Substitutions in Spike and Nucleocapsid proteins of SARS-CoV-2 circulating in South America

SARS-CoV-2 is a new member of the genus Betacoronavirus, responsible for the COVID-19 pandemic. The virus crossed the species barrier and established in the human population taking advantage of the spike protein high affinity for the ACE receptor to infect the lower respiratory tract. The Nucleocaps...

Full description

Autores:
Franco Muñoz, Carlos
Laiton Donato, Katherine
Wiesner, Magdalena
Escandón, Patricia
Usme Ciro, José Aldemar
Franco Sierra, Nicolas D.
Flórez Sánchez, Astrid C.
Gómez Rangel, Sergio
Rodríguez Calderon, Luis D.
Barbosa Ramirez, Juliana
Ospitia Baez, Erika
Walteros, Diana Marcela
Ospina Martínez, Martha L.
Mercado Reyes, Marcela
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/32681
Acceso en línea:
https://hdl.handle.net/20.500.12494/32681
Palabra clave:
SARS-CoV-2
Espícula
Nucleocapside
Sudamérica
SARS-CoV-2
Spike
Nucleocapsid
South America
Non-synonymous substitutions
Sustituciones no sinónimas
Rights
openAccess
License
Atribución
id COOPER2_b68962f5c41c927a26142a3fa2ef15a8
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/32681
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.spa.fl_str_mv Substitutions in Spike and Nucleocapsid proteins of SARS-CoV-2 circulating in South America
title Substitutions in Spike and Nucleocapsid proteins of SARS-CoV-2 circulating in South America
spellingShingle Substitutions in Spike and Nucleocapsid proteins of SARS-CoV-2 circulating in South America
SARS-CoV-2
Espícula
Nucleocapside
Sudamérica
SARS-CoV-2
Spike
Nucleocapsid
South America
Non-synonymous substitutions
Sustituciones no sinónimas
title_short Substitutions in Spike and Nucleocapsid proteins of SARS-CoV-2 circulating in South America
title_full Substitutions in Spike and Nucleocapsid proteins of SARS-CoV-2 circulating in South America
title_fullStr Substitutions in Spike and Nucleocapsid proteins of SARS-CoV-2 circulating in South America
title_full_unstemmed Substitutions in Spike and Nucleocapsid proteins of SARS-CoV-2 circulating in South America
title_sort Substitutions in Spike and Nucleocapsid proteins of SARS-CoV-2 circulating in South America
dc.creator.fl_str_mv Franco Muñoz, Carlos
Laiton Donato, Katherine
Wiesner, Magdalena
Escandón, Patricia
Usme Ciro, José Aldemar
Franco Sierra, Nicolas D.
Flórez Sánchez, Astrid C.
Gómez Rangel, Sergio
Rodríguez Calderon, Luis D.
Barbosa Ramirez, Juliana
Ospitia Baez, Erika
Walteros, Diana Marcela
Ospina Martínez, Martha L.
Mercado Reyes, Marcela
dc.contributor.author.none.fl_str_mv Franco Muñoz, Carlos
Laiton Donato, Katherine
Wiesner, Magdalena
Escandón, Patricia
Usme Ciro, José Aldemar
Franco Sierra, Nicolas D.
Flórez Sánchez, Astrid C.
Gómez Rangel, Sergio
Rodríguez Calderon, Luis D.
Barbosa Ramirez, Juliana
Ospitia Baez, Erika
Walteros, Diana Marcela
Ospina Martínez, Martha L.
Mercado Reyes, Marcela
dc.subject.spa.fl_str_mv SARS-CoV-2
Espícula
Nucleocapside
Sudamérica
topic SARS-CoV-2
Espícula
Nucleocapside
Sudamérica
SARS-CoV-2
Spike
Nucleocapsid
South America
Non-synonymous substitutions
Sustituciones no sinónimas
dc.subject.other.spa.fl_str_mv SARS-CoV-2
Spike
Nucleocapsid
South America
Non-synonymous substitutions
Sustituciones no sinónimas
description SARS-CoV-2 is a new member of the genus Betacoronavirus, responsible for the COVID-19 pandemic. The virus crossed the species barrier and established in the human population taking advantage of the spike protein high affinity for the ACE receptor to infect the lower respiratory tract. The Nucleocapsid (N) and Spike (S) are highly immunogenic structural proteins and most commercial COVID-19 diagnostic assays target these proteins. In anunpredictable epidemic, it is essential to know about their genetic variability. The objective of this study was to describe the substitution frequency of the S and N proteins of SARS-CoV-2 in South America. A total of 504 amino acid and nucleotide sequences of the S and N proteins of SARS-CoV-2 from seven South American countries (Argentina, Brazil, Chile, Ecuador, Peru, Uruguay, and Colombia), reported as of June 3, and corresponding to samples collected between March and April 2020, were compared through substitution matrices using the Muscle algorithm. Forty-three sequences from 13 Colombian departments were obtained in this study using the Oxford Nanopore and Illumina MiSeq technologies, following the amplicon-based ARTIC network protocol. The substitutions D614G in S and R203K/G204R in N were the most frequent in South America, observed in 83% and 34% of the sequences respectively. Strikingly, genomes with the conserved position D614 were almost completely replaced by genomes with the G614 substitution between March to April 2020. A similar replacement pattern was observed with R203K/G204R although more marked in Chile, Argentina and Brazil, suggesting similar introduction history and/or control strategies of SARS-CoV-2 in these countries. It is necessary to continue with the genomic surveillance of S and N proteins during the SARS-CoV-2 pandemic as this information can be useful for developing vaccines, therapeutics and diagnostic tests.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020-09-17
dc.date.accessioned.none.fl_str_mv 2021-01-20T20:53:10Z
dc.date.available.none.fl_str_mv 2021-01-20T20:53:10Z
dc.type.none.fl_str_mv Artículo
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 1567-1348
dc.identifier.uri.spa.fl_str_mv 10.1016/j.meegid.2020.104557
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12494/32681
dc.identifier.bibliographicCitation.spa.fl_str_mv Franco-Muñoz, C., Álvarez-Díaz, D. A., Laiton-Donato, K., Wiesner, M., Escandón, P., Usme-Ciro, J. A., Franco-Sierra, N. D., Flórez-Sánchez, A. C., Gómez-Rangel, S., Rodríguez-Calderon, L. D., Barbosa-Ramirez, J., Ospitia-Baez, E., Walteros, D. M., Ospina-Martinez, M. L., & Mercado-Reyes, M. (2020). Substitutions in Spike and Nucleocapsid proteins of SARS-CoV-2 circulating in South America. Infection, Genetics and Evolution: Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 85, 104557.
identifier_str_mv 1567-1348
10.1016/j.meegid.2020.104557
Franco-Muñoz, C., Álvarez-Díaz, D. A., Laiton-Donato, K., Wiesner, M., Escandón, P., Usme-Ciro, J. A., Franco-Sierra, N. D., Flórez-Sánchez, A. C., Gómez-Rangel, S., Rodríguez-Calderon, L. D., Barbosa-Ramirez, J., Ospitia-Baez, E., Walteros, D. M., Ospina-Martinez, M. L., & Mercado-Reyes, M. (2020). Substitutions in Spike and Nucleocapsid proteins of SARS-CoV-2 circulating in South America. Infection, Genetics and Evolution: Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 85, 104557.
url https://hdl.handle.net/20.500.12494/32681
dc.relation.isversionof.spa.fl_str_mv https://www.sciencedirect.com/science/article/abs/pii/S1567134820303889?via%3Dihub
dc.relation.ispartofjournal.spa.fl_str_mv Infection, Genetics and Evolution
dc.relation.references.spa.fl_str_mv Álvarez-Díaz, D.A., Franco-Muñoz, C., Laiton-Donato, K., Usme-Ciro, J.A., Franco-Sierra, N.D., Flórez-Sánchez, A.C., Gómez-Rangel, S., Rodríguez-Calderon, L.D., BarbosaRamirez, J., Ospitia-Baez, E., Walteros, D.M., Ospina-Martinez, M.L., Mercado-Reyes, M., 2020. Molecular analysis of several in-house rRT-PCR protocols for SARS-CoV-2 detection in the context of genetic variability of the virus in Colombia. Infect. Genet. Evol. 84, 104390.
Bartolini, B., Rueca, M., Gruber, C.E.M., Messina, F., Carletti, F., Giombini, E., Lalle, E., Bordi, L., Matusali, G., Colavita, F., Castilletti, C., Vairo, F., Ippolito, G., Capobianchi, M.R., Di Caro, A., 2020. SARS-CoV-2 phylogenetic analysis, Lazio region, Italy, February–March 2020. Emerg. Infect. Dis. 26.
Becerra-Flores, M., Cardozo, T., 2020. SARS-CoV-2 viral spike G614 mutation exhibits higher case fatality rate. Int. J. Clin. Pract. 74, e13525.
Bhattacharyya, C., Das, C., Ghosh, A., Singh, A.K., Mukherjee, S., Majumder, P.P., Basu, A., Biswas, N.K., 2020. Global Spread of SARS-CoV-2 Subtype with Spike Protein Mutation D614G is Shaped by Human Genomic Variations that Regulate Expression of TMPRSS2 and MX1 Genes. bioRxiv.
brian-jgi, 2020. BBMap Short Read Aligner, and Other Bioinformatic Tools.
Brufsky, A., 2020. Distinct viral clades of SARS-CoV-2: implications for modeling of viral spread. J. Med. Virol. 92, 1386–1390.
Corman, V.M., Landt, O., Kaiser, M., Molenkamp, R., Meijer, A., Chu, D.K., Bleicker, T., Brünink, S., Schneider, J., Schmidt, M.L., Mulders, D.G., Haagmans, B.L., van der Veer, B., van den Brink, S., Wijsman, L., Goderski, G., Romette, J.-L., Ellis, J., Zambon, M., Peiris, M., Goossens, H., Reusken, C., Koopmans, M.P., Drosten, C., 2020. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surv. 25, 2000045.
Du, L., He, Y., Zhou, Y., Liu, S., Zheng, B.-J., Jiang, S., 2009. The spike protein of SARSCoV—a target for vaccine and therapeutic development. Nat. Rev. Microbiol. 7, 226–236.
Edgar, R.C., 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797.
gob.br, 2020. Coronavirus COVID-19.
Gupta, A.M., Mandal, S., 2020. Loss of Epitopes from SARS-Cov-2 Proteins for Non-synonymous Mutations: A Potential Global Threat. OSF Preprints.
He, X., Lau, E.H., Wu, P., Deng, X., Wang, J., Hao, X., Lau, Y.C., Wong, J.Y., Guan, Y., Tan, X., 2020. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat. Med. 26, 672–675.
INS, 2020. Coronavirus (COVID - 2019) en Colombia. Instituto Nacional de Salud.
Jacofsky, D., Jacofsky, E.M., Jacofsky, M., 2020. Understanding antibody testing for COVID-19. J. Arthroplast. 35, 574–581.
Kim, S.-J., Nguyen, V.-G., Park, Y.-H., Park, B.-K., Chung, H.-C., 2020. A novel synonymous mutation of SARS-CoV-2: is this possible to affect their antigenicity and immunogenicity? Vaccines 8, 220.
Korber, B., Fischer, W., Gnanakaran, S.G., Yoon, H., Theiler, J., Abfalterer, W., Foley, B., Giorgi, E.E., Bhattacharya, T., Parker, M.D., 2020. Spike mutation pipeline reveals the emergence of a more transmissible form of SARS-CoV-2. bioRxiv.
Kumar, S., Stecher, G., Tamura, K., 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874
Lee, C.Y.-P., Lin, R.T., Renia, L., Ng, L.F., 2020. Serological approaches for COVID-19: epidemiologic perspective on surveillance and control. Front. Immunol. 11, 879.
Li, J., Li, Z., Cui, X., Wu, C., 2020. Bayesian phylodynamic inference on the temporal evolution and global transmission of SARS-CoV-2. J. Inf. Secur. 81 (2), 318–356.
Nakashima, A., 2020. The Global Emergences of Multiple SARS-CoV-2 Sub-Strains: Digital Annotations for Human Behaviors May Assist Automated Retracing of Symptomatic Features and Origins.
Quick, J., 2020. nCoV-2019 Sequencing Protocol. protocols.io
Rambaut, A., Holmes, E.C., Hill, V., O'Toole, Á., McCrone, J., Ruis, C., du Plessis, L., Pybus, O.G., 2020. hCoV-2019/Lineages.
Romano, M., Ruggiero, A., Squeglia, F., Maga, G., Berisio, R., 2020. A structural view of SARS-CoV-2 RNA replication machinery: RNA synthesis, proofreading and final capping. Cells 9, 1267.
Shi, J., Wen, Z., Zhong, G., Yang, H., Wang, C., Huang, B., Liu, R., He, X., Shuai, L., Sun, Z., 2020. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS–coronavirus 2. Science 368, 1016–1020.
SIB, 2020. Betacoronavirus. Swiss Institute of Bioinformatics.
Subissi, L., Posthuma, C.C., Collet, A., Zevenhoven-Dobbe, J.C., Gorbalenya, A.E., Decroly, E., Snijder, E.J., Canard, B., Imbert, I., 2014. One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities. Proc. Natl. Acad. Sci. 111, E3900–E3909
Tang, X., Wu, C., Li, X., Song, Y., Yao, X., Wu, X., Duan, Y., Zhang, H., Wang, Y., Qian, Z., Cui, J., Lu, J., 2020. On the origin and continuing evolution of SARS-CoV-2. Natl. Sci. Rev. 7 (6), 1012–1023.
Villabona-Arenas, C.J., Hanage, W.P., Tully, D.C., 2020. Phylogenetic interpretation during outbreaks requires caution. Nat. Microbiol. 5, 876–877. WHO, 2020a
WHO Director-General's Opening Remarks at the Media Briefing on COVID19 - 11 March 2020. World Health Organization.
WHO, 2020c. Novel Coronavirus (2019-nCoV) Technical Guidance: Laboratory Testing for 2019-nCoV in Humans. World Health Organization.
Yan, Y., Chang, L., Wang, L., 2020. Laboratory testing of SARS-CoV, MERS-CoV, and SARS-CoV-2 (2019-nCoV): current status, challenges, and countermeasures. Rev. Med. Virol. e2106.
Yount, B., Roberts, R.S., Sims, A.C., Deming, D., Frieman, M.B., Sparks, J., Denison, M.R., Davis, N., Baric, R.S., 2005. Severe acute respiratory syndrome coronavirus groupspecific open reading frames encode nonessential functions for replication in cell cultures and mice. J. Virol. 79, 14909–14922.
dc.rights.license.none.fl_str_mv Atribución
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 7
dc.coverage.temporal.spa.fl_str_mv 85
dc.publisher.spa.fl_str_mv Dr. Michel Tibayrenc
Centro de Investigación en Salud para el Trópico–CIST, Universidad Cooperativa de Colombia, Santa Marta, 470003, Colombia
dc.publisher.program.spa.fl_str_mv Medicina
dc.publisher.place.spa.fl_str_mv Santa Marta
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/2f33c26c-180f-4a23-9324-4d880968b3a7/download
https://repository.ucc.edu.co/bitstreams/237e0ec2-9dea-4a95-8844-69a71e06b3f0/download
https://repository.ucc.edu.co/bitstreams/c624e01b-735c-41a9-92d9-cce9163eb1f9/download
https://repository.ucc.edu.co/bitstreams/c9685e67-7268-40f4-972c-96071c1c01ae/download
bitstream.checksum.fl_str_mv 3bce4f7ab09dfc588f126e1e36e98a45
6c4eca188690935c6de55bfa2d20b4c8
0797a9a3eae6e2af1eb41adf08948255
17a103b1d52e028568e693bf72bcd8a1
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1814247277233963008
spelling Franco Muñoz, CarlosLaiton Donato, KatherineWiesner, MagdalenaEscandón, PatriciaUsme Ciro, José AldemarFranco Sierra, Nicolas D.Flórez Sánchez, Astrid C.Gómez Rangel, SergioRodríguez Calderon, Luis D.Barbosa Ramirez, JulianaOspitia Baez, ErikaWalteros, Diana MarcelaOspina Martínez, Martha L.Mercado Reyes, Marcela852021-01-20T20:53:10Z2021-01-20T20:53:10Z2020-09-171567-134810.1016/j.meegid.2020.104557https://hdl.handle.net/20.500.12494/32681Franco-Muñoz, C., Álvarez-Díaz, D. A., Laiton-Donato, K., Wiesner, M., Escandón, P., Usme-Ciro, J. A., Franco-Sierra, N. D., Flórez-Sánchez, A. C., Gómez-Rangel, S., Rodríguez-Calderon, L. D., Barbosa-Ramirez, J., Ospitia-Baez, E., Walteros, D. M., Ospina-Martinez, M. L., & Mercado-Reyes, M. (2020). Substitutions in Spike and Nucleocapsid proteins of SARS-CoV-2 circulating in South America. Infection, Genetics and Evolution: Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 85, 104557.SARS-CoV-2 is a new member of the genus Betacoronavirus, responsible for the COVID-19 pandemic. The virus crossed the species barrier and established in the human population taking advantage of the spike protein high affinity for the ACE receptor to infect the lower respiratory tract. The Nucleocapsid (N) and Spike (S) are highly immunogenic structural proteins and most commercial COVID-19 diagnostic assays target these proteins. In anunpredictable epidemic, it is essential to know about their genetic variability. The objective of this study was to describe the substitution frequency of the S and N proteins of SARS-CoV-2 in South America. A total of 504 amino acid and nucleotide sequences of the S and N proteins of SARS-CoV-2 from seven South American countries (Argentina, Brazil, Chile, Ecuador, Peru, Uruguay, and Colombia), reported as of June 3, and corresponding to samples collected between March and April 2020, were compared through substitution matrices using the Muscle algorithm. Forty-three sequences from 13 Colombian departments were obtained in this study using the Oxford Nanopore and Illumina MiSeq technologies, following the amplicon-based ARTIC network protocol. The substitutions D614G in S and R203K/G204R in N were the most frequent in South America, observed in 83% and 34% of the sequences respectively. Strikingly, genomes with the conserved position D614 were almost completely replaced by genomes with the G614 substitution between March to April 2020. A similar replacement pattern was observed with R203K/G204R although more marked in Chile, Argentina and Brazil, suggesting similar introduction history and/or control strategies of SARS-CoV-2 in these countries. It is necessary to continue with the genomic surveillance of S and N proteins during the SARS-CoV-2 pandemic as this information can be useful for developing vaccines, therapeutics and diagnostic tests.https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000318507https://orcid.org/0000-0002-8093-0544https://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000008981jose.usmec@campusucc.edu.cocefrancom@unal.edu.cohttps://scholar.google.com.co/citations?user=cU2KyT4AAAAJ&hl=en7Dr. Michel TibayrencCentro de Investigación en Salud para el Trópico–CIST, Universidad Cooperativa de Colombia, Santa Marta, 470003, ColombiaMedicinaSanta Martahttps://www.sciencedirect.com/science/article/abs/pii/S1567134820303889?via%3DihubInfection, Genetics and EvolutionÁlvarez-Díaz, D.A., Franco-Muñoz, C., Laiton-Donato, K., Usme-Ciro, J.A., Franco-Sierra, N.D., Flórez-Sánchez, A.C., Gómez-Rangel, S., Rodríguez-Calderon, L.D., BarbosaRamirez, J., Ospitia-Baez, E., Walteros, D.M., Ospina-Martinez, M.L., Mercado-Reyes, M., 2020. Molecular analysis of several in-house rRT-PCR protocols for SARS-CoV-2 detection in the context of genetic variability of the virus in Colombia. Infect. Genet. Evol. 84, 104390.Bartolini, B., Rueca, M., Gruber, C.E.M., Messina, F., Carletti, F., Giombini, E., Lalle, E., Bordi, L., Matusali, G., Colavita, F., Castilletti, C., Vairo, F., Ippolito, G., Capobianchi, M.R., Di Caro, A., 2020. SARS-CoV-2 phylogenetic analysis, Lazio region, Italy, February–March 2020. Emerg. Infect. Dis. 26.Becerra-Flores, M., Cardozo, T., 2020. SARS-CoV-2 viral spike G614 mutation exhibits higher case fatality rate. Int. J. Clin. Pract. 74, e13525.Bhattacharyya, C., Das, C., Ghosh, A., Singh, A.K., Mukherjee, S., Majumder, P.P., Basu, A., Biswas, N.K., 2020. Global Spread of SARS-CoV-2 Subtype with Spike Protein Mutation D614G is Shaped by Human Genomic Variations that Regulate Expression of TMPRSS2 and MX1 Genes. bioRxiv.brian-jgi, 2020. BBMap Short Read Aligner, and Other Bioinformatic Tools.Brufsky, A., 2020. Distinct viral clades of SARS-CoV-2: implications for modeling of viral spread. J. Med. Virol. 92, 1386–1390.Corman, V.M., Landt, O., Kaiser, M., Molenkamp, R., Meijer, A., Chu, D.K., Bleicker, T., Brünink, S., Schneider, J., Schmidt, M.L., Mulders, D.G., Haagmans, B.L., van der Veer, B., van den Brink, S., Wijsman, L., Goderski, G., Romette, J.-L., Ellis, J., Zambon, M., Peiris, M., Goossens, H., Reusken, C., Koopmans, M.P., Drosten, C., 2020. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surv. 25, 2000045.Du, L., He, Y., Zhou, Y., Liu, S., Zheng, B.-J., Jiang, S., 2009. The spike protein of SARSCoV—a target for vaccine and therapeutic development. Nat. Rev. Microbiol. 7, 226–236.Edgar, R.C., 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797.gob.br, 2020. Coronavirus COVID-19.Gupta, A.M., Mandal, S., 2020. Loss of Epitopes from SARS-Cov-2 Proteins for Non-synonymous Mutations: A Potential Global Threat. OSF Preprints.He, X., Lau, E.H., Wu, P., Deng, X., Wang, J., Hao, X., Lau, Y.C., Wong, J.Y., Guan, Y., Tan, X., 2020. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat. Med. 26, 672–675.INS, 2020. Coronavirus (COVID - 2019) en Colombia. Instituto Nacional de Salud.Jacofsky, D., Jacofsky, E.M., Jacofsky, M., 2020. Understanding antibody testing for COVID-19. J. Arthroplast. 35, 574–581.Kim, S.-J., Nguyen, V.-G., Park, Y.-H., Park, B.-K., Chung, H.-C., 2020. A novel synonymous mutation of SARS-CoV-2: is this possible to affect their antigenicity and immunogenicity? Vaccines 8, 220.Korber, B., Fischer, W., Gnanakaran, S.G., Yoon, H., Theiler, J., Abfalterer, W., Foley, B., Giorgi, E.E., Bhattacharya, T., Parker, M.D., 2020. Spike mutation pipeline reveals the emergence of a more transmissible form of SARS-CoV-2. bioRxiv.Kumar, S., Stecher, G., Tamura, K., 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874Lee, C.Y.-P., Lin, R.T., Renia, L., Ng, L.F., 2020. Serological approaches for COVID-19: epidemiologic perspective on surveillance and control. Front. Immunol. 11, 879.Li, J., Li, Z., Cui, X., Wu, C., 2020. Bayesian phylodynamic inference on the temporal evolution and global transmission of SARS-CoV-2. J. Inf. Secur. 81 (2), 318–356.Nakashima, A., 2020. The Global Emergences of Multiple SARS-CoV-2 Sub-Strains: Digital Annotations for Human Behaviors May Assist Automated Retracing of Symptomatic Features and Origins.Quick, J., 2020. nCoV-2019 Sequencing Protocol. protocols.ioRambaut, A., Holmes, E.C., Hill, V., O'Toole, Á., McCrone, J., Ruis, C., du Plessis, L., Pybus, O.G., 2020. hCoV-2019/Lineages.Romano, M., Ruggiero, A., Squeglia, F., Maga, G., Berisio, R., 2020. A structural view of SARS-CoV-2 RNA replication machinery: RNA synthesis, proofreading and final capping. Cells 9, 1267.Shi, J., Wen, Z., Zhong, G., Yang, H., Wang, C., Huang, B., Liu, R., He, X., Shuai, L., Sun, Z., 2020. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS–coronavirus 2. Science 368, 1016–1020.SIB, 2020. Betacoronavirus. Swiss Institute of Bioinformatics.Subissi, L., Posthuma, C.C., Collet, A., Zevenhoven-Dobbe, J.C., Gorbalenya, A.E., Decroly, E., Snijder, E.J., Canard, B., Imbert, I., 2014. One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities. Proc. Natl. Acad. Sci. 111, E3900–E3909Tang, X., Wu, C., Li, X., Song, Y., Yao, X., Wu, X., Duan, Y., Zhang, H., Wang, Y., Qian, Z., Cui, J., Lu, J., 2020. On the origin and continuing evolution of SARS-CoV-2. Natl. Sci. Rev. 7 (6), 1012–1023.Villabona-Arenas, C.J., Hanage, W.P., Tully, D.C., 2020. Phylogenetic interpretation during outbreaks requires caution. Nat. Microbiol. 5, 876–877. WHO, 2020aWHO Director-General's Opening Remarks at the Media Briefing on COVID19 - 11 March 2020. World Health Organization.WHO, 2020c. Novel Coronavirus (2019-nCoV) Technical Guidance: Laboratory Testing for 2019-nCoV in Humans. World Health Organization.Yan, Y., Chang, L., Wang, L., 2020. Laboratory testing of SARS-CoV, MERS-CoV, and SARS-CoV-2 (2019-nCoV): current status, challenges, and countermeasures. Rev. Med. Virol. e2106.Yount, B., Roberts, R.S., Sims, A.C., Deming, D., Frieman, M.B., Sparks, J., Denison, M.R., Davis, N., Baric, R.S., 2005. Severe acute respiratory syndrome coronavirus groupspecific open reading frames encode nonessential functions for replication in cell cultures and mice. J. Virol. 79, 14909–14922.SARS-CoV-2EspículaNucleocapsideSudaméricaSARS-CoV-2SpikeNucleocapsidSouth AmericaNon-synonymous substitutionsSustituciones no sinónimasSubstitutions in Spike and Nucleocapsid proteins of SARS-CoV-2 circulating in South AmericaArtículohttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribucióninfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/2f33c26c-180f-4a23-9324-4d880968b3a7/download3bce4f7ab09dfc588f126e1e36e98a45MD52ORIGINAL30. Substitutions in spike and nucleocapsid proteins of SARS-CoV-2 circulating in Latin America. Franco-Munoz et al 2020.pdf30. Substitutions in spike and nucleocapsid proteins of SARS-CoV-2 circulating in Latin America. Franco-Munoz et al 2020.pdfArtículo publicadoapplication/pdf2992914https://repository.ucc.edu.co/bitstreams/237e0ec2-9dea-4a95-8844-69a71e06b3f0/download6c4eca188690935c6de55bfa2d20b4c8MD51THUMBNAIL30. Substitutions in spike and nucleocapsid proteins of SARS-CoV-2 circulating in Latin America. Franco-Munoz et al 2020.pdf.jpg30. Substitutions in spike and nucleocapsid proteins of SARS-CoV-2 circulating in Latin America. Franco-Munoz et al 2020.pdf.jpgGenerated Thumbnailimage/jpeg5597https://repository.ucc.edu.co/bitstreams/c624e01b-735c-41a9-92d9-cce9163eb1f9/download0797a9a3eae6e2af1eb41adf08948255MD53TEXT30. Substitutions in spike and nucleocapsid proteins of SARS-CoV-2 circulating in Latin America. Franco-Munoz et al 2020.pdf.txt30. Substitutions in spike and nucleocapsid proteins of SARS-CoV-2 circulating in Latin America. Franco-Munoz et al 2020.pdf.txtExtracted texttext/plain34212https://repository.ucc.edu.co/bitstreams/c9685e67-7268-40f4-972c-96071c1c01ae/download17a103b1d52e028568e693bf72bcd8a1MD5420.500.12494/32681oai:repository.ucc.edu.co:20.500.12494/326812024-08-10 22:41:54.996restrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo=