexamethasone, ascorbic acid, and β-glycerophosphate on osteoblastic differentiation by regulating estrogen receptor and osteopontin expression. J. Surg. Res. 173(1), 99–104 (2012). https://doi-org.bbibliograficas.ucc.edu.co/10.1016/j.jss.2010.09.010
C. Wang, X. Cao, Y. Zhang, A novel bioactive osteogenesis scaffold delivers ascorbic acid, beta-glycerophosphate, and dexamethasone in vivo to promote bone regeneration. Oncotarget. 8(19), 31612–31625 (2017)
R.T. Franceschi, B.S. Iyer, Y. Cui, Effects of ascorbic acid on collagen matrix formation and osteoblast differentiation in murine MC3T3-E1 cells. J. Bone Miner. Res. 9(6), 843–854 (1994)
A. Shioi, Y. Nishizawa, S. Jono, H. Koyama, M. Hosoi, H. Morii, Beta-glycerophosphate accelerates calcification in cultured bovine vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 15(11), 2003–2009 (1995)
C.H. Chung, E.E. Golub, E. Forbes, T. Tokuoka, I.M. Shapiro, Mechanism of action of beta-glycerophosphate on bone cell mineralization. Calcif. Tissue Int. 51(4), 305–311 (1992)
X. Ma, X. Zhang, Y. Jia, S. Zu, S. Han, D. Xiao et al., Dexamethasone induces osteogenesis via regulation of hedgehog signalling molecules in rat mesenchymal stem cells. Int. Orthop. 37(7), 1399–1404 (2013)
C.M. Park, M. Xian, Use of phosphorodithioate-based compounds as hydrogen sulfide donors. Methods Enzymol. 554, 127–142 (2015). https://doi-org.bbibliograficas.ucc.edu.co/10.1016/bs.mie.2014.11.032
N.W. Tietz, A.D. Rinker, L.M. Shaw, IFCC methods for the measurement of catalytic concentration of enzymes, Part 5. IFCC method for alkaline phosphatase (orthophosphoric-monoester phosphohydrolase, alkaline optimum, EC 3.1.3.1). J. Clin. Chem. Clin. Biochem. 21(11), 731–748 (1983)
G.N. Bowers Jr., R.B. McComb, Measurement of total alkaline phosphatase activity in human serum. Clin. Chem. 21(13), 1988–1995 (1975)
H. Bergmeyer, M. Horder, R. Rej, Approved recommendation (1985) on IFCC methods for the measurement of catalytic concentration of enzymes. Part 2. IFCC method for aspartate aminotransferase (L-aspartate: 2-oxoglutarate aminotransferase, EC 2.6.1.1). J. Clin. Chem. Clin. Biochem. 24, 497–508 (1986)
M. Goldberg, V. Smirnov, P. Protsenko, O. Antonova, S.V. Smirnov, A.A. Fomina et al., Influence of aluminum substitutions on phase composition and morphology of β-tricalcium phosphate nanopowders. Ceram. Int. 43(16), 13881–13884 (2017)
D. Zhou, C. Qi, Y.-X. Chen, Y.-J. Zhu, T.-W. Sun, F. Chen et al., Comparative study of porous hydroxyapatite/chitosan and whitlockite/chitosan scaffolds for bone regeneration in calvarial defects. Int. J. Nanomed. 12, 2673–2687 (2017). https://doi-org.bbibliograficas.ucc.edu.co/10.2147/IJN.S131251
M. Seidenstuecker, Y. Mrestani, R. Neubert, A. Bernstein, H. Mayr, Release kinetics and antibacterial efficacy of microporous—TCP coatings. J. Nanomater. 1–8, 2013 (2013)
M. Huang, T. Li, T. Pan, N. Zhao, Y. Yao, Z. Zhai et al., Controlling the strontium-doping in calcium phosphate microcapsules through yeast-regulated biomimetic mineralization. Regen. Biomater. 3(5), 269–276 (2016)
Biological evaluation of medical devices—part 14: identification and quantification of degradation products from ceramics 10993-14. International Organization for Standardization. ISO 2001
K.P. Schlingmann, M. Konrad, Magnesium homeostasis, in Principles of Bone Biology, 4th edn (Academic Press, New York, 2020), pp. 509–525. ISBN 9780128148419
A. Elghazel, R. Taktak, J. Bouaziz, S. Charfi, H. Keskes, TCP-fluorapatite composite scaffolds: mechanical characterization and in vitro/in vivo testing, in Scaffolds in Tissue Engineering Materials, Technologies and Clinical Applications (IntechOpen, London, 2017), p. 129
