Computational modelling to optimized parameter's build of a Terahertz photoconductive antenna

El siguiente trabajo presenta la simulación multifísica de una antena fotoconductora (PCA) con rejillas de contacto plasmonica añadiendo una capa de Nitruro de Silicio (Si3N4) para mejorar las propiedades de absorción óptica de hasta un 90% de la luz incidente, además, se incorpora un arreglo de nan...

Full description

Autores:
González Galindo, Diana Katherine
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2019
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/10224
Acceso en línea:
https://hdl.handle.net/20.500.12494/10224
Palabra clave:
Nanostructure
COMSOL Multiphysic
Photoconductive Antenna
Plasmons
TeraHertz Radiation
Nanostructure
COMSOL Multiphysic
Photoconductive Antenna
Plasmons
TeraHertz Radiation
Rights
openAccess
License
Atribución – No comercial – Sin Derivar
id COOPER2_b6ee9ae9309b30fc0bbee352aaa14d64
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/10224
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.spa.fl_str_mv Computational modelling to optimized parameter's build of a Terahertz photoconductive antenna
title Computational modelling to optimized parameter's build of a Terahertz photoconductive antenna
spellingShingle Computational modelling to optimized parameter's build of a Terahertz photoconductive antenna
Nanostructure
COMSOL Multiphysic
Photoconductive Antenna
Plasmons
TeraHertz Radiation
Nanostructure
COMSOL Multiphysic
Photoconductive Antenna
Plasmons
TeraHertz Radiation
title_short Computational modelling to optimized parameter's build of a Terahertz photoconductive antenna
title_full Computational modelling to optimized parameter's build of a Terahertz photoconductive antenna
title_fullStr Computational modelling to optimized parameter's build of a Terahertz photoconductive antenna
title_full_unstemmed Computational modelling to optimized parameter's build of a Terahertz photoconductive antenna
title_sort Computational modelling to optimized parameter's build of a Terahertz photoconductive antenna
dc.creator.fl_str_mv González Galindo, Diana Katherine
dc.contributor.advisor.none.fl_str_mv Corredor Camargo, Oscar Fabian
dc.contributor.author.none.fl_str_mv González Galindo, Diana Katherine
dc.subject.spa.fl_str_mv Nanostructure
COMSOL Multiphysic
Photoconductive Antenna
Plasmons
TeraHertz Radiation
topic Nanostructure
COMSOL Multiphysic
Photoconductive Antenna
Plasmons
TeraHertz Radiation
Nanostructure
COMSOL Multiphysic
Photoconductive Antenna
Plasmons
TeraHertz Radiation
dc.subject.other.spa.fl_str_mv Nanostructure
COMSOL Multiphysic
Photoconductive Antenna
Plasmons
TeraHertz Radiation
description El siguiente trabajo presenta la simulación multifísica de una antena fotoconductora (PCA) con rejillas de contacto plasmonica añadiendo una capa de Nitruro de Silicio (Si3N4) para mejorar las propiedades de absorción óptica de hasta un 90% de la luz incidente, además, se incorpora un arreglo de nano estructuras cónicas compuestas de Óxido de Zinc (ZnO) que actúan como concentradores ópticos sobre la capa del substrato semiconductor de LT - GaAs para aumentar el campo local y de esta manera mitigar las principales desventajas de este tipo de emisión THz como lo son la baja eficiencia cuántica y la absorción óptica sobre el substrato.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-05-21T18:05:19Z
dc.date.available.none.fl_str_mv 2019-05-21T18:05:19Z
dc.date.issued.none.fl_str_mv 2019-05-18
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12494/10224
dc.identifier.bibliographicCitation.spa.fl_str_mv Gonzalez Galindo, D. K (2019). Computational modelling to optimized parameter´s build of a Terahertz photoconductive antenna. (Trabajo de Pregado). Universidad Cooperativa de Colombia, sede Bogotá.
url https://hdl.handle.net/20.500.12494/10224
identifier_str_mv Gonzalez Galindo, D. K (2019). Computational modelling to optimized parameter´s build of a Terahertz photoconductive antenna. (Trabajo de Pregado). Universidad Cooperativa de Colombia, sede Bogotá.
dc.relation.conferenceplace.spa.fl_str_mv Universidad Cooperativa de Colombia, Sede Bogotá
dc.relation.references.spa.fl_str_mv N. Burford and M. El-Shenawee, “Computational modeling of plasmonic thin-film terahertz photoconductive antennas,” J. Opt. Soc. Am. B, vol. 33, no. 4, p. 748, 2016.
C. Criollo and A. G. Avila, “Simulation of photoconductive antennas for terahertz radiation,” Ing. e Investig., vol. 35, no. 1, pp. 60–64, Mar. 2015.
J. M. Jornet and I. F. Akyildiz, “Graphene-based Plasmonic Nano-Antenna for Terahertz Band Communication in Nanonetworks,” IEEE J. Sel. AREAS Commun., vol. 2, no. 12, 2013.
J. F. Federici et al., “THz imaging and sensing for security applications - Explosives, weapons and drugs,” Semicond. Sci. Technol., vol. 20, no. 7, 2005.
1. Introduction,” vol. 98, pp. 9–14, 1986.
K. Moon et al., “Bias field tailored plasmonic nano-electrode for high-power terahertz photonic devices,” Sci. Rep., vol. 5, no. 1, p. 13817, Nov. 2015.
L. Duvillaret, F. Garet, J. F. Roux, and J. L. Coutaz, “Analytical modeling and optimization of terahertz time-domain spectroscopy experiments using photoswitches as antennas,” IEEE J. Sel. Top. Quantum Electron, vol. 7, no. 4, pp. 615–623, 2001.
C. Rullière, Femtosecond Laser Pulses: Principles and Experiments (Second Edition). 2003.
L. R. M. A. E, “Sobre la función dieléctrica en sólidos I Introducción 3 Osciladores clásicos en un sólido Part I Introducción,” pp. 1–46, 2013.
S. H. Yang, M. R. Hashemi, C. W. Berry, and M. Jarrahi, “7.5% Optical-to-terahertz conversion efficiency offered by photoconductive emitters with three-dimensional plasmonic contact electrodes,” IEEE Trans. Terahertz Sci. Technol., vol. 4, no. 5, pp. 575–581, 2014.
V. G. Bespalov et al., “Methods of generating superbroadband terahertz pulses with femtosecond lasers,” J. Opt. Technol., vol. 75, no. 10, p. 636, 2010.
N. T. Yardimci, S. H. Yang, C. W. Berry, and M. Jarrahi, “High-power terahertz generation using large-area plasmonic photoconductive emitters,” IEEE Trans. Terahertz Sci. Technol., vol. 5, no. 2, pp. 223–229, 2015.
E. Atn, A. Eroglu, U. M. Ga, and A. Ergl, “Investigation of nanoantenna geometries for maximum field enhancements at optical frequencies,” Prog. Electromagn. Res. Symp., pp. 3673– 3680, 2017.
P. Johari and J. M. Jornet, “Packet size optimization for wireless nanosensor networks in the Terahertz band,” 2016 IEEE Int. Conf. Commun. ICC 2016, 2016.
L. Hou, S. Chen, Z. Yan, and W. Shi, “Terahertz radiation generated by laser induced plasma in photoconductive antenna,” IEEE J. Quantum Electron., vol. 49, no. 9, pp. 785–789, 2013.
C. W. Berry, M. R. Hashemi, and M. Jarrahi, “Generation of high power pulsed terahertz radiation using a plasmonic photoconductive emitter array with logarithmic spiral antennas,” Appl. Phys. Lett., vol. 104, no. 8, 2014.
P. U. Jepsen, R. H. Jacobsen, and S. R. Keiding, “Generation and detection of terahertz pulses from biased semiconductor antennas,” J. Opt. Soc. Am. B, vol. 13, no. 11, p. 2424, 2008.
Y.-S. Lee, “Generation and Detection of Broadband Terahertz Pulses,” Princ. Terahertz Sci. Technol., vol. 2, pp. 1–66, 2008.
M. Bashirpour, M. Forouzmehr, S. E. Hosseininejad, M. Kolahdouz, and M. Neshat, “Improvement of Terahertz Photoconductive Antenna using Optical Antenna Array of ZnO Nanorods,” Sci. Rep., vol. 9, no. 1, p. 1414, Dec. 2019.
C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun., vol. 4, pp. 1610–1622, 2013.
D. Turan, S. C. Corzo-Garcia, E. Castro-Camus, and M. Jarrahi, “Impact of metallization on the performance of plasmonic photoconductive terahertz emitters,” IEEE MTT-S Int. Microw. Symp. Dig., pp. 575–577, 2017.
Y.-S. Lee, “Basic Theories of Terahertz Interaction with Matter,” Princ. Terahertz Sci. Technol., pp. 1–40, 2008.
N. T. Yardimci and M. Jarrahi, “Nanostructure-Enhanced Photoconductive Terahertz Emission and Detection,” Small, vol. 14, no. 44, pp. 1–14, 2018.
H. W. Hübers, M. F. Kimmitt, N. Hiromoto, and E. Bründermann, “Terahertz spectroscopy: System and sensitivity considerations,” IEEE Trans. Terahertz Sci. Technol., vol. 1, no. 1, pp. 321–331, 2011.
dc.rights.license.none.fl_str_mv Atribución – No comercial – Sin Derivar
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución – No comercial – Sin Derivar
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería de Telecomunicaciones, Bogotá
dc.publisher.program.spa.fl_str_mv Ingeniería de Telecomunicaciones
dc.publisher.place.spa.fl_str_mv Bogotá
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/fb62d6e2-97ee-4706-9c40-e60a6459e0ea/download
https://repository.ucc.edu.co/bitstreams/6d7ce822-5fe7-4720-96e6-d8ebb6f3e14e/download
https://repository.ucc.edu.co/bitstreams/f980d6c0-390e-4cdc-a804-331ba388a0c8/download
https://repository.ucc.edu.co/bitstreams/d525f37c-a301-4b8b-aee1-3148b578b7ce/download
https://repository.ucc.edu.co/bitstreams/2dbff4b0-5b58-4d42-be62-d222da161a6a/download
https://repository.ucc.edu.co/bitstreams/6d25a361-5160-4ec2-a663-373b1e9124e2/download
https://repository.ucc.edu.co/bitstreams/0caf966e-bda7-4cc2-8ebc-c191e9d42b07/download
bitstream.checksum.fl_str_mv 99afd2dfb204c95fea7c9f25dce37b0a
6aa51fe298bcb2579591fe7b4d9f3102
3bce4f7ab09dfc588f126e1e36e98a45
a0cdb73209ee81c9c6ae0e4bed386410
acf00e16c98502a15c1336a35ad95b48
4072561a3ca22e8ba0c21ac6f45b00ba
6d93d3216dc4a7f5df47d4876fbec4d3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808788921583140864
spelling Corredor Camargo, Oscar FabianGonzález Galindo, Diana Katherine2019-05-21T18:05:19Z2019-05-21T18:05:19Z2019-05-18https://hdl.handle.net/20.500.12494/10224Gonzalez Galindo, D. K (2019). Computational modelling to optimized parameter´s build of a Terahertz photoconductive antenna. (Trabajo de Pregado). Universidad Cooperativa de Colombia, sede Bogotá.El siguiente trabajo presenta la simulación multifísica de una antena fotoconductora (PCA) con rejillas de contacto plasmonica añadiendo una capa de Nitruro de Silicio (Si3N4) para mejorar las propiedades de absorción óptica de hasta un 90% de la luz incidente, además, se incorpora un arreglo de nano estructuras cónicas compuestas de Óxido de Zinc (ZnO) que actúan como concentradores ópticos sobre la capa del substrato semiconductor de LT - GaAs para aumentar el campo local y de esta manera mitigar las principales desventajas de este tipo de emisión THz como lo son la baja eficiencia cuántica y la absorción óptica sobre el substrato.The following work presents the multiphysical simulation of a photoconductive antenna (PCA) with plasmonic contact gratings by adding a layer of Silicon Nitride (Si3N4) to improve the optical absorption properties of up to 90% of the incident light. an arrangement of conical nano structures composed of Zinc Oxide (ZnO) that act as optical concentrators on the semiconductor substrate layer of LT - GaAs to increase the local field and in this way mitigate the main disadvantages of this type of THz emission as they are the low quantum efficiency and the optical absorption on the substrate, finally obtaining with this novel design a Thz range of between 0.1 to 2 THz demonstrating that with this type of structure the electric field has a greater depth improving the THz radiation.1. Resumen. -- 2. Abstract. -- 3. Introducción. -- 4. Modelo antena fotoconductora con contacto plasmonico. -- 5. Diseño Propuesto. -- 6. Resultados y Conclusiones. -- 7. Referencias.diana.gonzalezga@campusucc.edu.coUniversidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería de Telecomunicaciones, BogotáIngeniería de TelecomunicacionesBogotáNanostructureCOMSOL MultiphysicPhotoconductive AntennaPlasmonsTeraHertz RadiationNanostructureCOMSOL MultiphysicPhotoconductive AntennaPlasmonsTeraHertz RadiationComputational modelling to optimized parameter's build of a Terahertz photoconductive antennaTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionAtribución – No comercial – Sin Derivarinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Universidad Cooperativa de Colombia, Sede BogotáN. Burford and M. El-Shenawee, “Computational modeling of plasmonic thin-film terahertz photoconductive antennas,” J. Opt. Soc. Am. B, vol. 33, no. 4, p. 748, 2016.C. Criollo and A. G. Avila, “Simulation of photoconductive antennas for terahertz radiation,” Ing. e Investig., vol. 35, no. 1, pp. 60–64, Mar. 2015.J. M. Jornet and I. F. Akyildiz, “Graphene-based Plasmonic Nano-Antenna for Terahertz Band Communication in Nanonetworks,” IEEE J. Sel. AREAS Commun., vol. 2, no. 12, 2013.J. F. Federici et al., “THz imaging and sensing for security applications - Explosives, weapons and drugs,” Semicond. Sci. Technol., vol. 20, no. 7, 2005.1. Introduction,” vol. 98, pp. 9–14, 1986.K. Moon et al., “Bias field tailored plasmonic nano-electrode for high-power terahertz photonic devices,” Sci. Rep., vol. 5, no. 1, p. 13817, Nov. 2015.L. Duvillaret, F. Garet, J. F. Roux, and J. L. Coutaz, “Analytical modeling and optimization of terahertz time-domain spectroscopy experiments using photoswitches as antennas,” IEEE J. Sel. Top. Quantum Electron, vol. 7, no. 4, pp. 615–623, 2001.C. Rullière, Femtosecond Laser Pulses: Principles and Experiments (Second Edition). 2003.L. R. M. A. E, “Sobre la función dieléctrica en sólidos I Introducción 3 Osciladores clásicos en un sólido Part I Introducción,” pp. 1–46, 2013.S. H. Yang, M. R. Hashemi, C. W. Berry, and M. Jarrahi, “7.5% Optical-to-terahertz conversion efficiency offered by photoconductive emitters with three-dimensional plasmonic contact electrodes,” IEEE Trans. Terahertz Sci. Technol., vol. 4, no. 5, pp. 575–581, 2014.V. G. Bespalov et al., “Methods of generating superbroadband terahertz pulses with femtosecond lasers,” J. Opt. Technol., vol. 75, no. 10, p. 636, 2010.N. T. Yardimci, S. H. Yang, C. W. Berry, and M. Jarrahi, “High-power terahertz generation using large-area plasmonic photoconductive emitters,” IEEE Trans. Terahertz Sci. Technol., vol. 5, no. 2, pp. 223–229, 2015.E. Atn, A. Eroglu, U. M. Ga, and A. Ergl, “Investigation of nanoantenna geometries for maximum field enhancements at optical frequencies,” Prog. Electromagn. Res. Symp., pp. 3673– 3680, 2017.P. Johari and J. M. Jornet, “Packet size optimization for wireless nanosensor networks in the Terahertz band,” 2016 IEEE Int. Conf. Commun. ICC 2016, 2016.L. Hou, S. Chen, Z. Yan, and W. Shi, “Terahertz radiation generated by laser induced plasma in photoconductive antenna,” IEEE J. Quantum Electron., vol. 49, no. 9, pp. 785–789, 2013.C. W. Berry, M. R. Hashemi, and M. Jarrahi, “Generation of high power pulsed terahertz radiation using a plasmonic photoconductive emitter array with logarithmic spiral antennas,” Appl. Phys. Lett., vol. 104, no. 8, 2014.P. U. Jepsen, R. H. Jacobsen, and S. R. Keiding, “Generation and detection of terahertz pulses from biased semiconductor antennas,” J. Opt. Soc. Am. B, vol. 13, no. 11, p. 2424, 2008.Y.-S. Lee, “Generation and Detection of Broadband Terahertz Pulses,” Princ. Terahertz Sci. Technol., vol. 2, pp. 1–66, 2008.M. Bashirpour, M. Forouzmehr, S. E. Hosseininejad, M. Kolahdouz, and M. Neshat, “Improvement of Terahertz Photoconductive Antenna using Optical Antenna Array of ZnO Nanorods,” Sci. Rep., vol. 9, no. 1, p. 1414, Dec. 2019.C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun., vol. 4, pp. 1610–1622, 2013.D. Turan, S. C. Corzo-Garcia, E. Castro-Camus, and M. Jarrahi, “Impact of metallization on the performance of plasmonic photoconductive terahertz emitters,” IEEE MTT-S Int. Microw. Symp. Dig., pp. 575–577, 2017.Y.-S. Lee, “Basic Theories of Terahertz Interaction with Matter,” Princ. Terahertz Sci. Technol., pp. 1–40, 2008.N. T. Yardimci and M. Jarrahi, “Nanostructure-Enhanced Photoconductive Terahertz Emission and Detection,” Small, vol. 14, no. 44, pp. 1–14, 2018.H. W. Hübers, M. F. Kimmitt, N. Hiromoto, and E. Bründermann, “Terahertz spectroscopy: System and sensitivity considerations,” IEEE Trans. Terahertz Sci. Technol., vol. 1, no. 1, pp. 321–331, 2011.PublicationORIGINALGonzalezGalindo_2019_Terahertz_nanoantena_fotoconductora_modelamiento_Articuloinvestigación.pdfGonzalezGalindo_2019_Terahertz_nanoantena_fotoconductora_modelamiento_Articuloinvestigación.pdfArticulo de Investigacionapplication/pdf500944https://repository.ucc.edu.co/bitstreams/fb62d6e2-97ee-4706-9c40-e60a6459e0ea/download99afd2dfb204c95fea7c9f25dce37b0aMD51GonzalezGalindo_2019_Terahertz_nanoantena_fotoconductora_modelamiento_Licenciauso.pdfGonzalezGalindo_2019_Terahertz_nanoantena_fotoconductora_modelamiento_Licenciauso.pdfLicencia de usoapplication/pdf158159https://repository.ucc.edu.co/bitstreams/6d7ce822-5fe7-4720-96e6-d8ebb6f3e14e/download6aa51fe298bcb2579591fe7b4d9f3102MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/f980d6c0-390e-4cdc-a804-331ba388a0c8/download3bce4f7ab09dfc588f126e1e36e98a45MD53THUMBNAILGonzalezGalindo_2019_Terahertz_nanoantena_fotoconductora_modelamiento_Articuloinvestigación.pdf.jpgGonzalezGalindo_2019_Terahertz_nanoantena_fotoconductora_modelamiento_Articuloinvestigación.pdf.jpgGenerated Thumbnailimage/jpeg6418https://repository.ucc.edu.co/bitstreams/d525f37c-a301-4b8b-aee1-3148b578b7ce/downloada0cdb73209ee81c9c6ae0e4bed386410MD54GonzalezGalindo_2019_Terahertz_nanoantena_fotoconductora_modelamiento_Licenciauso.pdf.jpgGonzalezGalindo_2019_Terahertz_nanoantena_fotoconductora_modelamiento_Licenciauso.pdf.jpgGenerated Thumbnailimage/jpeg5271https://repository.ucc.edu.co/bitstreams/2dbff4b0-5b58-4d42-be62-d222da161a6a/downloadacf00e16c98502a15c1336a35ad95b48MD55TEXTGonzalezGalindo_2019_Terahertz_nanoantena_fotoconductora_modelamiento_Articuloinvestigación.pdf.txtGonzalezGalindo_2019_Terahertz_nanoantena_fotoconductora_modelamiento_Articuloinvestigación.pdf.txtExtracted texttext/plain20243https://repository.ucc.edu.co/bitstreams/6d25a361-5160-4ec2-a663-373b1e9124e2/download4072561a3ca22e8ba0c21ac6f45b00baMD56GonzalezGalindo_2019_Terahertz_nanoantena_fotoconductora_modelamiento_Licenciauso.pdf.txtGonzalezGalindo_2019_Terahertz_nanoantena_fotoconductora_modelamiento_Licenciauso.pdf.txtExtracted texttext/plain6https://repository.ucc.edu.co/bitstreams/0caf966e-bda7-4cc2-8ebc-c191e9d42b07/download6d93d3216dc4a7f5df47d4876fbec4d3MD5720.500.12494/10224oai:repository.ucc.edu.co:20.500.12494/102242024-08-10 22:04:57.861open.accesshttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo=