Atherosclerosis: immunopathogenesis and strategies for immunotherapy

Atherosclerosis, a chronic inflammatory condition in which atheroma accumulates within the intima of the arterial wall, is a life-threatening manifestation of cardiovascular disease, due to atheroma rupture, chronic luminal narrowing and thrombosis. Current knowledge of the role of a protective immu...

Full description

Autores:
Tabares-Guevara, Jorge H
Villa-Pulgarin, Janny A
Hernández López, Juan Carlos
Tipo de recurso:
Article of investigation
Fecha de publicación:
2021
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/45931
Acceso en línea:
https://hdl.handle.net/20.500.12494/45931
Palabra clave:
atherosclerosis
cardiovascular diseases
immune tolerance
immunotherapeutic strategies
Rights
closedAccess
License
Atribución
id COOPER2_b7a80bb64b0ff2a9dd6e1d1271f177ac
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/45931
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.spa.fl_str_mv Atherosclerosis: immunopathogenesis and strategies for immunotherapy
title Atherosclerosis: immunopathogenesis and strategies for immunotherapy
spellingShingle Atherosclerosis: immunopathogenesis and strategies for immunotherapy
atherosclerosis
cardiovascular diseases
immune tolerance
immunotherapeutic strategies
title_short Atherosclerosis: immunopathogenesis and strategies for immunotherapy
title_full Atherosclerosis: immunopathogenesis and strategies for immunotherapy
title_fullStr Atherosclerosis: immunopathogenesis and strategies for immunotherapy
title_full_unstemmed Atherosclerosis: immunopathogenesis and strategies for immunotherapy
title_sort Atherosclerosis: immunopathogenesis and strategies for immunotherapy
dc.creator.fl_str_mv Tabares-Guevara, Jorge H
Villa-Pulgarin, Janny A
Hernández López, Juan Carlos
dc.contributor.author.none.fl_str_mv Tabares-Guevara, Jorge H
Villa-Pulgarin, Janny A
Hernández López, Juan Carlos
dc.subject.spa.fl_str_mv atherosclerosis
cardiovascular diseases
immune tolerance
immunotherapeutic strategies
topic atherosclerosis
cardiovascular diseases
immune tolerance
immunotherapeutic strategies
description Atherosclerosis, a chronic inflammatory condition in which atheroma accumulates within the intima of the arterial wall, is a life-threatening manifestation of cardiovascular disease, due to atheroma rupture, chronic luminal narrowing and thrombosis. Current knowledge of the role of a protective immune response in atherosclerotic lesions has provided promising opportunities to develop new immunotherapeutic strategies. In particular, Tregs exert an atheroprotective role by releasing anti-inflammatory cytokines (IL-10/TGF-β) and suppressing autoreactive T lymphocytes. In vivo animal experiments have shown that this can be achieved by developing vaccines that stimulate immunological tolerance to atheroma antigens. Here, we present an overview of the current knowledge of the proatherogenic immune response, and we discuss the strategies currently used as immunoregulatory therapy. Lay abstract: Atherosclerosis is a chronic inflammatory disease in which the wall of the artery develops abnormalities, and can lead to serious problems, including heart attack, stroke, or even death. Scientific evidence has shown that the immune system is involved in the development and progression of atherosclerosis. Understanding the role of protective immune response in atherosclerosis provided promising opportunities to develop approaches for prevention and treatment.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-08-12
dc.date.accessioned.none.fl_str_mv 2022-07-28T00:06:08Z
dc.date.available.none.fl_str_mv 2022-07-28T00:06:08Z
dc.type.none.fl_str_mv Artículos Científicos
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.uri.spa.fl_str_mv Tabares-Guevara JH, Villa-Pulgarin JA, Hernandez JC. Atherosclerosis: immunopathogenesis and strategies for immunotherapy. Immunotherapy. 2021 Oct;13(14):1231-1244. doi: 10.2217/imt-2021-0009. Epub 2021 Aug 12. PMID: 34382409.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12494/45931
dc.identifier.bibliographicCitation.spa.fl_str_mv Tabares-Guevara JH, Villa-Pulgarin JA, Hernandez JC. Atherosclerosis: immunopathogenesis and strategies for immunotherapy. Immunotherapy. 2021 Oct;13(14):1231-1244. doi: 10.2217/imt-2021-0009. Epub 2021 Aug 12. PMID: 34382409.
identifier_str_mv Tabares-Guevara JH, Villa-Pulgarin JA, Hernandez JC. Atherosclerosis: immunopathogenesis and strategies for immunotherapy. Immunotherapy. 2021 Oct;13(14):1231-1244. doi: 10.2217/imt-2021-0009. Epub 2021 Aug 12. PMID: 34382409.
url https://hdl.handle.net/20.500.12494/45931
dc.relation.ispartofjournal.spa.fl_str_mv Immunotherapy
dc.relation.references.spa.fl_str_mv 1. Costantino S, Paneni F, Cosentino F. Ageing, metabolism and cardiovascular disease. J. Physiol. 594(8), 2061–2073 (2016)
2. WHO. Cardiovascular diseases (CVDs) (2015). www.who.int/cardiovascular diseases/about cvd/es/
3. Lavados PM, Sacks C, Prina L et al. Incidence, 30-day case-fatality rate, and prognosis of stroke in Iquique, Chile: a 2-year community-based prospective study (PISCIS project). Lancet 365(9478), 2206–2215 (2005).
lvis-Zakzuk NJ, Chaparro P, Cotes-Cantillo K et al. Carga de enfermedad por enfermedades cronicas no transmisibles y discapacidad ´ en Colombia. 10.13140/RG.2.1.1618.1523 (2016) (Epub ahead of print).
Sivadasanpillai H, Leeder S, M H, Jeemon P, Dorairaj P. A race against time: the challenge of cardiovascular diseases in developing economies. Centre for Chronic Disease Control, New Delhi, India (2014). http://www.ccdcindia.org/wp-content/uploads/2015/12/A-RACE-AGAINST-TIME.pdf
6. Shah PK, Lecis D. Inflammation in atherosclerotic cardiovascular disease. F1000Res 8, F1000 (2019)
7. Rahman MS, Woollard K. Atherosclerosis. Adv. Exp. Med. Biol. 1003, 121–144 (2017).
8. Hansson GK, Hermansson A. The immune system in atherosclerosis. Nat. Immunol. 12(3), 204–212 (2011). 9. Munjal A, Khandia R. Atherosclerosis: orchestrating cells and biomolecules involved in its activation and inhibiti
10. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med. 352(16), 1685–1695 (2005).
11. Fong LG, Parthasarathy S, Witztum JL, Steinberg D. Nonenzymatic oxidative cleavage of peptide bonds in apoprotein B-100. J. Lipid Res. 28(12), 1466–1477 (1987).
12. Yoshida H, Kisugi R. Mechanisms of LDL oxidation. Clin. Chim. Acta 411(23–24), 1875–1882 (2010).
13. Cinoku II, Mavragani CP, Moutsopoulos HM. Atherosclerosis: beyond the lipid storage hypothesis. The role of autoimmunity. Eur. J. Clin. Invest. 50(2), e13195 (2020).
14. Gistera A, Hansson GK. The immunology of atherosclerosis. Nat. Rev. Nephrol. 13(6), 368–380 (2017)
15. Fuhrman B, Volkova N, Aviram M. Oxidative stress increases the expression of the CD36 scavenger receptor and the cellular uptake of oxidized low-density lipoprotein in macrophages from atherosclerotic mice: protective role of antioxidants and of paraoxonase. Atherosclerosis 161(2), 307–316 (2002).
16. Tian K, Xu Y, Sahebkar A, Xu S. CD36 in atherosclerosis: pathophysiological mechanisms and therapeutic implications. Curr. Atheroscler. Rep. 22(10), 59 (2020).
17. Cochain C, Zernecke A. Macrophages in vascular inflammation and atherosclerosis. Pflugers Arch. 469(3–4), 485–499 (2017).
18. Tabas I, Bornfeldt KE. Macrophage phenotype and function in different stages of atherosclerosis. Circ. Res. 118(4), 653–667 (2016).
19. Dutta P, Courties G, Wei Y et al. Myocardial infarction accelerates atherosclerosis. Nature 487(7407), 325–329 (2012).
20. Manthey HD, Zernecke A. Dendritic cells in atherosclerosis: functions in immune regulation and beyond. Thromb. Haemost. 106(5), 772–778 (2011).
21. Packard RR, Maganto-Garcia E, Gotsman I, Tabas I, Libby P, Lichtman AH. CD11c(+) dendritic cells maintain antigen processing, presentation capabilities, and CD4(+) T-cell priming efficacy under hypercholesterolemic conditions associated with atherosclerosis. Circ. Res. 103(9), 965–973 (2008).
22. Choi JH, Cheong C, Dandamudi DB et al. Flt3 signaling-dependent dendritic cells protect against atherosclerosis. Immunity 35(5), 819–831 (2011).
23. Williams JW, Elvington A, Kessler S, Wohltmann M, Wu GF, Randolph GJ. B Cell-Mediated antigen presentation through MHC Class II is dispensable for atherosclerosis progression. Immunohorizons 3(1), 37–44 (2019).
24. Cole JE, Park I, Ahern DJ et al. Immune cell census in murine atherosclerosis: cytometry by time of flight illuminates vascular myeloid cell diversity. Cardiovasc. Res. 114(10), 1360–1371 (2018).
25. Liu P, Yu YR, Spencer JA et al. CX3CR1 deficiency impairs dendritic cell accumulation in arterial intima and reduces atherosclerotic burden. Arterioscler. Thromb. Vasc. Biol. 28(2), 243–250 (2008).
26. Weber C, Meiler S, Doring Y et al. CCL17-expressing dendritic cells drive atherosclerosis by restraining regulatory T-cell homeostasis in mice. J. Clin. Invest. 121(7), 2898–2910 (2011).
27. Daissormont IT, Christ A, Temmerman L et al. Plasmacytoid dendritic cells protect against atherosclerosis by tuning T-cell proliferation and activity. Circ. Res. 109(12), 1387–1395 (2011).
28. Doring Y, Manthey HD, Drechsler M et al. Auto-antigenic protein-DNA complexes stimulate plasmacytoid dendritic cells to promote atherosclerosis. Circulation 125(13), 1673–1683 (2012).
29. Macritchie N, Grassia G, Sabir SR et al. Plasmacytoid dendritic cells play a key role in promoting atherosclerosis in apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol 32(11), 2569–2579 (2012).
30. Subramanian M, Thorp E, Hansson GK, Tabas I. Treg-mediated suppression of atherosclerosis requires MYD88 signaling in DCs. J. Clin. Invest. 123(1), 179–188 (2013).
31. Gotsman I, Grabie N, Gupta R et al. Impaired regulatory T-cell response and enhanced atherosclerosis in the absence of inducible costimulatory molecule. Circulation 114(19), 2047–2055 (2006).
32. Bu DX, Tarrio M, Maganto-Garcia E et al. Impairment of the programmed cell death-1 pathway increases atherosclerotic lesion development and inflammation. Arterioscler. Thromb. Vasc. Biol. 31(5), 1100–1107 (2011)
33. Steinman RM, Banchereau J. Taking dendritic cells into medicine. Nature 449(7161), 419–426 (2007).
34. Hermansson A, Johansson DK, Ketelhuth DF, Andersson J, Zhou X, Hansson GK. Immunotherapy with tolerogenic apolipoprotein B-100-loaded dendritic cells attenuates atherosclerosis in hypercholesterolemic mice. Circulation 123(10), 1083–1091 (2011).
35. Frodermann V, van Puijvelde GH, Wierts L et al. Oxidized low-density lipoprotein-induced apoptotic dendritic cells as a novel therapy for atherosclerosis. J. Immunol. 194(5), 2208–2218 (2015)
36. Fang Z, Deng Q, Hu H et al. Characteristics of immunogenic and tolerogenic dendritic cells within the arterial wall in atherosclerosis and in vitro. Int. J. Clin. Exp. Med. 7(12), 4846–4856 (2014).
37. Morelli AE, Thomson AW. Tolerogenic dendritic cells and the quest for transplant tolerance. Nat. Rev. Immunol. 7(8), 610–621 (2007).
38. Rutella S, Danese S, Leone G. Tolerogenic dendritic cells: cytokine modulation comes of age. Blood 108(5), 1435–1440 (2006).
39. Koya T, Matsuda H, Takeda K et al. IL-10-treated dendritic cells decrease airway hyperresponsiveness and airway inflammation in mice. J. Allergy Clin. Immunol. 119(5), 1241–1250 (2007).
40. van Duivenvoorde LM, Han WG, Bakker AM et al. Immunomodulatory dendritic cells inhibit Th1 responses and arthritis via different mechanisms. J. Immunol. 179(3), 1506–1515 (2007).
41. Min WP, Zhou D, Ichim TE et al. Inhibitory feedback loop between tolerogenic dendritic cells and regulatory T cells in transplant tolerance. J. Immunol. 170(3), 1304–1312 (2003).
42. Yang X, Yao Q, Hu X et al. Rapamycin-conditioned dendritic cells induced immune tolerance through the regulation of Treg/Th17 cells in mice. Zhonghua Yi Xue Za Zhi 95(30), 2469–2473 (2015).
43. Hansson GK, Jonasson L, Holm J, Claesson-Welsh L. Class II MHC antigen expression in the atherosclerotic plaque: smooth muscle cells express HLA-DR, HLA-DQ and the invariant gamma chain. Clin. Exp. Immunol. 64(2), 261–268 (1986).
44. Paulsson G, Zhou X, Tornquist E, Hansson GK. Oligoclonal T cell expansions in atherosclerotic lesions of apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 20(1), 10–17 (2000).
45. Elhage R, Gourdy P, Brouchet L et al. Deleting TCR alpha beta+ or CD4+ T lymphocytes leads to opposite effects on site-specific atherosclerosis in female apolipoprotein E-deficient mice. Am. J. Pathol. 165(6), 2013–2018 (2004).
46. Matsuura E, Atzeni F, Sarzi-Puttini P, Turiel M, Lopez LR, Nurmohamed MT. Is atherosclerosis an autoimmune disease? BMC Med. 12, 47 (2014).
47. Ilhan F, Kalkanli ST. Atherosclerosis and the role of immune cells. World. J. Clin. Cases 3(4), 345–352 (2015)
48. Smith E, Prasad KM, Butcher M et al. Blockade of interleukin-17A results in reduced atherosclerosis in apolipoprotein E-deficient mice. Circulation 121(15), 1746–1755 (2010).
49. Ait-Oufella H, Salomon BL, Potteaux S et al. Natural regulatory T cells control the development of atherosclerosis in mice. Nat. Med. 12(2), 178–180 (2006).
50. Zhao TX, Kostapanos M, Griffiths C et al. Low-dose interleukin-2 in patients with stable ischaemic heart disease and acute coronary syndromes (LILACS): protocol and study rationale for a randomised, double-blind, placebo-controlled, phase I/II clinical trial. BMJ Open 8(9), e022452 (2018).
51. Kimura T, Kobiyama K, Winkels H et al. Regulatory CD4(+) T cells recognize major histocompatibility complex class II molecule-restricted peptide epitopes of apolipoprotein B. Circulation 138(11), 1130–1143 (2018).
52. Nilsson J, Lichtman A, Tedgui A. Atheroprotective immunity and cardiovascular disease: therapeutic opportunities and challenges. J. Intern. Med. 278(5), 507–519 (2015).
53. Fatkhullina AR, Peshkova IO, Koltsova EK. The role of cytokines in the development of atherosclerosis. Biochemistry 81(11), 1358–1370 (2016).
54. Douna H, Amersfoort J, Schaftenaar FH et al. Bidirectional effects of IL-10(+) regulatory B cells in Ldlr(-/-) mice. Atherosclerosis 280, 118–125 (2019).
55. Caligiuri G, Rudling M, Ollivier V et al. Interleukin-10 deficiency increases atherosclerosis, thrombosis, and low-density lipoproteins in apolipoprotein E knockout mice. Mol. Med. 9(1–2), 10–17 (2003).
56. Ait-Oufella H, Taleb S, Mallat Z, Tedgui A. Recent advances on the role of cytokines in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 31(5), 969–979 (2011).
57. Toma I, McCaffrey TA. Transforming growth factor-beta and atherosclerosis: interwoven atherogenic and atheroprotective aspects. Cell Tissue Res. 347(1), 155–175 (2012)
58. Grainger DJ, Mosedale DE, Metcalfe JC, Bottinger EP. Dietary fat and reduced levels of TGFbeta1 act synergistically to promote activation of the vascular endothelium and formation of lipid lesions. J. Cell Sci. 113(Pt 13), 2355–2361 (2000).
59. Mallat Z, Gojova A, Marchiol-Fournigault C et al. Inhibition of transforming growth factor-beta signaling accelerates atherosclerosis and induces an unstable plaque phenotype in mice. Circ. Res. 89(10), 930–934 (2001).
60. Paigen B, Holmes PA, Mitchell D, Albee D. Comparison of atherosclerotic lesions and HDL-lipid levels in male, female, and testosterone-treated female mice from strains C57BL/6, BALB/c, and C3H. Atherosclerosis 64(2–3), 215–221 (1987).
61. Piedrahita JA, Zhang SH, Hagaman JR, Oliver PM, Maeda N. Generation of mice carrying a mutant apolipoprotein E gene inactivated by gene targeting in embryonic stem cells. Proc. Natl Acad. Sci. USA 89(10), 4471–4475 (1992).
62. Whitman SC. A practical approach to using mice in atherosclerosis research. Clin. Biochem. Rev. 25(1), 81–93 (2004).
63. Mar´ın-Palma D TN, Urcuqui-Inchima S, Hernandez JC. Inflamacion y respuesta inmune innata: participaci ´ on de las lipoprote ´ ´ınas de alta densidad. Iatreia 30(4), 424–436 (2017).
64. Yu XH, Zhang DW, Zheng XL, Tang CK. Cholesterol transport system: an integrated cholesterol transport model involved in atherosclerosis. Prog. Lipid Res. 73, 65–91 (2019).
65. Zhang SH, Reddick RL, Piedrahita JA, Maeda N. Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science 258(5081), 468–471 (1992).
66. Emini Veseli B, Perrotta P, De Meyer GRA et al. Animal models of atherosclerosis. Eur. J. Pharmacol. 816, 3–13 (2017).
67. Bentzon JF, Falk E. Atherosclerotic lesions in mouse and man: is it the same disease? Curr. Opin. Lipidol. 21(5), 434–440 (2010).
68. Bond AR, Jackson CL. The fat-fed apolipoprotein E knockout mouse brachiocephalic artery in the study of atherosclerotic plaque rupture. J. Biomed. Biotechnol. 2011, 379069 (2011).
69. Yla-Herttuala S, Bentzon JF, Daemen M et al. Stabilization of atherosclerotic plaques: an update. Eur. Heart J. 34(42), 3251–3258 (2013).
70. Linton MF, Hasty AH, Babaev VR, Fazio S. Hepatic apo E expression is required for remnant lipoprotein clearance in the absence of the low density lipoprotein receptor. J. Clin. Invest. 101(8), 1726–1736 (1998).
71. McGettigan P, Henry D. Cardiovascular risk with nonsteroidal anti-inflammatory drugs: systematic review of population-based controlled observational studies. PLoS Med. 8(9), e1001098 (2011).
72. Farooq M, Haq I, Qureshi AS. Cardiovascular risks of COX inhibition: current perspectives. Expert Opin. Pharmacother. 9(8), 1311–1319 (2008).
73. Cooper R, Cutler J, Desvigne-Nickens P et al. Trends and disparities in coronary heart disease, stroke, and other cardiovascular diseases in the United States: findings of the national conference on cardiovascular disease prevention. Circulation 102(25), 3137–3147 (2000)
74. Sies H, Schewe T, Heiss C, Kelm M. Cocoa polyphenols and inflammatory mediators. Am. J. Clin. Nutr. 81(Suppl. 1), 304S–312S (2005).
75. Fuhrman B, Volkova N, Coleman R, Aviram M. Grape powder polyphenols attenuate atherosclerosis development in apolipoprotein E deficient (E0) mice and reduce macrophage atherogenicity. J. Nutr. 135(4), 722–728 (2005).
76. Moon JK, Shibamoto T. Antioxidant assays for plant and food components. J. Agric. Food Chem. 57(5), 1655–1666 (2009).
77. Park DW, Baek K, Kim JR et al. Resveratrol inhibits foam cell formation via NADPH oxidase 1- mediated reactive oxygen species and monocyte chemotactic protein-1. Exp. Mol. Med. 41(3), 171–179 (2009).
78. Hodgson JM, Croft KD. Tea flavonoids and cardiovascular health. Mol. Aspects Med. 31(6), 495–502 (2010).
79. Loke WM, Proudfoot JM, Hodgson JM et al. Specific dietary polyphenols attenuate atherosclerosis in apolipoprotein E-knockout mice by alleviating inflammation and endothelial dysfunction. Arterioscler. Thromb. Vasc. Biol. 30(4), 749–757 (2010).
80. Hackstein H, Thomson AW. Dendritic cells: emerging pharmacological targets of immunosuppressive drugs. Nat. Rev. Immunol. 4(1), 24–34 (2004).
81. Meng X, Zhang K, Li J et al. Statins induce the accumulation of regulatory T cells in atherosclerotic plaque. Mol. Med. 18, 598–605 (2012).
82. Forero-Pena DA, Gutierrez FR. Statins as modulators of regulatory T-cell biology. Mediators Inflamm. 2013, 167086 (2013).
83. Stemme S, Faber B, Holm J, Wiklund O, Witztum JL, Hansson GK. T lymphocytes from human atherosclerotic plaques recognize oxidized low density lipoprotein. Proc. Natl Acad. Sci. USA 92(9), 3893–3897 (1995).
84. Hulthe J. Antibodies to oxidized LDL in atherosclerosis development clinical and animal studies. Clin. Chim. Acta 348(1–2), 1–8 (2004)
85. Wigren M, Nilsson J, Kolbus D. Lymphocytes in atherosclerosis. Clin. Chim. Acta 413(19–20), 1562–1568 (2012)
86. Palinski W, Miller E, Witztum JL. Immunization of low density lipoprotein (LDL) receptor-deficient rabbits with homologous malondialdehyde-modified LDL reduces atherogenesis. Proc. Natl Acad. Sci. USA 92(3), 821–825 (1995).
87. Ameli S, Hultgardh-Nilsson A, Regnstrom J et al. Effect of immunization with homologous LDL and oxidized LDL on early atherosclerosis in hypercholesterolemic rabbits. Arterioscler. Thromb. Vasc. Biol. 16(8), 1074–1079 (1996).
87. Ameli S, Hultgardh-Nilsson A, Regnstrom J et al. Effect of immunization with homologous LDL and oxidized LDL on early atherosclerosis in hypercholesterolemic rabbits. Arterioscler. Thromb. Vasc. Biol. 16(8), 1074–1079 (1996).
89. Fredrikson GN, Andersson L, Soderberg I et al. Atheroprotective immunization with MDA-modified apo B-100 peptide sequences is associated with activation of Th2 specific antibody expression. Autoimmunity 38(2), 171–179 (2005).
90. Chyu KY, Zhao X, Reyes OS et al. Immunization using an Apo B-100 related epitope reduces atherosclerosis and plaque inflammation in hypercholesterolemic apo E (-/-) mice. Biochem. Biophys. Res. Commun. 338(4), 1982–1989 (2005).
91. Lutgens E, Atzler D, Doring Y, Duchene J, Steffens S, Weber C. Immunotherapy for cardiovascular disease. Eur. Heart J. 40(48), 3937–3946 (2019).
93. Schiopu A, Bengtsson J, Soderberg I et al. Recombinant human antibodies against aldehyde-modified apolipoprotein B-100 peptide sequences inhibit atherosclerosis. Circulation 110(14), 2047–2052 (2004).
94. Sakaguchi S. Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu. Rev. Immunol. 22, 531–562 (2004).
95. Steffens S, Burger F, Pelli G et al. Short-term treatment with anti-CD3 antibody reduces the development and progression of atherosclerosis in mice. Circulation 114(18), 1977–1984 (2006).
96. van Puijvelde GH, van Es T, van Wanrooij EJ et al. Induction of oral tolerance to HSP60 or an HSP60-peptide activates T-cell regulation and reduces atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 27(12), 2677–2683 (2007).
97. van Puijvelde GH, Hauer AD, de Vos P et al. Induction of oral tolerance to oxidized low-density lipoprotein ameliorates atherosclerosis. Circulation 114(18), 1968–1976 (2006).
98. Foks AC, Lichtman AH, Kuiper J. Treating atherosclerosis with regulatory T cells. Arterioscler. Thromb. Vasc. Biol. 35(2), 280–287 (2015)
99. Ou HX, Guo BB, Liu Q et al. Regulatory T cells as a new therapeutic target for atherosclerosis. Acta Pharmacol. Sin. 39(8), 1249–1258 (2018).
100. Munteanu A, Taddei M, Tamburini I, Bergamini E, Azzi A, Zingg JM. Antagonistic effects of oxidized low density lipoprotein and alpha-tocopherol on CD36 scavenger receptor expression in monocytes: involvement of protein kinase B and peroxisome proliferator-activated receptor-gamma. J. Biol. Chem. 281(10), 6489–6497 (2006).
101. Tu YC, Lian TW, Yen JH, Chen ZT, Wu MJ. Antiatherogenic effects of kaempferol and rhamnocitrin. J. Agric. Food Chem. 55(24), 9969–9976 (2007).
102. Kim HP, Park H, Son KH, Chang HW, Kang SS. Biochemical pharmacology of biflavonoids: implications for anti-inflammatory action. Arch. Pharm. Res. 31(3), 265–273 (2008).
102. Kim HP, Park H, Son KH, Chang HW, Kang SS. Biochemical pharmacology of biflavonoids: implications for anti-inflammatory action. Arch. Pharm. Res. 31(3), 265–273 (2008).
103. Kang Y, Xu L, Wang B, Chen A, Zheng G. Cutting edge: Immunosuppressant as adjuvant for tolerogenic immunization. J. Immunol. 180(8), 5172–5176 (2008).
104. Ospina-Quintero L, Jaramillo JC, Tabares-Guevara JH, Ramirez-Pineda JR. Reformulating small molecules for cardiovascular disease immune intervention: low-dose combined vitamin D/dexamethasone promotes IL-10 production and atheroprotection in dyslipidemic Mice. Front. Immunol. 11, 743 (2020).
105. Yi S, Zhang X, Sangji MH et al. Surface engineered polymersomes for enhanced modulation of dendritic cells during cardiovascular immunotherapy. Adv. Funct. Mater. 29(42), 1904399 (2019).
106. Rogers NM, Kireta S, Coates PT. Curcumin induces maturation-arrested dendritic cells that expand regulatory T cells in vitro and in vivo. Clin. Exp. Immunol. 162(3), 460–473 (2010).
107. Aziz MNM, Hussin Y, Che Rahim NF et al. Curcumin analog DK1 induces apoptosis in human osteosarcoma cells in vitro through mitochondria-dependent signaling Pathway. Molecules 23(1), 75 (2018).
108. Dutta S, Padhye S, Priyadarsini KI, Newton C. Antioxidant and antiproliferative activity of curcumin semicarbazone. Bioorg. Med. Chem. Lett. 15(11), 2738–2744 (2005).
109. He Y, Yue Y, Zheng X, Zhang K, Chen S, Du Z. Curcumin, inflammation, and chronic diseases: how are they linked? Molecules 20(5), 9183–9213 (2015).
110. Kim M, Kim Y. Hypocholesterolemic effects of curcumin via up-regulation of cholesterol 7a-hydroxylase in rats fed a high fat diet. Nutr. Res. Pract. 4(3), 191–195 (2010).
111. Ramirez-Tortosa MC, Mesa MD, Aguilera MC et al. Oral administration of a turmeric extract inhibits LDL oxidation and has hypocholesterolemic effects in rabbits with experimental atherosclerosis. Atherosclerosis 147(2), 371–378 (1999).
112. Zhao JF, Ching LC, Huang YC et al. Molecular mechanism of curcumin on the suppression of cholesterol accumulation in macrophage foam cells and atherosclerosis. Mol. Nutr. Food Res. 56(5), 691–701 (2012).
113. Yang YS, Su YF, Yang HW, Lee YH, Chou JI, Ueng KC. Lipid-lowering effects of curcumin in patients with metabolic syndrome: a randomized, double-blind, placebo-controlled trial. Phytother. Res. 28(12), 1770–1777 (2014).
114. Mahfouz MM, Zhou Q, Kummerow FA. Effect of curcumin on LDL oxidation in vitro, and lipid peroxidation and antioxidant enzymes in cholesterol fed rabbits. Int. J. Vitam. Nutr. Res. 81(6), 378–391 (2011).
115. Kou MC, Chiou SY, Weng CY, Wang L, Ho CT, Wu MJ. Curcuminoids distinctly exhibit antioxidant activities and regulate expression of scavenger receptors and heme oxygenase-1. Mol. Nutr. Food Res. 57(9), 1598–1610 (2013).
115. Kou MC, Chiou SY, Weng CY, Wang L, Ho CT, Wu MJ. Curcuminoids distinctly exhibit antioxidant activities and regulate expression of scavenger receptors and heme oxygenase-1. Mol. Nutr. Food Res. 57(9), 1598–1610 (2013).
116. Sahebkar A. Are curcuminoids effective C-reactive protein-lowering agents in clinical practice? Evidence from a meta-analysis. Phytother. Res. 28(5), 633–642 (2014).
117. Ranjan D, Chen C, Johnston TD, Jeon H, Nagabhushan M. Curcumin inhibits mitogen stimulated lymphocyte proliferation, NFkappaB activation, and IL-2 signaling. J. Surg. Res. 121(2), 171–177 (2004).
117. Ranjan D, Chen C, Johnston TD, Jeon H, Nagabhushan M. Curcumin inhibits mitogen stimulated lymphocyte proliferation, NFkappaB activation, and IL-2 signaling. J. Surg. Res. 121(2), 171–177 (2004).
118. Gong Z, Zhou J, Li H et al. Curcumin suppresses NLRP3 inflammasome activation and protects against LPS-induced septic shock. Mol. Nutr. Food Res. 59(11), 2132–2142 (2015).
119. Duewell P, Kono H, Rayner KJ et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464(7293), 1357–1361 (2010).
120. Yin H, Guo Q, Li X et al. Curcumin suppresses IL-1beta secretion and prevents inflammation through inhibition of the NLRP3 inflammasome. J. Immunol. 200(8), 2835–2846 (2018)
121. Ridker PM, Everett BM, Thuren T et al. Anti-inflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377(12), 1119–1131 (2017).
dc.rights.license.none.fl_str_mv Atribución
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/closedAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_14cb
rights_invalid_str_mv Atribución
http://purl.org/coar/access_right/c_14cb
eu_rights_str_mv closedAccess
dc.format.extent.spa.fl_str_mv 1231-1244
dc.coverage.temporal.spa.fl_str_mv 13(14)
dc.publisher.spa.fl_str_mv Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Programa de Medicina, Medellín y Envigado, Colombia, 00000
dc.publisher.program.spa.fl_str_mv Ingeniería de Telecomunicaciones
dc.publisher.place.spa.fl_str_mv Medellín
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/81c9d524-3924-4a84-bd80-b63260304e88/download
https://repository.ucc.edu.co/bitstreams/14b2ffc2-5150-4c7d-b63b-0c36f63e867e/download
https://repository.ucc.edu.co/bitstreams/0ed68d85-fbdd-49ca-95ce-ff0ead58665a/download
https://repository.ucc.edu.co/bitstreams/22069dc1-1c13-4c21-a5d1-1f110a2f095e/download
bitstream.checksum.fl_str_mv 206955bf70f64583cd5ca55666808853
8a4605be74aa9ea9d79846c1fba20a33
19d90eb2ae1a2cd736bb5785e0e04d46
5ed4b58aed16067c55b8eb3d6d4e3a22
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1811565273375834112
spelling Tabares-Guevara, Jorge HVilla-Pulgarin, Janny AHernández López, Juan Carlos13(14)2022-07-28T00:06:08Z2022-07-28T00:06:08Z2021-08-12Tabares-Guevara JH, Villa-Pulgarin JA, Hernandez JC. Atherosclerosis: immunopathogenesis and strategies for immunotherapy. Immunotherapy. 2021 Oct;13(14):1231-1244. doi: 10.2217/imt-2021-0009. Epub 2021 Aug 12. PMID: 34382409.https://hdl.handle.net/20.500.12494/45931Tabares-Guevara JH, Villa-Pulgarin JA, Hernandez JC. Atherosclerosis: immunopathogenesis and strategies for immunotherapy. Immunotherapy. 2021 Oct;13(14):1231-1244. doi: 10.2217/imt-2021-0009. Epub 2021 Aug 12. PMID: 34382409.Atherosclerosis, a chronic inflammatory condition in which atheroma accumulates within the intima of the arterial wall, is a life-threatening manifestation of cardiovascular disease, due to atheroma rupture, chronic luminal narrowing and thrombosis. Current knowledge of the role of a protective immune response in atherosclerotic lesions has provided promising opportunities to develop new immunotherapeutic strategies. In particular, Tregs exert an atheroprotective role by releasing anti-inflammatory cytokines (IL-10/TGF-β) and suppressing autoreactive T lymphocytes. In vivo animal experiments have shown that this can be achieved by developing vaccines that stimulate immunological tolerance to atheroma antigens. Here, we present an overview of the current knowledge of the proatherogenic immune response, and we discuss the strategies currently used as immunoregulatory therapy. Lay abstract: Atherosclerosis is a chronic inflammatory disease in which the wall of the artery develops abnormalities, and can lead to serious problems, including heart attack, stroke, or even death. Scientific evidence has shown that the immune system is involved in the development and progression of atherosclerosis. Understanding the role of protective immune response in atherosclerosis provided promising opportunities to develop approaches for prevention and treatment.https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000283088http://orcid.org/0000-0002-9200-5698https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000283088juanc.hernandezl@campusucc.edu.cohttps://scholar.google.com/citations?user=fo79p5QAAAAJ&hl=es1231-1244Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Programa de Medicina, Medellín y Envigado, Colombia, 00000Ingeniería de TelecomunicacionesMedellínatherosclerosiscardiovascular diseasesimmune toleranceimmunotherapeutic strategiesAtherosclerosis: immunopathogenesis and strategies for immunotherapyArtículos Científicoshttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionAtribucióninfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbImmunotherapy1. Costantino S, Paneni F, Cosentino F. Ageing, metabolism and cardiovascular disease. J. Physiol. 594(8), 2061–2073 (2016)2. WHO. Cardiovascular diseases (CVDs) (2015). www.who.int/cardiovascular diseases/about cvd/es/3. Lavados PM, Sacks C, Prina L et al. Incidence, 30-day case-fatality rate, and prognosis of stroke in Iquique, Chile: a 2-year community-based prospective study (PISCIS project). Lancet 365(9478), 2206–2215 (2005).lvis-Zakzuk NJ, Chaparro P, Cotes-Cantillo K et al. Carga de enfermedad por enfermedades cronicas no transmisibles y discapacidad ´ en Colombia. 10.13140/RG.2.1.1618.1523 (2016) (Epub ahead of print).Sivadasanpillai H, Leeder S, M H, Jeemon P, Dorairaj P. A race against time: the challenge of cardiovascular diseases in developing economies. Centre for Chronic Disease Control, New Delhi, India (2014). http://www.ccdcindia.org/wp-content/uploads/2015/12/A-RACE-AGAINST-TIME.pdf6. Shah PK, Lecis D. Inflammation in atherosclerotic cardiovascular disease. F1000Res 8, F1000 (2019)7. Rahman MS, Woollard K. Atherosclerosis. Adv. Exp. Med. Biol. 1003, 121–144 (2017).8. Hansson GK, Hermansson A. The immune system in atherosclerosis. Nat. Immunol. 12(3), 204–212 (2011). 9. Munjal A, Khandia R. Atherosclerosis: orchestrating cells and biomolecules involved in its activation and inhibiti10. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med. 352(16), 1685–1695 (2005).11. Fong LG, Parthasarathy S, Witztum JL, Steinberg D. Nonenzymatic oxidative cleavage of peptide bonds in apoprotein B-100. J. Lipid Res. 28(12), 1466–1477 (1987).12. Yoshida H, Kisugi R. Mechanisms of LDL oxidation. Clin. Chim. Acta 411(23–24), 1875–1882 (2010).13. Cinoku II, Mavragani CP, Moutsopoulos HM. Atherosclerosis: beyond the lipid storage hypothesis. The role of autoimmunity. Eur. J. Clin. Invest. 50(2), e13195 (2020).14. Gistera A, Hansson GK. The immunology of atherosclerosis. Nat. Rev. Nephrol. 13(6), 368–380 (2017)15. Fuhrman B, Volkova N, Aviram M. Oxidative stress increases the expression of the CD36 scavenger receptor and the cellular uptake of oxidized low-density lipoprotein in macrophages from atherosclerotic mice: protective role of antioxidants and of paraoxonase. Atherosclerosis 161(2), 307–316 (2002).16. Tian K, Xu Y, Sahebkar A, Xu S. CD36 in atherosclerosis: pathophysiological mechanisms and therapeutic implications. Curr. Atheroscler. Rep. 22(10), 59 (2020).17. Cochain C, Zernecke A. Macrophages in vascular inflammation and atherosclerosis. Pflugers Arch. 469(3–4), 485–499 (2017).18. Tabas I, Bornfeldt KE. Macrophage phenotype and function in different stages of atherosclerosis. Circ. Res. 118(4), 653–667 (2016).19. Dutta P, Courties G, Wei Y et al. Myocardial infarction accelerates atherosclerosis. Nature 487(7407), 325–329 (2012).20. Manthey HD, Zernecke A. Dendritic cells in atherosclerosis: functions in immune regulation and beyond. Thromb. Haemost. 106(5), 772–778 (2011).21. Packard RR, Maganto-Garcia E, Gotsman I, Tabas I, Libby P, Lichtman AH. CD11c(+) dendritic cells maintain antigen processing, presentation capabilities, and CD4(+) T-cell priming efficacy under hypercholesterolemic conditions associated with atherosclerosis. Circ. Res. 103(9), 965–973 (2008).22. Choi JH, Cheong C, Dandamudi DB et al. Flt3 signaling-dependent dendritic cells protect against atherosclerosis. Immunity 35(5), 819–831 (2011).23. Williams JW, Elvington A, Kessler S, Wohltmann M, Wu GF, Randolph GJ. B Cell-Mediated antigen presentation through MHC Class II is dispensable for atherosclerosis progression. Immunohorizons 3(1), 37–44 (2019).24. Cole JE, Park I, Ahern DJ et al. Immune cell census in murine atherosclerosis: cytometry by time of flight illuminates vascular myeloid cell diversity. Cardiovasc. Res. 114(10), 1360–1371 (2018).25. Liu P, Yu YR, Spencer JA et al. CX3CR1 deficiency impairs dendritic cell accumulation in arterial intima and reduces atherosclerotic burden. Arterioscler. Thromb. Vasc. Biol. 28(2), 243–250 (2008).26. Weber C, Meiler S, Doring Y et al. CCL17-expressing dendritic cells drive atherosclerosis by restraining regulatory T-cell homeostasis in mice. J. Clin. Invest. 121(7), 2898–2910 (2011).27. Daissormont IT, Christ A, Temmerman L et al. Plasmacytoid dendritic cells protect against atherosclerosis by tuning T-cell proliferation and activity. Circ. Res. 109(12), 1387–1395 (2011).28. Doring Y, Manthey HD, Drechsler M et al. Auto-antigenic protein-DNA complexes stimulate plasmacytoid dendritic cells to promote atherosclerosis. Circulation 125(13), 1673–1683 (2012).29. Macritchie N, Grassia G, Sabir SR et al. Plasmacytoid dendritic cells play a key role in promoting atherosclerosis in apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol 32(11), 2569–2579 (2012).30. Subramanian M, Thorp E, Hansson GK, Tabas I. Treg-mediated suppression of atherosclerosis requires MYD88 signaling in DCs. J. Clin. Invest. 123(1), 179–188 (2013).31. Gotsman I, Grabie N, Gupta R et al. Impaired regulatory T-cell response and enhanced atherosclerosis in the absence of inducible costimulatory molecule. Circulation 114(19), 2047–2055 (2006).32. Bu DX, Tarrio M, Maganto-Garcia E et al. Impairment of the programmed cell death-1 pathway increases atherosclerotic lesion development and inflammation. Arterioscler. Thromb. Vasc. Biol. 31(5), 1100–1107 (2011)33. Steinman RM, Banchereau J. Taking dendritic cells into medicine. Nature 449(7161), 419–426 (2007).34. Hermansson A, Johansson DK, Ketelhuth DF, Andersson J, Zhou X, Hansson GK. Immunotherapy with tolerogenic apolipoprotein B-100-loaded dendritic cells attenuates atherosclerosis in hypercholesterolemic mice. Circulation 123(10), 1083–1091 (2011).35. Frodermann V, van Puijvelde GH, Wierts L et al. Oxidized low-density lipoprotein-induced apoptotic dendritic cells as a novel therapy for atherosclerosis. J. Immunol. 194(5), 2208–2218 (2015)36. Fang Z, Deng Q, Hu H et al. Characteristics of immunogenic and tolerogenic dendritic cells within the arterial wall in atherosclerosis and in vitro. Int. J. Clin. Exp. Med. 7(12), 4846–4856 (2014).37. Morelli AE, Thomson AW. Tolerogenic dendritic cells and the quest for transplant tolerance. Nat. Rev. Immunol. 7(8), 610–621 (2007).38. Rutella S, Danese S, Leone G. Tolerogenic dendritic cells: cytokine modulation comes of age. Blood 108(5), 1435–1440 (2006).39. Koya T, Matsuda H, Takeda K et al. IL-10-treated dendritic cells decrease airway hyperresponsiveness and airway inflammation in mice. J. Allergy Clin. Immunol. 119(5), 1241–1250 (2007).40. van Duivenvoorde LM, Han WG, Bakker AM et al. Immunomodulatory dendritic cells inhibit Th1 responses and arthritis via different mechanisms. J. Immunol. 179(3), 1506–1515 (2007).41. Min WP, Zhou D, Ichim TE et al. Inhibitory feedback loop between tolerogenic dendritic cells and regulatory T cells in transplant tolerance. J. Immunol. 170(3), 1304–1312 (2003).42. Yang X, Yao Q, Hu X et al. Rapamycin-conditioned dendritic cells induced immune tolerance through the regulation of Treg/Th17 cells in mice. Zhonghua Yi Xue Za Zhi 95(30), 2469–2473 (2015).43. Hansson GK, Jonasson L, Holm J, Claesson-Welsh L. Class II MHC antigen expression in the atherosclerotic plaque: smooth muscle cells express HLA-DR, HLA-DQ and the invariant gamma chain. Clin. Exp. Immunol. 64(2), 261–268 (1986).44. Paulsson G, Zhou X, Tornquist E, Hansson GK. Oligoclonal T cell expansions in atherosclerotic lesions of apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 20(1), 10–17 (2000).45. Elhage R, Gourdy P, Brouchet L et al. Deleting TCR alpha beta+ or CD4+ T lymphocytes leads to opposite effects on site-specific atherosclerosis in female apolipoprotein E-deficient mice. Am. J. Pathol. 165(6), 2013–2018 (2004).46. Matsuura E, Atzeni F, Sarzi-Puttini P, Turiel M, Lopez LR, Nurmohamed MT. Is atherosclerosis an autoimmune disease? BMC Med. 12, 47 (2014).47. Ilhan F, Kalkanli ST. Atherosclerosis and the role of immune cells. World. J. Clin. Cases 3(4), 345–352 (2015)48. Smith E, Prasad KM, Butcher M et al. Blockade of interleukin-17A results in reduced atherosclerosis in apolipoprotein E-deficient mice. Circulation 121(15), 1746–1755 (2010).49. Ait-Oufella H, Salomon BL, Potteaux S et al. Natural regulatory T cells control the development of atherosclerosis in mice. Nat. Med. 12(2), 178–180 (2006).50. Zhao TX, Kostapanos M, Griffiths C et al. Low-dose interleukin-2 in patients with stable ischaemic heart disease and acute coronary syndromes (LILACS): protocol and study rationale for a randomised, double-blind, placebo-controlled, phase I/II clinical trial. BMJ Open 8(9), e022452 (2018).51. Kimura T, Kobiyama K, Winkels H et al. Regulatory CD4(+) T cells recognize major histocompatibility complex class II molecule-restricted peptide epitopes of apolipoprotein B. Circulation 138(11), 1130–1143 (2018).52. Nilsson J, Lichtman A, Tedgui A. Atheroprotective immunity and cardiovascular disease: therapeutic opportunities and challenges. J. Intern. Med. 278(5), 507–519 (2015).53. Fatkhullina AR, Peshkova IO, Koltsova EK. The role of cytokines in the development of atherosclerosis. Biochemistry 81(11), 1358–1370 (2016).54. Douna H, Amersfoort J, Schaftenaar FH et al. Bidirectional effects of IL-10(+) regulatory B cells in Ldlr(-/-) mice. Atherosclerosis 280, 118–125 (2019).55. Caligiuri G, Rudling M, Ollivier V et al. Interleukin-10 deficiency increases atherosclerosis, thrombosis, and low-density lipoproteins in apolipoprotein E knockout mice. Mol. Med. 9(1–2), 10–17 (2003).56. Ait-Oufella H, Taleb S, Mallat Z, Tedgui A. Recent advances on the role of cytokines in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 31(5), 969–979 (2011).57. Toma I, McCaffrey TA. Transforming growth factor-beta and atherosclerosis: interwoven atherogenic and atheroprotective aspects. Cell Tissue Res. 347(1), 155–175 (2012)58. Grainger DJ, Mosedale DE, Metcalfe JC, Bottinger EP. Dietary fat and reduced levels of TGFbeta1 act synergistically to promote activation of the vascular endothelium and formation of lipid lesions. J. Cell Sci. 113(Pt 13), 2355–2361 (2000).59. Mallat Z, Gojova A, Marchiol-Fournigault C et al. Inhibition of transforming growth factor-beta signaling accelerates atherosclerosis and induces an unstable plaque phenotype in mice. Circ. Res. 89(10), 930–934 (2001).60. Paigen B, Holmes PA, Mitchell D, Albee D. Comparison of atherosclerotic lesions and HDL-lipid levels in male, female, and testosterone-treated female mice from strains C57BL/6, BALB/c, and C3H. Atherosclerosis 64(2–3), 215–221 (1987).61. Piedrahita JA, Zhang SH, Hagaman JR, Oliver PM, Maeda N. Generation of mice carrying a mutant apolipoprotein E gene inactivated by gene targeting in embryonic stem cells. Proc. Natl Acad. Sci. USA 89(10), 4471–4475 (1992).62. Whitman SC. A practical approach to using mice in atherosclerosis research. Clin. Biochem. Rev. 25(1), 81–93 (2004).63. Mar´ın-Palma D TN, Urcuqui-Inchima S, Hernandez JC. Inflamacion y respuesta inmune innata: participaci ´ on de las lipoprote ´ ´ınas de alta densidad. Iatreia 30(4), 424–436 (2017).64. Yu XH, Zhang DW, Zheng XL, Tang CK. Cholesterol transport system: an integrated cholesterol transport model involved in atherosclerosis. Prog. Lipid Res. 73, 65–91 (2019).65. Zhang SH, Reddick RL, Piedrahita JA, Maeda N. Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science 258(5081), 468–471 (1992).66. Emini Veseli B, Perrotta P, De Meyer GRA et al. Animal models of atherosclerosis. Eur. J. Pharmacol. 816, 3–13 (2017).67. Bentzon JF, Falk E. Atherosclerotic lesions in mouse and man: is it the same disease? Curr. Opin. Lipidol. 21(5), 434–440 (2010).68. Bond AR, Jackson CL. The fat-fed apolipoprotein E knockout mouse brachiocephalic artery in the study of atherosclerotic plaque rupture. J. Biomed. Biotechnol. 2011, 379069 (2011).69. Yla-Herttuala S, Bentzon JF, Daemen M et al. Stabilization of atherosclerotic plaques: an update. Eur. Heart J. 34(42), 3251–3258 (2013).70. Linton MF, Hasty AH, Babaev VR, Fazio S. Hepatic apo E expression is required for remnant lipoprotein clearance in the absence of the low density lipoprotein receptor. J. Clin. Invest. 101(8), 1726–1736 (1998).71. McGettigan P, Henry D. Cardiovascular risk with nonsteroidal anti-inflammatory drugs: systematic review of population-based controlled observational studies. PLoS Med. 8(9), e1001098 (2011).72. Farooq M, Haq I, Qureshi AS. Cardiovascular risks of COX inhibition: current perspectives. Expert Opin. Pharmacother. 9(8), 1311–1319 (2008).73. Cooper R, Cutler J, Desvigne-Nickens P et al. Trends and disparities in coronary heart disease, stroke, and other cardiovascular diseases in the United States: findings of the national conference on cardiovascular disease prevention. Circulation 102(25), 3137–3147 (2000)74. Sies H, Schewe T, Heiss C, Kelm M. Cocoa polyphenols and inflammatory mediators. Am. J. Clin. Nutr. 81(Suppl. 1), 304S–312S (2005).75. Fuhrman B, Volkova N, Coleman R, Aviram M. Grape powder polyphenols attenuate atherosclerosis development in apolipoprotein E deficient (E0) mice and reduce macrophage atherogenicity. J. Nutr. 135(4), 722–728 (2005).76. Moon JK, Shibamoto T. Antioxidant assays for plant and food components. J. Agric. Food Chem. 57(5), 1655–1666 (2009).77. Park DW, Baek K, Kim JR et al. Resveratrol inhibits foam cell formation via NADPH oxidase 1- mediated reactive oxygen species and monocyte chemotactic protein-1. Exp. Mol. Med. 41(3), 171–179 (2009).78. Hodgson JM, Croft KD. Tea flavonoids and cardiovascular health. Mol. Aspects Med. 31(6), 495–502 (2010).79. Loke WM, Proudfoot JM, Hodgson JM et al. Specific dietary polyphenols attenuate atherosclerosis in apolipoprotein E-knockout mice by alleviating inflammation and endothelial dysfunction. Arterioscler. Thromb. Vasc. Biol. 30(4), 749–757 (2010).80. Hackstein H, Thomson AW. Dendritic cells: emerging pharmacological targets of immunosuppressive drugs. Nat. Rev. Immunol. 4(1), 24–34 (2004).81. Meng X, Zhang K, Li J et al. Statins induce the accumulation of regulatory T cells in atherosclerotic plaque. Mol. Med. 18, 598–605 (2012).82. Forero-Pena DA, Gutierrez FR. Statins as modulators of regulatory T-cell biology. Mediators Inflamm. 2013, 167086 (2013).83. Stemme S, Faber B, Holm J, Wiklund O, Witztum JL, Hansson GK. T lymphocytes from human atherosclerotic plaques recognize oxidized low density lipoprotein. Proc. Natl Acad. Sci. USA 92(9), 3893–3897 (1995).84. Hulthe J. Antibodies to oxidized LDL in atherosclerosis development clinical and animal studies. Clin. Chim. Acta 348(1–2), 1–8 (2004)85. Wigren M, Nilsson J, Kolbus D. Lymphocytes in atherosclerosis. Clin. Chim. Acta 413(19–20), 1562–1568 (2012)86. Palinski W, Miller E, Witztum JL. Immunization of low density lipoprotein (LDL) receptor-deficient rabbits with homologous malondialdehyde-modified LDL reduces atherogenesis. Proc. Natl Acad. Sci. USA 92(3), 821–825 (1995).87. Ameli S, Hultgardh-Nilsson A, Regnstrom J et al. Effect of immunization with homologous LDL and oxidized LDL on early atherosclerosis in hypercholesterolemic rabbits. Arterioscler. Thromb. Vasc. Biol. 16(8), 1074–1079 (1996).87. Ameli S, Hultgardh-Nilsson A, Regnstrom J et al. Effect of immunization with homologous LDL and oxidized LDL on early atherosclerosis in hypercholesterolemic rabbits. Arterioscler. Thromb. Vasc. Biol. 16(8), 1074–1079 (1996).89. Fredrikson GN, Andersson L, Soderberg I et al. Atheroprotective immunization with MDA-modified apo B-100 peptide sequences is associated with activation of Th2 specific antibody expression. Autoimmunity 38(2), 171–179 (2005).90. Chyu KY, Zhao X, Reyes OS et al. Immunization using an Apo B-100 related epitope reduces atherosclerosis and plaque inflammation in hypercholesterolemic apo E (-/-) mice. Biochem. Biophys. Res. Commun. 338(4), 1982–1989 (2005).91. Lutgens E, Atzler D, Doring Y, Duchene J, Steffens S, Weber C. Immunotherapy for cardiovascular disease. Eur. Heart J. 40(48), 3937–3946 (2019).93. Schiopu A, Bengtsson J, Soderberg I et al. Recombinant human antibodies against aldehyde-modified apolipoprotein B-100 peptide sequences inhibit atherosclerosis. Circulation 110(14), 2047–2052 (2004).94. Sakaguchi S. Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu. Rev. Immunol. 22, 531–562 (2004).95. Steffens S, Burger F, Pelli G et al. Short-term treatment with anti-CD3 antibody reduces the development and progression of atherosclerosis in mice. Circulation 114(18), 1977–1984 (2006).96. van Puijvelde GH, van Es T, van Wanrooij EJ et al. Induction of oral tolerance to HSP60 or an HSP60-peptide activates T-cell regulation and reduces atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 27(12), 2677–2683 (2007).97. van Puijvelde GH, Hauer AD, de Vos P et al. Induction of oral tolerance to oxidized low-density lipoprotein ameliorates atherosclerosis. Circulation 114(18), 1968–1976 (2006).98. Foks AC, Lichtman AH, Kuiper J. Treating atherosclerosis with regulatory T cells. Arterioscler. Thromb. Vasc. Biol. 35(2), 280–287 (2015)99. Ou HX, Guo BB, Liu Q et al. Regulatory T cells as a new therapeutic target for atherosclerosis. Acta Pharmacol. Sin. 39(8), 1249–1258 (2018).100. Munteanu A, Taddei M, Tamburini I, Bergamini E, Azzi A, Zingg JM. Antagonistic effects of oxidized low density lipoprotein and alpha-tocopherol on CD36 scavenger receptor expression in monocytes: involvement of protein kinase B and peroxisome proliferator-activated receptor-gamma. J. Biol. Chem. 281(10), 6489–6497 (2006).101. Tu YC, Lian TW, Yen JH, Chen ZT, Wu MJ. Antiatherogenic effects of kaempferol and rhamnocitrin. J. Agric. Food Chem. 55(24), 9969–9976 (2007).102. Kim HP, Park H, Son KH, Chang HW, Kang SS. Biochemical pharmacology of biflavonoids: implications for anti-inflammatory action. Arch. Pharm. Res. 31(3), 265–273 (2008).102. Kim HP, Park H, Son KH, Chang HW, Kang SS. Biochemical pharmacology of biflavonoids: implications for anti-inflammatory action. Arch. Pharm. Res. 31(3), 265–273 (2008).103. Kang Y, Xu L, Wang B, Chen A, Zheng G. Cutting edge: Immunosuppressant as adjuvant for tolerogenic immunization. J. Immunol. 180(8), 5172–5176 (2008).104. Ospina-Quintero L, Jaramillo JC, Tabares-Guevara JH, Ramirez-Pineda JR. Reformulating small molecules for cardiovascular disease immune intervention: low-dose combined vitamin D/dexamethasone promotes IL-10 production and atheroprotection in dyslipidemic Mice. Front. Immunol. 11, 743 (2020).105. Yi S, Zhang X, Sangji MH et al. Surface engineered polymersomes for enhanced modulation of dendritic cells during cardiovascular immunotherapy. Adv. Funct. Mater. 29(42), 1904399 (2019).106. Rogers NM, Kireta S, Coates PT. Curcumin induces maturation-arrested dendritic cells that expand regulatory T cells in vitro and in vivo. Clin. Exp. Immunol. 162(3), 460–473 (2010).107. Aziz MNM, Hussin Y, Che Rahim NF et al. Curcumin analog DK1 induces apoptosis in human osteosarcoma cells in vitro through mitochondria-dependent signaling Pathway. Molecules 23(1), 75 (2018).108. Dutta S, Padhye S, Priyadarsini KI, Newton C. Antioxidant and antiproliferative activity of curcumin semicarbazone. Bioorg. Med. Chem. Lett. 15(11), 2738–2744 (2005).109. He Y, Yue Y, Zheng X, Zhang K, Chen S, Du Z. Curcumin, inflammation, and chronic diseases: how are they linked? Molecules 20(5), 9183–9213 (2015).110. Kim M, Kim Y. Hypocholesterolemic effects of curcumin via up-regulation of cholesterol 7a-hydroxylase in rats fed a high fat diet. Nutr. Res. Pract. 4(3), 191–195 (2010).111. Ramirez-Tortosa MC, Mesa MD, Aguilera MC et al. Oral administration of a turmeric extract inhibits LDL oxidation and has hypocholesterolemic effects in rabbits with experimental atherosclerosis. Atherosclerosis 147(2), 371–378 (1999).112. Zhao JF, Ching LC, Huang YC et al. Molecular mechanism of curcumin on the suppression of cholesterol accumulation in macrophage foam cells and atherosclerosis. Mol. Nutr. Food Res. 56(5), 691–701 (2012).113. Yang YS, Su YF, Yang HW, Lee YH, Chou JI, Ueng KC. Lipid-lowering effects of curcumin in patients with metabolic syndrome: a randomized, double-blind, placebo-controlled trial. Phytother. Res. 28(12), 1770–1777 (2014).114. Mahfouz MM, Zhou Q, Kummerow FA. Effect of curcumin on LDL oxidation in vitro, and lipid peroxidation and antioxidant enzymes in cholesterol fed rabbits. Int. J. Vitam. Nutr. Res. 81(6), 378–391 (2011).115. Kou MC, Chiou SY, Weng CY, Wang L, Ho CT, Wu MJ. Curcuminoids distinctly exhibit antioxidant activities and regulate expression of scavenger receptors and heme oxygenase-1. Mol. Nutr. Food Res. 57(9), 1598–1610 (2013).115. Kou MC, Chiou SY, Weng CY, Wang L, Ho CT, Wu MJ. Curcuminoids distinctly exhibit antioxidant activities and regulate expression of scavenger receptors and heme oxygenase-1. Mol. Nutr. Food Res. 57(9), 1598–1610 (2013).116. Sahebkar A. Are curcuminoids effective C-reactive protein-lowering agents in clinical practice? Evidence from a meta-analysis. Phytother. Res. 28(5), 633–642 (2014).117. Ranjan D, Chen C, Johnston TD, Jeon H, Nagabhushan M. Curcumin inhibits mitogen stimulated lymphocyte proliferation, NFkappaB activation, and IL-2 signaling. J. Surg. Res. 121(2), 171–177 (2004).117. Ranjan D, Chen C, Johnston TD, Jeon H, Nagabhushan M. Curcumin inhibits mitogen stimulated lymphocyte proliferation, NFkappaB activation, and IL-2 signaling. J. Surg. Res. 121(2), 171–177 (2004).118. Gong Z, Zhou J, Li H et al. Curcumin suppresses NLRP3 inflammasome activation and protects against LPS-induced septic shock. Mol. Nutr. Food Res. 59(11), 2132–2142 (2015).119. Duewell P, Kono H, Rayner KJ et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464(7293), 1357–1361 (2010).120. Yin H, Guo Q, Li X et al. Curcumin suppresses IL-1beta secretion and prevents inflammation through inhibition of the NLRP3 inflammasome. J. Immunol. 200(8), 2835–2846 (2018)121. Ridker PM, Everett BM, Thuren T et al. Anti-inflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377(12), 1119–1131 (2017).PublicationORIGINALReview Athero-2021.pdfReview Athero-2021.pdfapplication/pdf8380267https://repository.ucc.edu.co/bitstreams/81c9d524-3924-4a84-bd80-b63260304e88/download206955bf70f64583cd5ca55666808853MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repository.ucc.edu.co/bitstreams/14b2ffc2-5150-4c7d-b63b-0c36f63e867e/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILReview Athero-2021.pdf.jpgReview Athero-2021.pdf.jpgGenerated Thumbnailimage/jpeg5598https://repository.ucc.edu.co/bitstreams/0ed68d85-fbdd-49ca-95ce-ff0ead58665a/download19d90eb2ae1a2cd736bb5785e0e04d46MD53TEXTReview Athero-2021.pdf.txtReview Athero-2021.pdf.txtExtracted texttext/plain74691https://repository.ucc.edu.co/bitstreams/22069dc1-1c13-4c21-a5d1-1f110a2f095e/download5ed4b58aed16067c55b8eb3d6d4e3a22MD5420.500.12494/45931oai:repository.ucc.edu.co:20.500.12494/459312024-08-20 16:23:51.044open.accesshttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=