Substitutions in Spike and Nucleocapsid proteins of SARS-CoV-2 circulating in South America
SARS-CoV-2 is a new member of the genus Betacoronavirus, responsible for the COVID-19 pandemic. The virus crossed the species barrier and established in the human population taking advantage of the spike protein high affinity for the ACE receptor to infect the lower respiratory tract. The Nucleocaps...
- Autores:
-
Franco Muñoz, Carlos
Laiton Donato, Katherine
Wiesner, Magdalena
Escandón, Patricia
Usme Ciro, José Aldemar
Franco Sierra, Nicolas D.
Flórez Sánchez, Astrid C.
Gómez Rangel, Sergio
Rodríguez Calderon, Luis D.
Barbosa Ramirez, Juliana
Ospitia Baez, Erika
Walteros, Diana Marcela
Ospina Martínez, Martha L.
Mercado Reyes, Marcela
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Universidad Cooperativa de Colombia
- Repositorio:
- Repositorio UCC
- Idioma:
- OAI Identifier:
- oai:repository.ucc.edu.co:20.500.12494/32681
- Acceso en línea:
- https://hdl.handle.net/20.500.12494/32681
- Palabra clave:
- SARS-CoV-2
Espícula
Nucleocapside
Sudamérica
SARS-CoV-2
Spike
Nucleocapsid
South America
Non-synonymous substitutions
Sustituciones no sinónimas
- Rights
- openAccess
- License
- Atribución
id |
COOPER2_b68962f5c41c927a26142a3fa2ef15a8 |
---|---|
oai_identifier_str |
oai:repository.ucc.edu.co:20.500.12494/32681 |
network_acronym_str |
COOPER2 |
network_name_str |
Repositorio UCC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Substitutions in Spike and Nucleocapsid proteins of SARS-CoV-2 circulating in South America |
title |
Substitutions in Spike and Nucleocapsid proteins of SARS-CoV-2 circulating in South America |
spellingShingle |
Substitutions in Spike and Nucleocapsid proteins of SARS-CoV-2 circulating in South America SARS-CoV-2 Espícula Nucleocapside Sudamérica SARS-CoV-2 Spike Nucleocapsid South America Non-synonymous substitutions Sustituciones no sinónimas |
title_short |
Substitutions in Spike and Nucleocapsid proteins of SARS-CoV-2 circulating in South America |
title_full |
Substitutions in Spike and Nucleocapsid proteins of SARS-CoV-2 circulating in South America |
title_fullStr |
Substitutions in Spike and Nucleocapsid proteins of SARS-CoV-2 circulating in South America |
title_full_unstemmed |
Substitutions in Spike and Nucleocapsid proteins of SARS-CoV-2 circulating in South America |
title_sort |
Substitutions in Spike and Nucleocapsid proteins of SARS-CoV-2 circulating in South America |
dc.creator.fl_str_mv |
Franco Muñoz, Carlos Laiton Donato, Katherine Wiesner, Magdalena Escandón, Patricia Usme Ciro, José Aldemar Franco Sierra, Nicolas D. Flórez Sánchez, Astrid C. Gómez Rangel, Sergio Rodríguez Calderon, Luis D. Barbosa Ramirez, Juliana Ospitia Baez, Erika Walteros, Diana Marcela Ospina Martínez, Martha L. Mercado Reyes, Marcela |
dc.contributor.author.none.fl_str_mv |
Franco Muñoz, Carlos Laiton Donato, Katherine Wiesner, Magdalena Escandón, Patricia Usme Ciro, José Aldemar Franco Sierra, Nicolas D. Flórez Sánchez, Astrid C. Gómez Rangel, Sergio Rodríguez Calderon, Luis D. Barbosa Ramirez, Juliana Ospitia Baez, Erika Walteros, Diana Marcela Ospina Martínez, Martha L. Mercado Reyes, Marcela |
dc.subject.spa.fl_str_mv |
SARS-CoV-2 Espícula Nucleocapside Sudamérica |
topic |
SARS-CoV-2 Espícula Nucleocapside Sudamérica SARS-CoV-2 Spike Nucleocapsid South America Non-synonymous substitutions Sustituciones no sinónimas |
dc.subject.other.spa.fl_str_mv |
SARS-CoV-2 Spike Nucleocapsid South America Non-synonymous substitutions Sustituciones no sinónimas |
description |
SARS-CoV-2 is a new member of the genus Betacoronavirus, responsible for the COVID-19 pandemic. The virus crossed the species barrier and established in the human population taking advantage of the spike protein high affinity for the ACE receptor to infect the lower respiratory tract. The Nucleocapsid (N) and Spike (S) are highly immunogenic structural proteins and most commercial COVID-19 diagnostic assays target these proteins. In anunpredictable epidemic, it is essential to know about their genetic variability. The objective of this study was to describe the substitution frequency of the S and N proteins of SARS-CoV-2 in South America. A total of 504 amino acid and nucleotide sequences of the S and N proteins of SARS-CoV-2 from seven South American countries (Argentina, Brazil, Chile, Ecuador, Peru, Uruguay, and Colombia), reported as of June 3, and corresponding to samples collected between March and April 2020, were compared through substitution matrices using the Muscle algorithm. Forty-three sequences from 13 Colombian departments were obtained in this study using the Oxford Nanopore and Illumina MiSeq technologies, following the amplicon-based ARTIC network protocol. The substitutions D614G in S and R203K/G204R in N were the most frequent in South America, observed in 83% and 34% of the sequences respectively. Strikingly, genomes with the conserved position D614 were almost completely replaced by genomes with the G614 substitution between March to April 2020. A similar replacement pattern was observed with R203K/G204R although more marked in Chile, Argentina and Brazil, suggesting similar introduction history and/or control strategies of SARS-CoV-2 in these countries. It is necessary to continue with the genomic surveillance of S and N proteins during the SARS-CoV-2 pandemic as this information can be useful for developing vaccines, therapeutics and diagnostic tests. |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020-09-17 |
dc.date.accessioned.none.fl_str_mv |
2021-01-20T20:53:10Z |
dc.date.available.none.fl_str_mv |
2021-01-20T20:53:10Z |
dc.type.none.fl_str_mv |
Artículo |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
1567-1348 |
dc.identifier.uri.spa.fl_str_mv |
10.1016/j.meegid.2020.104557 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12494/32681 |
dc.identifier.bibliographicCitation.spa.fl_str_mv |
Franco-Muñoz, C., Álvarez-Díaz, D. A., Laiton-Donato, K., Wiesner, M., Escandón, P., Usme-Ciro, J. A., Franco-Sierra, N. D., Flórez-Sánchez, A. C., Gómez-Rangel, S., Rodríguez-Calderon, L. D., Barbosa-Ramirez, J., Ospitia-Baez, E., Walteros, D. M., Ospina-Martinez, M. L., & Mercado-Reyes, M. (2020). Substitutions in Spike and Nucleocapsid proteins of SARS-CoV-2 circulating in South America. Infection, Genetics and Evolution: Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 85, 104557. |
identifier_str_mv |
1567-1348 10.1016/j.meegid.2020.104557 Franco-Muñoz, C., Álvarez-Díaz, D. A., Laiton-Donato, K., Wiesner, M., Escandón, P., Usme-Ciro, J. A., Franco-Sierra, N. D., Flórez-Sánchez, A. C., Gómez-Rangel, S., Rodríguez-Calderon, L. D., Barbosa-Ramirez, J., Ospitia-Baez, E., Walteros, D. M., Ospina-Martinez, M. L., & Mercado-Reyes, M. (2020). Substitutions in Spike and Nucleocapsid proteins of SARS-CoV-2 circulating in South America. Infection, Genetics and Evolution: Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 85, 104557. |
url |
https://hdl.handle.net/20.500.12494/32681 |
dc.relation.isversionof.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/abs/pii/S1567134820303889?via%3Dihub |
dc.relation.ispartofjournal.spa.fl_str_mv |
Infection, Genetics and Evolution |
dc.relation.references.spa.fl_str_mv |
Álvarez-Díaz, D.A., Franco-Muñoz, C., Laiton-Donato, K., Usme-Ciro, J.A., Franco-Sierra, N.D., Flórez-Sánchez, A.C., Gómez-Rangel, S., Rodríguez-Calderon, L.D., BarbosaRamirez, J., Ospitia-Baez, E., Walteros, D.M., Ospina-Martinez, M.L., Mercado-Reyes, M., 2020. Molecular analysis of several in-house rRT-PCR protocols for SARS-CoV-2 detection in the context of genetic variability of the virus in Colombia. Infect. Genet. Evol. 84, 104390. Bartolini, B., Rueca, M., Gruber, C.E.M., Messina, F., Carletti, F., Giombini, E., Lalle, E., Bordi, L., Matusali, G., Colavita, F., Castilletti, C., Vairo, F., Ippolito, G., Capobianchi, M.R., Di Caro, A., 2020. SARS-CoV-2 phylogenetic analysis, Lazio region, Italy, February–March 2020. Emerg. Infect. Dis. 26. Becerra-Flores, M., Cardozo, T., 2020. SARS-CoV-2 viral spike G614 mutation exhibits higher case fatality rate. Int. J. Clin. Pract. 74, e13525. Bhattacharyya, C., Das, C., Ghosh, A., Singh, A.K., Mukherjee, S., Majumder, P.P., Basu, A., Biswas, N.K., 2020. Global Spread of SARS-CoV-2 Subtype with Spike Protein Mutation D614G is Shaped by Human Genomic Variations that Regulate Expression of TMPRSS2 and MX1 Genes. bioRxiv. brian-jgi, 2020. BBMap Short Read Aligner, and Other Bioinformatic Tools. Brufsky, A., 2020. Distinct viral clades of SARS-CoV-2: implications for modeling of viral spread. J. Med. Virol. 92, 1386–1390. Corman, V.M., Landt, O., Kaiser, M., Molenkamp, R., Meijer, A., Chu, D.K., Bleicker, T., Brünink, S., Schneider, J., Schmidt, M.L., Mulders, D.G., Haagmans, B.L., van der Veer, B., van den Brink, S., Wijsman, L., Goderski, G., Romette, J.-L., Ellis, J., Zambon, M., Peiris, M., Goossens, H., Reusken, C., Koopmans, M.P., Drosten, C., 2020. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surv. 25, 2000045. Du, L., He, Y., Zhou, Y., Liu, S., Zheng, B.-J., Jiang, S., 2009. The spike protein of SARSCoV—a target for vaccine and therapeutic development. Nat. Rev. Microbiol. 7, 226–236. Edgar, R.C., 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797. gob.br, 2020. Coronavirus COVID-19. Gupta, A.M., Mandal, S., 2020. Loss of Epitopes from SARS-Cov-2 Proteins for Non-synonymous Mutations: A Potential Global Threat. OSF Preprints. He, X., Lau, E.H., Wu, P., Deng, X., Wang, J., Hao, X., Lau, Y.C., Wong, J.Y., Guan, Y., Tan, X., 2020. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat. Med. 26, 672–675. INS, 2020. Coronavirus (COVID - 2019) en Colombia. Instituto Nacional de Salud. Jacofsky, D., Jacofsky, E.M., Jacofsky, M., 2020. Understanding antibody testing for COVID-19. J. Arthroplast. 35, 574–581. Kim, S.-J., Nguyen, V.-G., Park, Y.-H., Park, B.-K., Chung, H.-C., 2020. A novel synonymous mutation of SARS-CoV-2: is this possible to affect their antigenicity and immunogenicity? Vaccines 8, 220. Korber, B., Fischer, W., Gnanakaran, S.G., Yoon, H., Theiler, J., Abfalterer, W., Foley, B., Giorgi, E.E., Bhattacharya, T., Parker, M.D., 2020. Spike mutation pipeline reveals the emergence of a more transmissible form of SARS-CoV-2. bioRxiv. Kumar, S., Stecher, G., Tamura, K., 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 Lee, C.Y.-P., Lin, R.T., Renia, L., Ng, L.F., 2020. Serological approaches for COVID-19: epidemiologic perspective on surveillance and control. Front. Immunol. 11, 879. Li, J., Li, Z., Cui, X., Wu, C., 2020. Bayesian phylodynamic inference on the temporal evolution and global transmission of SARS-CoV-2. J. Inf. Secur. 81 (2), 318–356. Nakashima, A., 2020. The Global Emergences of Multiple SARS-CoV-2 Sub-Strains: Digital Annotations for Human Behaviors May Assist Automated Retracing of Symptomatic Features and Origins. Quick, J., 2020. nCoV-2019 Sequencing Protocol. protocols.io Rambaut, A., Holmes, E.C., Hill, V., O'Toole, Á., McCrone, J., Ruis, C., du Plessis, L., Pybus, O.G., 2020. hCoV-2019/Lineages. Romano, M., Ruggiero, A., Squeglia, F., Maga, G., Berisio, R., 2020. A structural view of SARS-CoV-2 RNA replication machinery: RNA synthesis, proofreading and final capping. Cells 9, 1267. Shi, J., Wen, Z., Zhong, G., Yang, H., Wang, C., Huang, B., Liu, R., He, X., Shuai, L., Sun, Z., 2020. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS–coronavirus 2. Science 368, 1016–1020. SIB, 2020. Betacoronavirus. Swiss Institute of Bioinformatics. Subissi, L., Posthuma, C.C., Collet, A., Zevenhoven-Dobbe, J.C., Gorbalenya, A.E., Decroly, E., Snijder, E.J., Canard, B., Imbert, I., 2014. One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities. Proc. Natl. Acad. Sci. 111, E3900–E3909 Tang, X., Wu, C., Li, X., Song, Y., Yao, X., Wu, X., Duan, Y., Zhang, H., Wang, Y., Qian, Z., Cui, J., Lu, J., 2020. On the origin and continuing evolution of SARS-CoV-2. Natl. Sci. Rev. 7 (6), 1012–1023. Villabona-Arenas, C.J., Hanage, W.P., Tully, D.C., 2020. Phylogenetic interpretation during outbreaks requires caution. Nat. Microbiol. 5, 876–877. WHO, 2020a WHO Director-General's Opening Remarks at the Media Briefing on COVID19 - 11 March 2020. World Health Organization. WHO, 2020c. Novel Coronavirus (2019-nCoV) Technical Guidance: Laboratory Testing for 2019-nCoV in Humans. World Health Organization. Yan, Y., Chang, L., Wang, L., 2020. Laboratory testing of SARS-CoV, MERS-CoV, and SARS-CoV-2 (2019-nCoV): current status, challenges, and countermeasures. Rev. Med. Virol. e2106. Yount, B., Roberts, R.S., Sims, A.C., Deming, D., Frieman, M.B., Sparks, J., Denison, M.R., Davis, N., Baric, R.S., 2005. Severe acute respiratory syndrome coronavirus groupspecific open reading frames encode nonessential functions for replication in cell cultures and mice. J. Virol. 79, 14909–14922. |
dc.rights.license.none.fl_str_mv |
Atribución |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
7 |
dc.coverage.temporal.spa.fl_str_mv |
85 |
dc.publisher.spa.fl_str_mv |
Dr. Michel Tibayrenc Centro de Investigación en Salud para el Trópico–CIST, Universidad Cooperativa de Colombia, Santa Marta, 470003, Colombia |
dc.publisher.program.spa.fl_str_mv |
Medicina |
dc.publisher.place.spa.fl_str_mv |
Santa Marta |
institution |
Universidad Cooperativa de Colombia |
bitstream.url.fl_str_mv |
https://repository.ucc.edu.co/bitstreams/2f33c26c-180f-4a23-9324-4d880968b3a7/download https://repository.ucc.edu.co/bitstreams/237e0ec2-9dea-4a95-8844-69a71e06b3f0/download https://repository.ucc.edu.co/bitstreams/c624e01b-735c-41a9-92d9-cce9163eb1f9/download https://repository.ucc.edu.co/bitstreams/c9685e67-7268-40f4-972c-96071c1c01ae/download |
bitstream.checksum.fl_str_mv |
3bce4f7ab09dfc588f126e1e36e98a45 6c4eca188690935c6de55bfa2d20b4c8 0797a9a3eae6e2af1eb41adf08948255 17a103b1d52e028568e693bf72bcd8a1 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Cooperativa de Colombia |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1814247277233963008 |
spelling |
Franco Muñoz, CarlosLaiton Donato, KatherineWiesner, MagdalenaEscandón, PatriciaUsme Ciro, José AldemarFranco Sierra, Nicolas D.Flórez Sánchez, Astrid C.Gómez Rangel, SergioRodríguez Calderon, Luis D.Barbosa Ramirez, JulianaOspitia Baez, ErikaWalteros, Diana MarcelaOspina Martínez, Martha L.Mercado Reyes, Marcela852021-01-20T20:53:10Z2021-01-20T20:53:10Z2020-09-171567-134810.1016/j.meegid.2020.104557https://hdl.handle.net/20.500.12494/32681Franco-Muñoz, C., Álvarez-Díaz, D. A., Laiton-Donato, K., Wiesner, M., Escandón, P., Usme-Ciro, J. A., Franco-Sierra, N. D., Flórez-Sánchez, A. C., Gómez-Rangel, S., Rodríguez-Calderon, L. D., Barbosa-Ramirez, J., Ospitia-Baez, E., Walteros, D. M., Ospina-Martinez, M. L., & Mercado-Reyes, M. (2020). Substitutions in Spike and Nucleocapsid proteins of SARS-CoV-2 circulating in South America. Infection, Genetics and Evolution: Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 85, 104557.SARS-CoV-2 is a new member of the genus Betacoronavirus, responsible for the COVID-19 pandemic. The virus crossed the species barrier and established in the human population taking advantage of the spike protein high affinity for the ACE receptor to infect the lower respiratory tract. The Nucleocapsid (N) and Spike (S) are highly immunogenic structural proteins and most commercial COVID-19 diagnostic assays target these proteins. In anunpredictable epidemic, it is essential to know about their genetic variability. The objective of this study was to describe the substitution frequency of the S and N proteins of SARS-CoV-2 in South America. A total of 504 amino acid and nucleotide sequences of the S and N proteins of SARS-CoV-2 from seven South American countries (Argentina, Brazil, Chile, Ecuador, Peru, Uruguay, and Colombia), reported as of June 3, and corresponding to samples collected between March and April 2020, were compared through substitution matrices using the Muscle algorithm. Forty-three sequences from 13 Colombian departments were obtained in this study using the Oxford Nanopore and Illumina MiSeq technologies, following the amplicon-based ARTIC network protocol. The substitutions D614G in S and R203K/G204R in N were the most frequent in South America, observed in 83% and 34% of the sequences respectively. Strikingly, genomes with the conserved position D614 were almost completely replaced by genomes with the G614 substitution between March to April 2020. A similar replacement pattern was observed with R203K/G204R although more marked in Chile, Argentina and Brazil, suggesting similar introduction history and/or control strategies of SARS-CoV-2 in these countries. It is necessary to continue with the genomic surveillance of S and N proteins during the SARS-CoV-2 pandemic as this information can be useful for developing vaccines, therapeutics and diagnostic tests.https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000318507https://orcid.org/0000-0002-8093-0544https://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000008981jose.usmec@campusucc.edu.cocefrancom@unal.edu.cohttps://scholar.google.com.co/citations?user=cU2KyT4AAAAJ&hl=en7Dr. Michel TibayrencCentro de Investigación en Salud para el Trópico–CIST, Universidad Cooperativa de Colombia, Santa Marta, 470003, ColombiaMedicinaSanta Martahttps://www.sciencedirect.com/science/article/abs/pii/S1567134820303889?via%3DihubInfection, Genetics and EvolutionÁlvarez-Díaz, D.A., Franco-Muñoz, C., Laiton-Donato, K., Usme-Ciro, J.A., Franco-Sierra, N.D., Flórez-Sánchez, A.C., Gómez-Rangel, S., Rodríguez-Calderon, L.D., BarbosaRamirez, J., Ospitia-Baez, E., Walteros, D.M., Ospina-Martinez, M.L., Mercado-Reyes, M., 2020. Molecular analysis of several in-house rRT-PCR protocols for SARS-CoV-2 detection in the context of genetic variability of the virus in Colombia. Infect. Genet. Evol. 84, 104390.Bartolini, B., Rueca, M., Gruber, C.E.M., Messina, F., Carletti, F., Giombini, E., Lalle, E., Bordi, L., Matusali, G., Colavita, F., Castilletti, C., Vairo, F., Ippolito, G., Capobianchi, M.R., Di Caro, A., 2020. SARS-CoV-2 phylogenetic analysis, Lazio region, Italy, February–March 2020. Emerg. Infect. Dis. 26.Becerra-Flores, M., Cardozo, T., 2020. SARS-CoV-2 viral spike G614 mutation exhibits higher case fatality rate. Int. J. Clin. Pract. 74, e13525.Bhattacharyya, C., Das, C., Ghosh, A., Singh, A.K., Mukherjee, S., Majumder, P.P., Basu, A., Biswas, N.K., 2020. Global Spread of SARS-CoV-2 Subtype with Spike Protein Mutation D614G is Shaped by Human Genomic Variations that Regulate Expression of TMPRSS2 and MX1 Genes. bioRxiv.brian-jgi, 2020. BBMap Short Read Aligner, and Other Bioinformatic Tools.Brufsky, A., 2020. Distinct viral clades of SARS-CoV-2: implications for modeling of viral spread. J. Med. Virol. 92, 1386–1390.Corman, V.M., Landt, O., Kaiser, M., Molenkamp, R., Meijer, A., Chu, D.K., Bleicker, T., Brünink, S., Schneider, J., Schmidt, M.L., Mulders, D.G., Haagmans, B.L., van der Veer, B., van den Brink, S., Wijsman, L., Goderski, G., Romette, J.-L., Ellis, J., Zambon, M., Peiris, M., Goossens, H., Reusken, C., Koopmans, M.P., Drosten, C., 2020. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surv. 25, 2000045.Du, L., He, Y., Zhou, Y., Liu, S., Zheng, B.-J., Jiang, S., 2009. The spike protein of SARSCoV—a target for vaccine and therapeutic development. Nat. Rev. Microbiol. 7, 226–236.Edgar, R.C., 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797.gob.br, 2020. Coronavirus COVID-19.Gupta, A.M., Mandal, S., 2020. Loss of Epitopes from SARS-Cov-2 Proteins for Non-synonymous Mutations: A Potential Global Threat. OSF Preprints.He, X., Lau, E.H., Wu, P., Deng, X., Wang, J., Hao, X., Lau, Y.C., Wong, J.Y., Guan, Y., Tan, X., 2020. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat. Med. 26, 672–675.INS, 2020. Coronavirus (COVID - 2019) en Colombia. Instituto Nacional de Salud.Jacofsky, D., Jacofsky, E.M., Jacofsky, M., 2020. Understanding antibody testing for COVID-19. J. Arthroplast. 35, 574–581.Kim, S.-J., Nguyen, V.-G., Park, Y.-H., Park, B.-K., Chung, H.-C., 2020. A novel synonymous mutation of SARS-CoV-2: is this possible to affect their antigenicity and immunogenicity? Vaccines 8, 220.Korber, B., Fischer, W., Gnanakaran, S.G., Yoon, H., Theiler, J., Abfalterer, W., Foley, B., Giorgi, E.E., Bhattacharya, T., Parker, M.D., 2020. Spike mutation pipeline reveals the emergence of a more transmissible form of SARS-CoV-2. bioRxiv.Kumar, S., Stecher, G., Tamura, K., 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874Lee, C.Y.-P., Lin, R.T., Renia, L., Ng, L.F., 2020. Serological approaches for COVID-19: epidemiologic perspective on surveillance and control. Front. Immunol. 11, 879.Li, J., Li, Z., Cui, X., Wu, C., 2020. Bayesian phylodynamic inference on the temporal evolution and global transmission of SARS-CoV-2. J. Inf. Secur. 81 (2), 318–356.Nakashima, A., 2020. The Global Emergences of Multiple SARS-CoV-2 Sub-Strains: Digital Annotations for Human Behaviors May Assist Automated Retracing of Symptomatic Features and Origins.Quick, J., 2020. nCoV-2019 Sequencing Protocol. protocols.ioRambaut, A., Holmes, E.C., Hill, V., O'Toole, Á., McCrone, J., Ruis, C., du Plessis, L., Pybus, O.G., 2020. hCoV-2019/Lineages.Romano, M., Ruggiero, A., Squeglia, F., Maga, G., Berisio, R., 2020. A structural view of SARS-CoV-2 RNA replication machinery: RNA synthesis, proofreading and final capping. Cells 9, 1267.Shi, J., Wen, Z., Zhong, G., Yang, H., Wang, C., Huang, B., Liu, R., He, X., Shuai, L., Sun, Z., 2020. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS–coronavirus 2. Science 368, 1016–1020.SIB, 2020. Betacoronavirus. Swiss Institute of Bioinformatics.Subissi, L., Posthuma, C.C., Collet, A., Zevenhoven-Dobbe, J.C., Gorbalenya, A.E., Decroly, E., Snijder, E.J., Canard, B., Imbert, I., 2014. One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities. Proc. Natl. Acad. Sci. 111, E3900–E3909Tang, X., Wu, C., Li, X., Song, Y., Yao, X., Wu, X., Duan, Y., Zhang, H., Wang, Y., Qian, Z., Cui, J., Lu, J., 2020. On the origin and continuing evolution of SARS-CoV-2. Natl. Sci. Rev. 7 (6), 1012–1023.Villabona-Arenas, C.J., Hanage, W.P., Tully, D.C., 2020. Phylogenetic interpretation during outbreaks requires caution. Nat. Microbiol. 5, 876–877. WHO, 2020aWHO Director-General's Opening Remarks at the Media Briefing on COVID19 - 11 March 2020. World Health Organization.WHO, 2020c. Novel Coronavirus (2019-nCoV) Technical Guidance: Laboratory Testing for 2019-nCoV in Humans. World Health Organization.Yan, Y., Chang, L., Wang, L., 2020. Laboratory testing of SARS-CoV, MERS-CoV, and SARS-CoV-2 (2019-nCoV): current status, challenges, and countermeasures. Rev. Med. Virol. e2106.Yount, B., Roberts, R.S., Sims, A.C., Deming, D., Frieman, M.B., Sparks, J., Denison, M.R., Davis, N., Baric, R.S., 2005. Severe acute respiratory syndrome coronavirus groupspecific open reading frames encode nonessential functions for replication in cell cultures and mice. J. Virol. 79, 14909–14922.SARS-CoV-2EspículaNucleocapsideSudaméricaSARS-CoV-2SpikeNucleocapsidSouth AmericaNon-synonymous substitutionsSustituciones no sinónimasSubstitutions in Spike and Nucleocapsid proteins of SARS-CoV-2 circulating in South AmericaArtículohttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribucióninfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/2f33c26c-180f-4a23-9324-4d880968b3a7/download3bce4f7ab09dfc588f126e1e36e98a45MD52ORIGINAL30. Substitutions in spike and nucleocapsid proteins of SARS-CoV-2 circulating in Latin America. Franco-Munoz et al 2020.pdf30. Substitutions in spike and nucleocapsid proteins of SARS-CoV-2 circulating in Latin America. Franco-Munoz et al 2020.pdfArtículo publicadoapplication/pdf2992914https://repository.ucc.edu.co/bitstreams/237e0ec2-9dea-4a95-8844-69a71e06b3f0/download6c4eca188690935c6de55bfa2d20b4c8MD51THUMBNAIL30. Substitutions in spike and nucleocapsid proteins of SARS-CoV-2 circulating in Latin America. Franco-Munoz et al 2020.pdf.jpg30. Substitutions in spike and nucleocapsid proteins of SARS-CoV-2 circulating in Latin America. Franco-Munoz et al 2020.pdf.jpgGenerated Thumbnailimage/jpeg5597https://repository.ucc.edu.co/bitstreams/c624e01b-735c-41a9-92d9-cce9163eb1f9/download0797a9a3eae6e2af1eb41adf08948255MD53TEXT30. Substitutions in spike and nucleocapsid proteins of SARS-CoV-2 circulating in Latin America. Franco-Munoz et al 2020.pdf.txt30. Substitutions in spike and nucleocapsid proteins of SARS-CoV-2 circulating in Latin America. Franco-Munoz et al 2020.pdf.txtExtracted texttext/plain34212https://repository.ucc.edu.co/bitstreams/c9685e67-7268-40f4-972c-96071c1c01ae/download17a103b1d52e028568e693bf72bcd8a1MD5420.500.12494/32681oai:repository.ucc.edu.co:20.500.12494/326812024-08-10 22:41:54.996restrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo= |