A. Priya, S. Nath, K. Biswas, B. Basu, In vitro dissolution of calcium phosphate-mullite composite in simulated body fluid. J. Mater. Sci. Mater. Med. 21, 1817–1828 (2010)
J. Ma, N. Zhao, D. Zhu, Biphasic responses of human vascular smooth muscle cells to magnesium ion. J. Biomed. Mater. Res. A 104(2), 347–356 (2016). https://doi-org.bbibliograficas.ucc.edu.co/10.1002/jbm.a.35570
H. Zreiqat, C.R. Howlett, A. Zannettino, P. Evans, G. Schulze-Tanzil, C. Knabe, M. Shakibaei, Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. J. Biomed. Mater. Res. 62(2), 175–184 (2002). https://doi-org.bbibliograficas.ucc.edu.co/10.1002/jbm.10270
X. Nie, X. Sun, C. Wang, J. Yang, Effect of magnesium ions/Type I collagen promote the biological behavior of osteoblasts and its mechanism. Regen. Biomater. 7(1), 53–61 (2020). https://doi-org.bbibliograficas.ucc.edu.co/10.1093/rb/rbz033
B. Nelson Sathy, A. Natarajan, D. Menon, V. Bhaskaran, U. Mony, S. Nair, Gelatin nanoparticles loaded poly([Formula: see text]-caprolactone) nanofibrous semi-synthetic scaffolds for bone tissue engineering. Biomed. Mater. 7, 65001 (2012)
dc.rights.license.none.fl_str_mv Atribución
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 434–443
dc.coverage.temporal.spa.fl_str_mv 6
dc.publisher.spa.fl_str_mv Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Odontología, Medellín y Envigado
dc.publisher.program.spa.fl_str_mv Odontología
dc.publisher.place.spa.fl_str_mv Medellín
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/2938e780-565d-415f-bc49-a60a4ffb90a5/download
https://repository.ucc.edu.co/bitstreams/ca5e9392-8da2-45ed-b86c-0fd0b89cc82f/download
https://repository.ucc.edu.co/bitstreams/4534e813-1943-4d1f-be23-fda297ba612d/download
https://repository.ucc.edu.co/bitstreams/d6e09b97-8897-4c04-9710-d1aa35b96bda/download
https://repository.ucc.edu.co/bitstreams/ce19b9c8-2e59-4a23-ac49-84de25665cd5/download
https://repository.ucc.edu.co/bitstreams/d143d7f5-4f2d-4e8f-8823-d3703f1f9758/download
https://repository.ucc.edu.co/bitstreams/0ca64a3b-7b82-4bcf-8275-4cdc2fc650d7/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
c2c6d175f84c97c014737b4b1305a69a
32712d0f421e7652eb63c24753eff693
7b373245a69e0bbffb4c9349d6b8f87a
fe57fcc0c21e047bc135cdbfd4e94804
4d2e38c48c39eebf43fd2162ffceedf7
57e1008101f308c0290a02631fed187f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1814246791148732416
spelling Peláez Vargas, AlejandroJaramillo, NMoreno, ASanchez, ROspina, VPeláez Vargas, AlejandroGarcía, ClaudiaPaucar, Carlos62022-10-10T17:40:19Z2022-10-10T17:40:19Z2021-04-0220598521https://doi.org/10.1557/s43580-021-00036-xhttps://hdl.handle.net/20.500.12494/46672Jaramillo N, Moreno A, Sánchez R, Ospina V, Peláez-Vargas A, García C, P. C. (2021). Influence of composition of β-TCP and borate bioglass scaffolds on cell proliferation of adipose tissue-derived mesenchymal stem cells: osteogenic differentiation. MRS Advances, 6, 434–443.https://repository.ucc.edu.co/handle/20.500.12494/46672Scaffolds with Schwarz D geometry based on triply periodic minimal surfaces (TPMS) were obtained by 3D printing with a biodegradable and bioactive paste (66.5% calcium phosphate with and without magnesium, 28.5% bioglass borate (BGBS), 3% attapulgite, and 2% water by weight). The osteogenic differentiation of mesenchymal stem cells (hMSC) was performed from human adipose tissue (ADSCs) in the presence of the scaffolds, which were characterized by degradability (International Organization for Standar ISO 10993—Part: 14), in vitro bioactivity by immersion tests in SBF arranged by Kokubo at different time intervals, cell proliferation, and osteogenic differentiation by alkaline phosphatase activity. Calcium phosphate is associated with β-tricalcium phosphate (β-TCP), in addition to amorphous Bioglass Borate. Scaffolds with calcium and magnesium phosphate (β-TCP/Mg) showed better degradability and bioactivity than scaffolds without Mg. Both scaffolds showed porosity and pore interconnectivity. Mesenchymal stem cells showed good adhesion and cell proliferation in contact with the scaffolds. Scaffolds doped with Mg were better promoters of cellular proliferation, additionally they did not show a cytotoxic effect. Differentiation of the osteogenic environment was verified by alkaline phosphatase activity.https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000141070434–443Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Odontología, Medellín y EnvigadoOdontologíaMedellínhttps://link.springer.com/article/10.1557/s43580-021-00036-xMRS AdvancesJ. Pärssinen, H. Hammarén, R. Rahikainen, V. Sencadas, C. Ribeiro, S. Vanhatupa et al., Enhancement of adhesion and promotion of osteogenic differentiation of human adipose stem cells by poled electroactive poly(vinylidene fluoride). J. Biomed. Mater. Res. A. 103(3), 919–928 (2015)M. Mebarki, L. Coquelin, P. Layrolle, S. Battaglia, M. Tossou, P. Hernigou et al., Enhanced human bone marrow mesenchymal stromal cell adhesion on scaffolds promotes cell survival and bone formation. Acta Biomater. 59, 94–107 (2017)G. Turnbull, J. Clarke, F. Picard, P. Riches, L. Jia, F. Han et al., 3D bioactive composite scaffolds for bone tissue engineering. Bioact. Mater. 3(3), 278–314 (2018). https://doi-org.bbibliograficas.ucc.edu.co/10.1016/j.bioactmat.2017.10.001R. Bou Assaf, M. Fayyad-Kazan, F. Al-Nemer, R. Makki, H. Fayyad-Kazan, B. Badran et al., Evaluation of the osteogenic potential of different scaffolds embedded with human stem cells originated from Schneiderian membrane: an in vitro study. Biomed. Res. Int. 2019, 2868673 (2019)C.-C. Hung, A. Chaya, K. Liu, K. Verdelis, C. Sfeir, The role of magnesium ions in bone regeneration involves the canonical Wnt signaling pathway. Acta Biomater. 98, 246–255 (2019)M. Fantini, M. Curto, F. De Crescenzio, TPMS for interactive modelling of trabecular scaffolds for bone tissue engineering, in Advances on Mechanics, Design Engineering and Manufacturing (Springer, Cham, 2017), pp. 425–435J.A. Ramírez, V. Ospina, A.A. Rozo, M.I. Viana, S. Ocampo, S. Restrepo, N.A. Vásquez, C. Paucar, C. García, Influence of geometry on cell proliferation of PLA and alumina scaffolds constructed by additive manufacturing. J. Mater. Res. 34(22), 3757–3765 (2019)S.C. Han, J.M. Choi, G. Liu, K. Kang, A microscopic shell structure with Schwarz’s D-surface. Sci. Rep. 7(1), 13405 (2017). https://doi-org.bbibliograficas.ucc.edu.co/10.1038/s41598-017-13618-3J.C. Ra, I.S. Shin, S.H. Kim, S.K. Kang, B.C. Kang, H.Y. Lee et al., Safety of intravenous infusion of human adipose tissue-derived mesenchymal stem cells in animals and humans. Stem Cells Dev. 20(8), 1297–1308 (2011). https://doi-org.bbibliograficas.ucc.edu.co/10.1089/scd.2010.0466A.W. Robert, A.B.B. Angulski, L. Spangenberg, P. Shigunov, I.T. Pereira, P.S.L. Bettes et al., Gene expression analysis of human adipose tissue-derived stem cells during the initial steps of in vitro osteogenesis. Sci. Rep. 8(1), 4739 (2018). https://doi-org.bbibliograficas.ucc.edu.co/10.1038/s41598-018-22991-6L.-Y. Sun, C.-Y. Pang, D.-K. Li, C.-H. Liao, W.-C. Huang, C.-C. Wu et al., Antioxidants cause rapid expansion of human adipose-derived mesenchymal stem cells via CDK and CDK inhibitor regulation. J. Biomed. Sci. 20(1), 53 (2013). https://doi-org.bbibliograficas.ucc.edu.co/10.1186/1423-0127-20-53J.B. Park, The effects of dexamethasone, ascorbic acid, and β-glycerophosphate on osteoblastic differentiation by regulating estrogen receptor and osteopontin expression. J. Surg. Res. 173(1), 99–104 (2012). https://doi-org.bbibliograficas.ucc.edu.co/10.1016/j.jss.2010.09.010C. Wang, X. Cao, Y. Zhang, A novel bioactive osteogenesis scaffold delivers ascorbic acid, beta-glycerophosphate, and dexamethasone in vivo to promote bone regeneration. Oncotarget. 8(19), 31612–31625 (2017)R.T. Franceschi, B.S. Iyer, Y. Cui, Effects of ascorbic acid on collagen matrix formation and osteoblast differentiation in murine MC3T3-E1 cells. J. Bone Miner. Res. 9(6), 843–854 (1994)A. Shioi, Y. Nishizawa, S. Jono, H. Koyama, M. Hosoi, H. Morii, Beta-glycerophosphate accelerates calcification in cultured bovine vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 15(11), 2003–2009 (1995)C.H. Chung, E.E. Golub, E. Forbes, T. Tokuoka, I.M. Shapiro, Mechanism of action of beta-glycerophosphate on bone cell mineralization. Calcif. Tissue Int. 51(4), 305–311 (1992)X. Ma, X. Zhang, Y. Jia, S. Zu, S. Han, D. Xiao et al., Dexamethasone induces osteogenesis via regulation of hedgehog signalling molecules in rat mesenchymal stem cells. Int. Orthop. 37(7), 1399–1404 (2013)C.M. Park, M. Xian, Use of phosphorodithioate-based compounds as hydrogen sulfide donors. Methods Enzymol. 554, 127–142 (2015). https://doi-org.bbibliograficas.ucc.edu.co/10.1016/bs.mie.2014.11.032N.W. Tietz, A.D. Rinker, L.M. Shaw, IFCC methods for the measurement of catalytic concentration of enzymes, Part 5. IFCC method for alkaline phosphatase (orthophosphoric-monoester phosphohydrolase, alkaline optimum, EC 3.1.3.1). J. Clin. Chem. Clin. Biochem. 21(11), 731–748 (1983)G.N. Bowers Jr., R.B. McComb, Measurement of total alkaline phosphatase activity in human serum. Clin. Chem. 21(13), 1988–1995 (1975)H. Bergmeyer, M. Horder, R. Rej, Approved recommendation (1985) on IFCC methods for the measurement of catalytic concentration of enzymes. Part 2. IFCC method for aspartate aminotransferase (L-aspartate: 2-oxoglutarate aminotransferase, EC 2.6.1.1). J. Clin. Chem. Clin. Biochem. 24, 497–508 (1986)M. Goldberg, V. Smirnov, P. Protsenko, O. Antonova, S.V. Smirnov, A.A. Fomina et al., Influence of aluminum substitutions on phase composition and morphology of β-tricalcium phosphate nanopowders. Ceram. Int. 43(16), 13881–13884 (2017)D. Zhou, C. Qi, Y.-X. Chen, Y.-J. Zhu, T.-W. Sun, F. Chen et al., Comparative study of porous hydroxyapatite/chitosan and whitlockite/chitosan scaffolds for bone regeneration in calvarial defects. Int. J. Nanomed. 12, 2673–2687 (2017). https://doi-org.bbibliograficas.ucc.edu.co/10.2147/IJN.S131251M. Seidenstuecker, Y. Mrestani, R. Neubert, A. Bernstein, H. Mayr, Release kinetics and antibacterial efficacy of microporous—TCP coatings. J. Nanomater. 1–8, 2013 (2013)M. Huang, T. Li, T. Pan, N. Zhao, Y. Yao, Z. Zhai et al., Controlling the strontium-doping in calcium phosphate microcapsules through yeast-regulated biomimetic mineralization. Regen. Biomater. 3(5), 269–276 (2016)Biological evaluation of medical devices—part 14: identification and quantification of degradation products from ceramics 10993-14. International Organization for Standardization. ISO 2001K.P. Schlingmann, M. Konrad, Magnesium homeostasis, in Principles of Bone Biology, 4th edn (Academic Press, New York, 2020), pp. 509–525. ISBN 9780128148419A. Elghazel, R. Taktak, J. Bouaziz, S. Charfi, H. Keskes, TCP-fluorapatite composite scaffolds: mechanical characterization and in vitro/in vivo testing, in Scaffolds in Tissue Engineering Materials, Technologies and Clinical Applications (IntechOpen, London, 2017), p. 129A. Priya, S. Nath, K. Biswas, B. Basu, In vitro dissolution of calcium phosphate-mullite composite in simulated body fluid. J. Mater. Sci. Mater. Med. 21, 1817–1828 (2010)J. Ma, N. Zhao, D. Zhu, Biphasic responses of human vascular smooth muscle cells to magnesium ion. J. Biomed. Mater. Res. A 104(2), 347–356 (2016). https://doi-org.bbibliograficas.ucc.edu.co/10.1002/jbm.a.35570H. Zreiqat, C.R. Howlett, A. Zannettino, P. Evans, G. Schulze-Tanzil, C. Knabe, M. Shakibaei, Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. J. Biomed. Mater. Res. 62(2), 175–184 (2002). https://doi-org.bbibliograficas.ucc.edu.co/10.1002/jbm.10270X. Nie, X. Sun, C. Wang, J. Yang, Effect of magnesium ions/Type I collagen promote the biological behavior of osteoblasts and its mechanism. Regen. Biomater. 7(1), 53–61 (2020). https://doi-org.bbibliograficas.ucc.edu.co/10.1093/rb/rbz033B. Nelson Sathy, A. Natarajan, D. Menon, V. Bhaskaran, U. Mony, S. Nair, Gelatin nanoparticles loaded poly([Formula: see text]-caprolactone) nanofibrous semi-synthetic scaffolds for bone tissue engineering. Biomed. Mater. 7, 65001 (2012)AndamiosBiocompatibilidadBioceramicosScaffoldsBiocompatibilityBioceramicsInfluence of composition of ß-TCP and borate bioglass scaffolds on cell proliferation of adipose tissue-derived mesenchymal stem cells: osteogenic differentiationArtículohttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribucióninfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repository.ucc.edu.co/bitstreams/2938e780-565d-415f-bc49-a60a4ffb90a5/download8a4605be74aa9ea9d79846c1fba20a33MD55ORIGINAL2021_Jaramillo_Influence_composition_βTCP_borate_Anexo.pdf2021_Jaramillo_Influence_composition_βTCP_borate_Anexo.pdfAnexo articuloapplication/pdf2915296https://repository.ucc.edu.co/bitstreams/ca5e9392-8da2-45ed-b86c-0fd0b89cc82f/downloadc2c6d175f84c97c014737b4b1305a69aMD532021_Jaramillo_Influence_composition_βTCP_borate_Licencia.pdf2021_Jaramillo_Influence_composition_βTCP_borate_Licencia.pdfLicenciaapplication/pdf206610https://repository.ucc.edu.co/bitstreams/4534e813-1943-4d1f-be23-fda297ba612d/download32712d0f421e7652eb63c24753eff693MD54THUMBNAIL2021_Jaramillo_Influence_composition_βTCP_borate_Anexo.pdf.jpg2021_Jaramillo_Influence_composition_βTCP_borate_Anexo.pdf.jpgGenerated Thumbnailimage/jpeg4784https://repository.ucc.edu.co/bitstreams/d6e09b97-8897-4c04-9710-d1aa35b96bda/download7b373245a69e0bbffb4c9349d6b8f87aMD562021_Jaramillo_Influence_composition_βTCP_borate_Licencia.pdf.jpg2021_Jaramillo_Influence_composition_βTCP_borate_Licencia.pdf.jpgGenerated Thumbnailimage/jpeg5367https://repository.ucc.edu.co/bitstreams/ce19b9c8-2e59-4a23-ac49-84de25665cd5/downloadfe57fcc0c21e047bc135cdbfd4e94804MD57TEXT2021_Jaramillo_Influence_composition_βTCP_borate_Anexo.pdf.txt2021_Jaramillo_Influence_composition_βTCP_borate_Anexo.pdf.txtExtracted texttext/plain20https://repository.ucc.edu.co/bitstreams/d143d7f5-4f2d-4e8f-8823-d3703f1f9758/download4d2e38c48c39eebf43fd2162ffceedf7MD582021_Jaramillo_Influence_composition_βTCP_borate_Licencia.pdf.txt2021_Jaramillo_Influence_composition_βTCP_borate_Licencia.pdf.txtExtracted texttext/plain5859https://repository.ucc.edu.co/bitstreams/0ca64a3b-7b82-4bcf-8275-4cdc2fc650d7/download57e1008101f308c0290a02631fed187fMD5920.500.12494/46672oai:repository.ucc.edu.co:20.500.12494/466722024-08-10 22:40:47.802restrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=