Tuning the physicochemical features of titanium oxide nanorods by altering the ultrasound frequency during the synthesis: elevating photocatalytic selective partial oxidation of benzyl alcohol

La investigación de enfoques "verdes" y económicamente viables, como la (foto)catálisis, especialmente para la valorización de la biomasa, como la oxidación selectiva de compuestos derivados de la biomasa, como los alcoholes aromáticos, en el aldehído correspondiente, evitando las duras co...

Full description

Autores:
Qayyum, Abdul
Universidad Cooperativa de Colombia
Giannakoudakis, Dimitrios A.
Łomot, Dariusz
Colmenares-Quintero, Ramón Fernando
LaGrow, Alec P.
Lisovytskiy , Dmytro
Colmenares-Quintero, Juan Carlos
Tipo de recurso:
Article of investigation
Fecha de publicación:
2023
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/52763
Acceso en línea:
https://doi.org/10.1016/j.ultsonch.2023.106306
https://hdl.handle.net/20.500.12494/52763
Palabra clave:
Síntesis por precipitación asistida por ultrasonidos
Nanoestructura de óxido de titanio
Fotocatálisis
Oxidación selectiva de alcohol bencílico
Valorización de la biomasa
Ultrasound assisted precipitation synthesis
Titanium oxide nanostructure
Photocatalysis
Benzyl alcohol selective oxidation
Biomass valorization
Rights
openAccess
License
http://purl.org/coar/access_right/c_abf2
id COOPER2_b52dda3df74eb67892ad89c355b80a21
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/52763
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.none.fl_str_mv Tuning the physicochemical features of titanium oxide nanorods by altering the ultrasound frequency during the synthesis: elevating photocatalytic selective partial oxidation of benzyl alcohol
title Tuning the physicochemical features of titanium oxide nanorods by altering the ultrasound frequency during the synthesis: elevating photocatalytic selective partial oxidation of benzyl alcohol
spellingShingle Tuning the physicochemical features of titanium oxide nanorods by altering the ultrasound frequency during the synthesis: elevating photocatalytic selective partial oxidation of benzyl alcohol
Síntesis por precipitación asistida por ultrasonidos
Nanoestructura de óxido de titanio
Fotocatálisis
Oxidación selectiva de alcohol bencílico
Valorización de la biomasa
Ultrasound assisted precipitation synthesis
Titanium oxide nanostructure
Photocatalysis
Benzyl alcohol selective oxidation
Biomass valorization
title_short Tuning the physicochemical features of titanium oxide nanorods by altering the ultrasound frequency during the synthesis: elevating photocatalytic selective partial oxidation of benzyl alcohol
title_full Tuning the physicochemical features of titanium oxide nanorods by altering the ultrasound frequency during the synthesis: elevating photocatalytic selective partial oxidation of benzyl alcohol
title_fullStr Tuning the physicochemical features of titanium oxide nanorods by altering the ultrasound frequency during the synthesis: elevating photocatalytic selective partial oxidation of benzyl alcohol
title_full_unstemmed Tuning the physicochemical features of titanium oxide nanorods by altering the ultrasound frequency during the synthesis: elevating photocatalytic selective partial oxidation of benzyl alcohol
title_sort Tuning the physicochemical features of titanium oxide nanorods by altering the ultrasound frequency during the synthesis: elevating photocatalytic selective partial oxidation of benzyl alcohol
dc.creator.fl_str_mv Qayyum, Abdul
Universidad Cooperativa de Colombia
Giannakoudakis, Dimitrios A.
Łomot, Dariusz
Colmenares-Quintero, Ramón Fernando
LaGrow, Alec P.
Lisovytskiy , Dmytro
Colmenares-Quintero, Juan Carlos
dc.contributor.author.none.fl_str_mv Qayyum, Abdul
Universidad Cooperativa de Colombia
Giannakoudakis, Dimitrios A.
Łomot, Dariusz
Colmenares-Quintero, Ramón Fernando
LaGrow, Alec P.
Lisovytskiy , Dmytro
Colmenares-Quintero, Juan Carlos
dc.subject.none.fl_str_mv Síntesis por precipitación asistida por ultrasonidos
Nanoestructura de óxido de titanio
Fotocatálisis
Oxidación selectiva de alcohol bencílico
Valorización de la biomasa
topic Síntesis por precipitación asistida por ultrasonidos
Nanoestructura de óxido de titanio
Fotocatálisis
Oxidación selectiva de alcohol bencílico
Valorización de la biomasa
Ultrasound assisted precipitation synthesis
Titanium oxide nanostructure
Photocatalysis
Benzyl alcohol selective oxidation
Biomass valorization
dc.subject.other.none.fl_str_mv Ultrasound assisted precipitation synthesis
Titanium oxide nanostructure
Photocatalysis
Benzyl alcohol selective oxidation
Biomass valorization
description La investigación de enfoques "verdes" y económicamente viables, como la (foto)catálisis, especialmente para la valorización de la biomasa, como la oxidación selectiva de compuestos derivados de la biomasa, como los alcoholes aromáticos, en el aldehído correspondiente, evitando las duras condiciones de reacción y la adición de reactivos, ha concentrado la atención en los últimos años. Por lo tanto, el diseño y desarrollo de nuevos fotocatalizadores para la oxidación selectiva parcial es altamente deseable. En este trabajo de investigación, se utilizaron ultrasonidos de diferentes frecuencias (22, 40, 80 kHz) y diferentes amplitudes como herramienta de síntesis para obtener nuevos materiales por el método de precipitación. Las muestras sintetizadas se caracterizaron utilizando diferentes técnicas como sorción de N2, TEM, XPS, XRD, análisis térmico y espectroscopia de reflectancia difusa. Las muestras sintetizadas utilizando una frecuencia y amplitud de ultrasonidos bajas (22 kHz) mostraron una naturaleza morfológica y estructural mixta consistente en nanoestructuras unidimensionales asimétricas (similares a nanorods), estratificadas y áreas no bien definidas, lo que condujo a elevar las áreas superficiales específicas de óxido metálico hasta 155 m2/g. Las nanoestructuras unidimensionales observadas tienen diámetros comprendidos entre 20 y 60 nm. Esta muestra reveló la mayor eficiencia de fotooxidación para la conversión selectiva de dos compuestos modelo derivados de biomasa, y más concretamente inspirados en la lignina, el alcohol bencílico y el alcohol cinamílico en benzaldehído y aldehído cinamílico, respectivamente, y por tanto el mayor rendimiento awa
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-09-26T20:50:27Z
dc.date.available.none.fl_str_mv 2023-09-26T20:50:27Z
dc.date.issued.none.fl_str_mv 2023-01-21
dc.type.none.fl_str_mv Artículos Científicos
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 18732828
dc.identifier.uri.none.fl_str_mv https://doi.org/10.1016/j.ultsonch.2023.106306
https://hdl.handle.net/20.500.12494/52763
dc.identifier.bibliographicCitation.none.fl_str_mv Qayyum, A., Giannakoudakis, D. A., Łomot, D., Colmenares-Quintero, R. F., LaGrow, A. P., Nikiforow, K., … Colmenares, J. C. (2023). Tuning the physicochemical features of titanium oxide nanomaterials by ultrasound: Elevating photocatalytic selective partial oxidation of lignin-inspired aromatic alcohols. Ultrasonics Sonochemistry, 94. https://doi.org/10.1016/j.ultsonch.2023.106306
identifier_str_mv 18732828
Qayyum, A., Giannakoudakis, D. A., Łomot, D., Colmenares-Quintero, R. F., LaGrow, A. P., Nikiforow, K., … Colmenares, J. C. (2023). Tuning the physicochemical features of titanium oxide nanomaterials by ultrasound: Elevating photocatalytic selective partial oxidation of lignin-inspired aromatic alcohols. Ultrasonics Sonochemistry, 94. https://doi.org/10.1016/j.ultsonch.2023.106306
url https://doi.org/10.1016/j.ultsonch.2023.106306
https://hdl.handle.net/20.500.12494/52763
dc.relation.isversionof.none.fl_str_mv https://www.sciencedirect.com/science/article/pii/S1350417723000184?via%3Dihub
dc.relation.ispartofjournal.none.fl_str_mv Ultrasonics Sonochemistry
dc.relation.references.none.fl_str_mv A. Kumar, P. Choudhary, V. Krishnan, Selective and efficient aerobic oxidation of benzyl alcohols using plasmonic Au-TiO2: Influence of phase transformation on photocatalytic activity, Appl. Surf. Sci. 578 (2022), 151953, https://doi.org/ 10.1016/j.apsusc.2021.151953.
S. Said, M. Riad, Oxidation of benzyl alcohol through eco-friendly processes using Fe-doped cryptomelane catalysts, Solid State Sci. 94 (2019) 145–154, https://doi. org/10.1016/j.solidstatesciences.2019.05.020
X. Bao, H. Li, Z. Wang, F. Tong, M. Liu, Z. Zheng, P. Wang, H. Cheng, Y. Liu, Y. Dai, Y. Fan, Z. Li, B. Huang, TiO2/Ti3C2 as an efficient photocatalyst for selective oxidation of benzyl alcohol to benzaldehyde, Appl. Catal. B Environ. 286 (2021), 119885, https://doi.org/10.1016/j.apcatb.2021.119885
S. Ren, D. Cheng, X. Li, X. Xu, Mild oxidation of benzyl alcohols to benzyl aldehydes or ketones catalyzed by visible light, Tetrahedron Lett. 76 (2021), 153234, https://doi.org/10.1016/j.tetlet.2021.153234.
K. Alfonsi, J. Colberg, P.J. Dunn, T. Fevig, S. Jennings, T.A. Johnson, H.P. Kleine, C. Knight, M.A. Nagy, D.A. Perry, M. Stefaniak, Green chemistry tools to influence a medicinal chemistry and research chemistry based organisation, Green Chem. 10 (2008) 31–36, https://doi.org/10.1039/b711717e.
Z. Yang, X. Xia, W. Yang, L. Wang, Y. Liu, Photothermal effect and continuous hot electrons injection synergistically induced enhanced molecular oxygen activation for efficient selective oxidation of benzyl alcohol over plasmonic W18O49/ ZnIn2S4 photocatalyst, Appl. Catal. B Environ. (299 2021), 120675, https://doi. org/10.1016/j.apcatb.2021.120675.
L. Chen, J. Tang, L.N. Song, P. Chen, J. He, C.T. Au, S.F. Yin, Heterogeneous photocatalysis for selective oxidation of alcohols and hydrocarbons, Appl. Catal. B Environ. 242 (2019) 379–388, https://doi.org/10.1016/j.apcatb.2018.10.025
J.C. Colmenares, W. Ouyang, M. Ojeda, E. Kuna, O. Chernyayeva, D. Lisovytskiy, S. De, R. Luque, A.M. Balu, Mild ultrasound-assisted synthesis of TiO2 supported on magnetic nanocomposites for selective photo-oxidation of benzyl alcohol, Appl. Catal. B Environ. 183 (2016) 107–112, https://doi.org/10.1016/j. apcatb.2015.10.034.
M. Bellardita, V. Loddo, L. Palmisano, Formation of High Added Value Chemicals by Photocatalytic Treatment of Biomass, Mini. Rev. Org. Chem. 17 (2020) 884–901, https://doi.org/10.2174/1570193x17666200131112856.
F.R. Pomilla, E.I. García-Lopez, ´ G. Marcì, L. Palmisano, F. Parrino, Heterogeneous photocatalytic materials for sustainable formation of high-value chemicals in green solvents, Mater. Today Sustain. 13 (2021), https://doi.org/10.1016/j. mtsust.2021.100071.
Z. Li, S. Wang, J. Wu, W. Zhou, Recent progress in defective TiO2 photocatalysts for energy and environmental applications, Renew. Sustain. Energy Rev. 156 (2022), 111980, https://doi.org/10.1016/j.rser.2021.111980
Z. Xiong, Z. Lei, Y. Li, L. Dong, Y. Zhao, J. Zhang, A review on modification of facetengineered TiO2 for photocatalytic CO2 reduction, J. Photochem. Photobiol. C Photochem. Rev. (2018), https://doi.org/10.1016/j.jphotochemrev.2018.07.002
Z.H. Chen, Y.H. Li, M.Y. Qi, Z.R. Tang, Y.J. Xu, Benzyl alcohol oxidation and hydrogen generation over MoS2/ZnIn2S4 composite photocatalyst, Res. Chem. Intermed. 48 (2022) 1–12, https://doi.org/10.1007/s11164-021-04636-y.
Q. Lin, Y.H. Li, M.Y. Qi, J.Y. Li, Z.R. Tang, M. Anpo, Y.M.A. Yamada, Y.J. Xu, Photoredox dual reaction for selective alcohol oxidation and hydrogen evolution over nickel surface-modified ZnIn2S4, Appl. Catal. B Environ. 271 (2020), 118946, https://doi.org/10.1016/j.apcatb.2020.118946.
Electrochemical Photolysis of Water at a Semiconductor Electrode, No Title, Nature. 238 (1972) 38–38.
G. Kumaraswamy, G. Sadanandam, K. Ledwaba, R. Maroju, An efficient photocatalytic synthesis of benzimidazole over cobalt-loaded TiO2 catalysts under solar light irradiation, J. Photochem. Photobiol. A Chem. 429 (2022), 113888, https://doi.org/10.1016/j.jphotochem.2022.113888.
R. Katal, S. Masudy-Panah, M. Tanhaei, M.H.D.A. Farahani, H. Jiangyong, A review on the synthesis of the various types of anatase TiO2 facets and their applications for photocatalysis, Chem. Eng. J. 384 (2020), 123384, https://doi.org/10.1016/j. cej.2019.123384
H. Mao, F. Zhang, M. Du, L. Dai, Y. Qian, H. Pang, Review on synthesis of porous TiO2-based catalysts for energy conversion systems, Ceram. Int. 47 (2021) 25177–25200, https://doi.org/10.1016/j.ceramint.2021.06.039.
G. Chatel, J.C. Colmenares, Sonochemistry: from Basic Principles to Innovative Applications, Top. Curr. Chem. 375 (2017) 1–4, https://doi.org/10.1007/s41061- 016-0096-1.
J.H. Bang, K.S. Suslick, Applications of ultrasound to the synthesis of nanostructured materials, Adv. Mater. 22 (2010) 1039–1059, https://doi.org/ 10.1002/adma.200904093.
K.S. Suslick, G.J. Price, Applications of ultrasound to materials chemistry, Annu. Rev. Mater. Sci. 29 (1999) 295–326, https://doi.org/10.1146/annurev. matsci.29.1.295
N. Pokhrel, P.K. Vabbina, N. Pala, Sonochemistry: Science and Engineering, Ultrason. Sonochem. 29 (2016) 104–128, https://doi.org/10.1016/j. ultsonch.2015.07.023
D.A. Giannakoudakis, V. Nair, A. Khan, E.A. Deliyanni, J.C. Colmenares, K. S. Triantafyllidis, Additive-free photo-assisted selective partial oxidation at ambient conditions of 5-hydroxymethylfurfural by manganese (IV) oxide nanorods, App. Cat. B: Env. 256 (2019) 1178033, https://doi.org/10.1016/j. apcatb.2019.117803
D.A. Giannakoudakis, A. Qayyum, D. Łomot, M.O. Besenhard, D. Lisovytskiy, T. J. Bandosz, J.C. Colmenares, Boosting the Photoactivity of Grafted Titania: Ultrasound-Driven Synthesis of a Multi-Phase Heterogeneous Nano-Architected Photocatalyst, Adv. Funct. Mater. 31 (2021) 2007115, https://doi.org/10.1002/ adfm.202007115.
A. Qayyum, D.A. Giannakoudakis, A.P. LaGrow, O. Bondarchuk, D. Łomot, J. C. Colmenares, High-frequency sonication for the synthesis of nanoclusterdecorated titania nanorods: Making a better photocatalyst for the selective oxidation of monoaromatic alcohol, Catal. Commun. 163 (2022), https://doi.org/ 10.1016/j.catcom.2022.106406
G. Fagerlund, Determination of specific surface by the BET method, Mat´eriaux Constr. 6 (1973) 239–245, https://doi.org/10.1007/BF02479039.
R. Bardestani, G.S. Patience, S. Kaliaguine, Experimental methods in chemical engineering: specific surface area and pore size distribution measurements—BET, BJH, and DFT, Can. J. Chem. Eng. 97 (2019) 2781–2791, https://doi.org/10.1002/ cjce.23632
A. Medvids, P. Onufrijevs, J. Kaupuˇzs, R. Eglitis, J. Padgurskas, A. Zunda, H. Mimura, I. Skadins, S. Varnagiris, Anatase or rutile TiO2 nanolayer formation on Ti substrates by laser radiation: Mechanical, photocatalytic and antibacterial properties, Opt. Laser Technol. 138 (2021), https://doi.org/10.1016/j. optlastec.2020.106898.
L. Xiang, X. Liu, C. Yang, Q. Lei, J. Zhao, X. Zhao, Ultrafast synthesis of anatase TiO2 microspheres doped with rare-earth by one-step microwave method, Inorg. Chem. Commun. 127 (2021), 108532, https://doi.org/10.1016/j. inoche.2021.108532
M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem. 87 (2015) 1051–1069, https://doi.org/10.1515/pac-2014-1117
H. Kominami, K. Oki, M. Kohno, S.I. Onoue, Y. Kera, B. Ohtani, Novel solvothermal synthesis of niobium(v) oxide powders and their photocatalytic activity in aqueous suspensions, J. Mater. Chem. 11 (2001) 604–609, https://doi.org/10.1039/ b008745i.
Z. Zhang, P.A. Maggard, Investigation of photocatalytically-active hydrated forms of amorphous titania, TiO2⋅nH2O, J. Photochem. Photobiol. A Chem. 186 (2007) 8–13, https://doi.org/10.1016/j.jphotochem.2006.07.004.
M. Elrouby, M.M. Khalaf, Synthesis and characterization of titania nanoparticles and enhancement of photochemical, photoelectrochemical and electrochemical performance with zirconia nanoparticles, J. Phys. Chem. Solids. 122 (2018) 227–233, https://doi.org/10.1016/j.jpcs.2018.06.034
G.N. Shao, S.M. Imran, S.J. Jeon, M. Engole, N. Abbas, M. Salman Haider, S. J. Kang, H.T. Kim, Sol-gel synthesis of photoactive zirconia-titania from metal salts and investigation of their photocatalytic properties in the photodegradation of methylene blue, Powder Technol. 258 (2014) 99–109, https://doi.org/10.1016/j. powtec.2014.03.024
A. Tang, Y. Deng, J. Jin, H. Yang, ZnFe2O4 -TiO2 nanoparticles within mesoporous MCM-41, Sci. World J. 2012 (2012), https://doi.org/10.1100/2012/480527.
D.A. Giannakoudakis, G. Chatel, J.C. Colmenares, Mechanochemical Forces as a Synthetic Tool for Zero- and One-Dimensional Titanium Oxide-Based Nanophotocatalysts, Tp Curr Chem (Z) 378 (2020) 2, https://doi.org/10.1007/s41061- 019-0262-3.
D.A. Giannakoudakis, K. Vikrant, A.P. LaGrow, D. Lisovytskiy, K.H. Kim, T. J. Bandosz, J. Carlos Colmenares, Scrolled titanate nanosheet composites with reduced graphite oxide for photocatalytic and adsorptive removal of toxic vapors, Chem. Eng. J. 415 (2021), 128907, https://doi.org/10.1016/j.cej.2021.128907
D.A. Giannakoudakis, N. Farahmand, D. Łomot, K. Sobczak, T.J. Bandosz, J. C. Colmenares, Ultrasound-activated TiO2/GO-based bifunctional photoreactive adsorbents for detoxification of chemical warfare agent surrogate vapors, Chem. Eng. J. 395 (2020), https://doi.org/10.1016/j.cej.2020.125099
X. Ping, Y. Zhang, Q. Zhao, Y. Lu, L. Hao, Flexible TiO2 nanograss array film decorated with oxygen vacancies introduced by facile chemical reduction and their photocatalytic activity, Environ. Technol. Innov. 25 (2022), 102185, https://doi. org/10.1016/j.eti.2021.102185
M. Chi, X. Sun, G. Lozano-Blanco, B.J. Tatarchuk, XPS and FTIR investigations of the transient photocatalytic decomposition of surface carbon contaminants from anatase TiO2 in UHV starved water/oxygen environments, Appl. Surf. Sci. 570 (2021), 151147, https://doi.org/10.1016/j.apsusc.2021.151147
M.H.M. Ahmed, R.H. Temperton, J.N. O’Shea, An in situ exploration of subsurface defect migration to a liquid water-exposed rutile TiO2(110) surface by XPS, Surf. Interface Anal. 53 (2021) 1013–1019, https://doi.org/10.1002/sia.6906
S. Ida, S.J. Samuel Justin, P. Wilson, B. Neppolian, Visible light active black TiO2 nanostructures and its RGO based nanocomposite for enhanced hydrogen generation and electrochemical potency, Appl. Surf. Sci. Adv. 7 (2022), 100215, https://doi.org/10.1016/j.apsadv.2022.100215
S.S. Abdullahi, S. Güner, Y. Koseoglu, I. Murtala, B.I. Adamu, M.I. Abdulhamid, Sımpl e Method For The Determ ınatıon o f Band Gap of a Nanopowdered Sample Usıng Kubelka Munk Theory, J. Niger. Assoc. Math. Phys. 35 (2016) 241–246.
J.F. Guayaquil-Sosa, B. Serrano-Rosales, P.J. Valad´es-Pelayo, H. de Lasa, Photocatalytic hydrogen production using mesoporous TiO2 doped with Pt, Appl. Catal. B Environ. 211 (2017) 337–348, https://doi.org/10.1016/j. apcatb.2017.04.029
C.O. Ania, M. Seredych, E. Rodríguez-Castellon, ´ T.J. Bandosz, Visible light driven photoelectrochemical water splitting on metal free nanoporous carbon promoted by chromophoric functional groups, Carbon N. Y. 79 (2014) 432–441, https://doi. org/10.1016/j.carbon.2014.08.001
M. Benmami, K. Chhor, A.V. Kanaev, Supported nanometric titanium oxide sols as a new efficient photocatalyst, J. Phys. Chem. B. 109 (2005) 19766–19771, https:// doi.org/10.1021/jp051396+.
Y. Li, T. Sasaki, Y. Shimizu, N. Koshizaki, Hexagonal-close-packed, hierarchical amorphous TiO2 nanocolumn arrays: Transferability, enhanced photocatalytic activity, and superamphiphilicity without UV irradiation, J. Am. Chem. Soc. 130 (2008) 14755–14762, https://doi.org/10.1021/ja805077q
D. Zywitzki, H. Jing, H. Tüysüz, C.K. Chan, High surface area, amorphous titania with reactive Ti3+ through a photo-assisted synthesis method for photocatalytic H2 generation, J. Mater. Chem. A. 5 (2017) 10957–10967, https://doi.org/ 10.1039/c7ta01614j.
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
dc.format.extent.none.fl_str_mv 1 - 10
dc.coverage.temporal.none.fl_str_mv 94
dc.publisher.none.fl_str_mv Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Civil, Medellín y Envigado
dc.publisher.program.none.fl_str_mv Ingeniería Civil
dc.publisher.place.none.fl_str_mv Medellín
publisher.none.fl_str_mv Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Civil, Medellín y Envigado
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/42d54e06-9511-41f2-9197-9a43727d7541/download
https://repository.ucc.edu.co/bitstreams/f1951027-dc25-4d3d-9062-f340c8df5611/download
https://repository.ucc.edu.co/bitstreams/8dbb059b-6c6c-4ec0-b4f2-0a75d252d6c6/download
https://repository.ucc.edu.co/bitstreams/09bbf5f5-9ce1-4c33-ab95-dc373fcafcd2/download
https://repository.ucc.edu.co/bitstreams/666dd5a8-6540-4024-9613-f4e5ed9197c1/download
https://repository.ucc.edu.co/bitstreams/b5a3e695-ea46-4843-8114-691d76f79f59/download
https://repository.ucc.edu.co/bitstreams/8b1ea2d5-2d43-445f-95bb-2549761dd772/download
bitstream.checksum.fl_str_mv 3bce4f7ab09dfc588f126e1e36e98a45
d77e47927202b92d72477f90cd2eabce
e59952dd96a68d9902a3f19f3a2b2a00
5b5e4a36f5fc4a61f8088984e70700b4
11249f7032427cc1413afa3d3c55351f
8f250bae95c5022a8dcd2b85c1cdcebd
aeec1aef1220ae4364521b72d450dd8f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1811565079394516992
spelling Qayyum, AbdulUniversidad Cooperativa de ColombiaGiannakoudakis, Dimitrios A.Łomot, DariuszColmenares-Quintero, Ramón FernandoLaGrow, Alec P.Lisovytskiy , DmytroColmenares-Quintero, Juan Carlos942023-09-26T20:50:27Z2023-09-26T20:50:27Z2023-01-2118732828https://doi.org/10.1016/j.ultsonch.2023.106306https://hdl.handle.net/20.500.12494/52763Qayyum, A., Giannakoudakis, D. A., Łomot, D., Colmenares-Quintero, R. F., LaGrow, A. P., Nikiforow, K., … Colmenares, J. C. (2023). Tuning the physicochemical features of titanium oxide nanomaterials by ultrasound: Elevating photocatalytic selective partial oxidation of lignin-inspired aromatic alcohols. Ultrasonics Sonochemistry, 94. https://doi.org/10.1016/j.ultsonch.2023.106306La investigación de enfoques "verdes" y económicamente viables, como la (foto)catálisis, especialmente para la valorización de la biomasa, como la oxidación selectiva de compuestos derivados de la biomasa, como los alcoholes aromáticos, en el aldehído correspondiente, evitando las duras condiciones de reacción y la adición de reactivos, ha concentrado la atención en los últimos años. Por lo tanto, el diseño y desarrollo de nuevos fotocatalizadores para la oxidación selectiva parcial es altamente deseable. En este trabajo de investigación, se utilizaron ultrasonidos de diferentes frecuencias (22, 40, 80 kHz) y diferentes amplitudes como herramienta de síntesis para obtener nuevos materiales por el método de precipitación. Las muestras sintetizadas se caracterizaron utilizando diferentes técnicas como sorción de N2, TEM, XPS, XRD, análisis térmico y espectroscopia de reflectancia difusa. Las muestras sintetizadas utilizando una frecuencia y amplitud de ultrasonidos bajas (22 kHz) mostraron una naturaleza morfológica y estructural mixta consistente en nanoestructuras unidimensionales asimétricas (similares a nanorods), estratificadas y áreas no bien definidas, lo que condujo a elevar las áreas superficiales específicas de óxido metálico hasta 155 m2/g. Las nanoestructuras unidimensionales observadas tienen diámetros comprendidos entre 20 y 60 nm. Esta muestra reveló la mayor eficiencia de fotooxidación para la conversión selectiva de dos compuestos modelo derivados de biomasa, y más concretamente inspirados en la lignina, el alcohol bencílico y el alcohol cinamílico en benzaldehído y aldehído cinamílico, respectivamente, y por tanto el mayor rendimiento awaThe research for “green” and economically feasible approaches such as (photo)catalysis especially for biomass valorization such as selective oxidation of biomass derived compounds like aromatic alcohols to corresponding aldehyde by avoiding the harsh reaction conditions and the addition of reagents concentrate the focus of attention the last years. Hence, design and development of novel photocatalyst for the partial selective oxidation is highly desirable. In this research work, ultrasonication of different frequencies (22, 40, 80 kHz) and different amplitudes was utilized as synthesis tool in order to obtain novel materials by precipitation method. The synthesized samples were characterized by using different techniques such as N2 sorption, TEM, XPS, XRD, thermal analysis, and diffuse reflectance spectroscopy. The synthesized sample by using low ultrasound frequency (22 kHz) and amplitude showed a mixed morphological and structural nature consisting of asymmetric 1-dimensional (nanorods-like), layered nano-structures and not well-defined areas, leading to elevate for metal oxide specific surface areas up to 155 m2/g. The observed 1-D nanostructures have diamentions in the range of 20–60 nm. This sample revealed the highest photo-oxidation efficiency for the selective conversion of two biomass-derived, and more specifically lignin-inspired model compounds, benzyl alcohol and cinnamyl alcohol to benzaldehyde and cinnamyl aldehyde, respectively, and hence the highest yield towards the desired aldehydes. The selective photo-oxidation activity was retained even after 5 photocatalytic cycles, while no leaching of Ti was recorded.https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000192503https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000436798https://orcid.org/0000-0003-1166-1982https://orcid.org/0000-0003-3701-6340https://orcid.org/0000-0003-3663-1122https://orcid.org/0000-0001-5996-6510https://orcid.org/0000-0001-6026-8568https://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000005961aqayyum@ichf.edu.pldagchem@gmail.comramon.colmenaresq@campusucc.edu.cojcarloscolmenares@ichf.edu.plhttps://scholar.google.com/citations?user=f0_QSeMAAAAJ&hl=es&oi=srahttps://scholar.google.com/citations?user=9HLAZYUAAAAJ&hl=eshttps://scholar.google.com/citations?user=9spgFMUAAAAJ&hl=es1 - 10Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Civil, Medellín y EnvigadoIngeniería CivilMedellínhttps://www.sciencedirect.com/science/article/pii/S1350417723000184?via%3DihubUltrasonics SonochemistryA. Kumar, P. Choudhary, V. Krishnan, Selective and efficient aerobic oxidation of benzyl alcohols using plasmonic Au-TiO2: Influence of phase transformation on photocatalytic activity, Appl. Surf. Sci. 578 (2022), 151953, https://doi.org/ 10.1016/j.apsusc.2021.151953.S. Said, M. Riad, Oxidation of benzyl alcohol through eco-friendly processes using Fe-doped cryptomelane catalysts, Solid State Sci. 94 (2019) 145–154, https://doi. org/10.1016/j.solidstatesciences.2019.05.020X. Bao, H. Li, Z. Wang, F. Tong, M. Liu, Z. Zheng, P. Wang, H. Cheng, Y. Liu, Y. Dai, Y. Fan, Z. Li, B. Huang, TiO2/Ti3C2 as an efficient photocatalyst for selective oxidation of benzyl alcohol to benzaldehyde, Appl. Catal. B Environ. 286 (2021), 119885, https://doi.org/10.1016/j.apcatb.2021.119885S. Ren, D. Cheng, X. Li, X. Xu, Mild oxidation of benzyl alcohols to benzyl aldehydes or ketones catalyzed by visible light, Tetrahedron Lett. 76 (2021), 153234, https://doi.org/10.1016/j.tetlet.2021.153234.K. Alfonsi, J. Colberg, P.J. Dunn, T. Fevig, S. Jennings, T.A. Johnson, H.P. Kleine, C. Knight, M.A. Nagy, D.A. Perry, M. Stefaniak, Green chemistry tools to influence a medicinal chemistry and research chemistry based organisation, Green Chem. 10 (2008) 31–36, https://doi.org/10.1039/b711717e.Z. Yang, X. Xia, W. Yang, L. Wang, Y. Liu, Photothermal effect and continuous hot electrons injection synergistically induced enhanced molecular oxygen activation for efficient selective oxidation of benzyl alcohol over plasmonic W18O49/ ZnIn2S4 photocatalyst, Appl. Catal. B Environ. (299 2021), 120675, https://doi. org/10.1016/j.apcatb.2021.120675.L. Chen, J. Tang, L.N. Song, P. Chen, J. He, C.T. Au, S.F. Yin, Heterogeneous photocatalysis for selective oxidation of alcohols and hydrocarbons, Appl. Catal. B Environ. 242 (2019) 379–388, https://doi.org/10.1016/j.apcatb.2018.10.025J.C. Colmenares, W. Ouyang, M. Ojeda, E. Kuna, O. Chernyayeva, D. Lisovytskiy, S. De, R. Luque, A.M. Balu, Mild ultrasound-assisted synthesis of TiO2 supported on magnetic nanocomposites for selective photo-oxidation of benzyl alcohol, Appl. Catal. B Environ. 183 (2016) 107–112, https://doi.org/10.1016/j. apcatb.2015.10.034.M. Bellardita, V. Loddo, L. Palmisano, Formation of High Added Value Chemicals by Photocatalytic Treatment of Biomass, Mini. Rev. Org. Chem. 17 (2020) 884–901, https://doi.org/10.2174/1570193x17666200131112856.F.R. Pomilla, E.I. García-Lopez, ´ G. Marcì, L. Palmisano, F. Parrino, Heterogeneous photocatalytic materials for sustainable formation of high-value chemicals in green solvents, Mater. Today Sustain. 13 (2021), https://doi.org/10.1016/j. mtsust.2021.100071.Z. Li, S. Wang, J. Wu, W. Zhou, Recent progress in defective TiO2 photocatalysts for energy and environmental applications, Renew. Sustain. Energy Rev. 156 (2022), 111980, https://doi.org/10.1016/j.rser.2021.111980Z. Xiong, Z. Lei, Y. Li, L. Dong, Y. Zhao, J. Zhang, A review on modification of facetengineered TiO2 for photocatalytic CO2 reduction, J. Photochem. Photobiol. C Photochem. Rev. (2018), https://doi.org/10.1016/j.jphotochemrev.2018.07.002Z.H. Chen, Y.H. Li, M.Y. Qi, Z.R. Tang, Y.J. Xu, Benzyl alcohol oxidation and hydrogen generation over MoS2/ZnIn2S4 composite photocatalyst, Res. Chem. Intermed. 48 (2022) 1–12, https://doi.org/10.1007/s11164-021-04636-y.Q. Lin, Y.H. Li, M.Y. Qi, J.Y. Li, Z.R. Tang, M. Anpo, Y.M.A. Yamada, Y.J. Xu, Photoredox dual reaction for selective alcohol oxidation and hydrogen evolution over nickel surface-modified ZnIn2S4, Appl. Catal. B Environ. 271 (2020), 118946, https://doi.org/10.1016/j.apcatb.2020.118946.Electrochemical Photolysis of Water at a Semiconductor Electrode, No Title, Nature. 238 (1972) 38–38.G. Kumaraswamy, G. Sadanandam, K. Ledwaba, R. Maroju, An efficient photocatalytic synthesis of benzimidazole over cobalt-loaded TiO2 catalysts under solar light irradiation, J. Photochem. Photobiol. A Chem. 429 (2022), 113888, https://doi.org/10.1016/j.jphotochem.2022.113888.R. Katal, S. Masudy-Panah, M. Tanhaei, M.H.D.A. Farahani, H. Jiangyong, A review on the synthesis of the various types of anatase TiO2 facets and their applications for photocatalysis, Chem. Eng. J. 384 (2020), 123384, https://doi.org/10.1016/j. cej.2019.123384H. Mao, F. Zhang, M. Du, L. Dai, Y. Qian, H. Pang, Review on synthesis of porous TiO2-based catalysts for energy conversion systems, Ceram. Int. 47 (2021) 25177–25200, https://doi.org/10.1016/j.ceramint.2021.06.039.G. Chatel, J.C. Colmenares, Sonochemistry: from Basic Principles to Innovative Applications, Top. Curr. Chem. 375 (2017) 1–4, https://doi.org/10.1007/s41061- 016-0096-1.J.H. Bang, K.S. Suslick, Applications of ultrasound to the synthesis of nanostructured materials, Adv. Mater. 22 (2010) 1039–1059, https://doi.org/ 10.1002/adma.200904093.K.S. Suslick, G.J. Price, Applications of ultrasound to materials chemistry, Annu. Rev. Mater. Sci. 29 (1999) 295–326, https://doi.org/10.1146/annurev. matsci.29.1.295N. Pokhrel, P.K. Vabbina, N. Pala, Sonochemistry: Science and Engineering, Ultrason. Sonochem. 29 (2016) 104–128, https://doi.org/10.1016/j. ultsonch.2015.07.023D.A. Giannakoudakis, V. Nair, A. Khan, E.A. Deliyanni, J.C. Colmenares, K. S. Triantafyllidis, Additive-free photo-assisted selective partial oxidation at ambient conditions of 5-hydroxymethylfurfural by manganese (IV) oxide nanorods, App. Cat. B: Env. 256 (2019) 1178033, https://doi.org/10.1016/j. apcatb.2019.117803D.A. Giannakoudakis, A. Qayyum, D. Łomot, M.O. Besenhard, D. Lisovytskiy, T. J. Bandosz, J.C. Colmenares, Boosting the Photoactivity of Grafted Titania: Ultrasound-Driven Synthesis of a Multi-Phase Heterogeneous Nano-Architected Photocatalyst, Adv. Funct. Mater. 31 (2021) 2007115, https://doi.org/10.1002/ adfm.202007115.A. Qayyum, D.A. Giannakoudakis, A.P. LaGrow, O. Bondarchuk, D. Łomot, J. C. Colmenares, High-frequency sonication for the synthesis of nanoclusterdecorated titania nanorods: Making a better photocatalyst for the selective oxidation of monoaromatic alcohol, Catal. Commun. 163 (2022), https://doi.org/ 10.1016/j.catcom.2022.106406G. Fagerlund, Determination of specific surface by the BET method, Mat´eriaux Constr. 6 (1973) 239–245, https://doi.org/10.1007/BF02479039.R. Bardestani, G.S. Patience, S. Kaliaguine, Experimental methods in chemical engineering: specific surface area and pore size distribution measurements—BET, BJH, and DFT, Can. J. Chem. Eng. 97 (2019) 2781–2791, https://doi.org/10.1002/ cjce.23632A. Medvids, P. Onufrijevs, J. Kaupuˇzs, R. Eglitis, J. Padgurskas, A. Zunda, H. Mimura, I. Skadins, S. Varnagiris, Anatase or rutile TiO2 nanolayer formation on Ti substrates by laser radiation: Mechanical, photocatalytic and antibacterial properties, Opt. Laser Technol. 138 (2021), https://doi.org/10.1016/j. optlastec.2020.106898.L. Xiang, X. Liu, C. Yang, Q. Lei, J. Zhao, X. Zhao, Ultrafast synthesis of anatase TiO2 microspheres doped with rare-earth by one-step microwave method, Inorg. Chem. Commun. 127 (2021), 108532, https://doi.org/10.1016/j. inoche.2021.108532M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem. 87 (2015) 1051–1069, https://doi.org/10.1515/pac-2014-1117H. Kominami, K. Oki, M. Kohno, S.I. Onoue, Y. Kera, B. Ohtani, Novel solvothermal synthesis of niobium(v) oxide powders and their photocatalytic activity in aqueous suspensions, J. Mater. Chem. 11 (2001) 604–609, https://doi.org/10.1039/ b008745i.Z. Zhang, P.A. Maggard, Investigation of photocatalytically-active hydrated forms of amorphous titania, TiO2⋅nH2O, J. Photochem. Photobiol. A Chem. 186 (2007) 8–13, https://doi.org/10.1016/j.jphotochem.2006.07.004.M. Elrouby, M.M. Khalaf, Synthesis and characterization of titania nanoparticles and enhancement of photochemical, photoelectrochemical and electrochemical performance with zirconia nanoparticles, J. Phys. Chem. Solids. 122 (2018) 227–233, https://doi.org/10.1016/j.jpcs.2018.06.034G.N. Shao, S.M. Imran, S.J. Jeon, M. Engole, N. Abbas, M. Salman Haider, S. J. Kang, H.T. Kim, Sol-gel synthesis of photoactive zirconia-titania from metal salts and investigation of their photocatalytic properties in the photodegradation of methylene blue, Powder Technol. 258 (2014) 99–109, https://doi.org/10.1016/j. powtec.2014.03.024A. Tang, Y. Deng, J. Jin, H. Yang, ZnFe2O4 -TiO2 nanoparticles within mesoporous MCM-41, Sci. World J. 2012 (2012), https://doi.org/10.1100/2012/480527.D.A. Giannakoudakis, G. Chatel, J.C. Colmenares, Mechanochemical Forces as a Synthetic Tool for Zero- and One-Dimensional Titanium Oxide-Based Nanophotocatalysts, Tp Curr Chem (Z) 378 (2020) 2, https://doi.org/10.1007/s41061- 019-0262-3.D.A. Giannakoudakis, K. Vikrant, A.P. LaGrow, D. Lisovytskiy, K.H. Kim, T. J. Bandosz, J. Carlos Colmenares, Scrolled titanate nanosheet composites with reduced graphite oxide for photocatalytic and adsorptive removal of toxic vapors, Chem. Eng. J. 415 (2021), 128907, https://doi.org/10.1016/j.cej.2021.128907D.A. Giannakoudakis, N. Farahmand, D. Łomot, K. Sobczak, T.J. Bandosz, J. C. Colmenares, Ultrasound-activated TiO2/GO-based bifunctional photoreactive adsorbents for detoxification of chemical warfare agent surrogate vapors, Chem. Eng. J. 395 (2020), https://doi.org/10.1016/j.cej.2020.125099X. Ping, Y. Zhang, Q. Zhao, Y. Lu, L. Hao, Flexible TiO2 nanograss array film decorated with oxygen vacancies introduced by facile chemical reduction and their photocatalytic activity, Environ. Technol. Innov. 25 (2022), 102185, https://doi. org/10.1016/j.eti.2021.102185M. Chi, X. Sun, G. Lozano-Blanco, B.J. Tatarchuk, XPS and FTIR investigations of the transient photocatalytic decomposition of surface carbon contaminants from anatase TiO2 in UHV starved water/oxygen environments, Appl. Surf. Sci. 570 (2021), 151147, https://doi.org/10.1016/j.apsusc.2021.151147M.H.M. Ahmed, R.H. Temperton, J.N. O’Shea, An in situ exploration of subsurface defect migration to a liquid water-exposed rutile TiO2(110) surface by XPS, Surf. Interface Anal. 53 (2021) 1013–1019, https://doi.org/10.1002/sia.6906S. Ida, S.J. Samuel Justin, P. Wilson, B. Neppolian, Visible light active black TiO2 nanostructures and its RGO based nanocomposite for enhanced hydrogen generation and electrochemical potency, Appl. Surf. Sci. Adv. 7 (2022), 100215, https://doi.org/10.1016/j.apsadv.2022.100215S.S. Abdullahi, S. Güner, Y. Koseoglu, I. Murtala, B.I. Adamu, M.I. Abdulhamid, Sımpl e Method For The Determ ınatıon o f Band Gap of a Nanopowdered Sample Usıng Kubelka Munk Theory, J. Niger. Assoc. Math. Phys. 35 (2016) 241–246.J.F. Guayaquil-Sosa, B. Serrano-Rosales, P.J. Valad´es-Pelayo, H. de Lasa, Photocatalytic hydrogen production using mesoporous TiO2 doped with Pt, Appl. Catal. B Environ. 211 (2017) 337–348, https://doi.org/10.1016/j. apcatb.2017.04.029C.O. Ania, M. Seredych, E. Rodríguez-Castellon, ´ T.J. Bandosz, Visible light driven photoelectrochemical water splitting on metal free nanoporous carbon promoted by chromophoric functional groups, Carbon N. Y. 79 (2014) 432–441, https://doi. org/10.1016/j.carbon.2014.08.001M. Benmami, K. Chhor, A.V. Kanaev, Supported nanometric titanium oxide sols as a new efficient photocatalyst, J. Phys. Chem. B. 109 (2005) 19766–19771, https:// doi.org/10.1021/jp051396+.Y. Li, T. Sasaki, Y. Shimizu, N. Koshizaki, Hexagonal-close-packed, hierarchical amorphous TiO2 nanocolumn arrays: Transferability, enhanced photocatalytic activity, and superamphiphilicity without UV irradiation, J. Am. Chem. Soc. 130 (2008) 14755–14762, https://doi.org/10.1021/ja805077qD. Zywitzki, H. Jing, H. Tüysüz, C.K. Chan, High surface area, amorphous titania with reactive Ti3+ through a photo-assisted synthesis method for photocatalytic H2 generation, J. Mater. Chem. A. 5 (2017) 10957–10967, https://doi.org/ 10.1039/c7ta01614j.Síntesis por precipitación asistida por ultrasonidosNanoestructura de óxido de titanioFotocatálisisOxidación selectiva de alcohol bencílicoValorización de la biomasaUltrasound assisted precipitation synthesisTitanium oxide nanostructurePhotocatalysisBenzyl alcohol selective oxidationBiomass valorizationTuning the physicochemical features of titanium oxide nanorods by altering the ultrasound frequency during the synthesis: elevating photocatalytic selective partial oxidation of benzyl alcoholArtículos Científicoshttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/42d54e06-9511-41f2-9197-9a43727d7541/download3bce4f7ab09dfc588f126e1e36e98a45MD51ORIGINALLicencia de uso_compressed.pdfLicencia de uso_compressed.pdfapplication/pdf87152https://repository.ucc.edu.co/bitstreams/f1951027-dc25-4d3d-9062-f340c8df5611/downloadd77e47927202b92d72477f90cd2eabceMD522023_Turning_the_physicochemical_features_of_titanium_oxide_nanomaterials_by_ultrasound.pdf2023_Turning_the_physicochemical_features_of_titanium_oxide_nanomaterials_by_ultrasound.pdfapplication/pdf10262882https://repository.ucc.edu.co/bitstreams/8dbb059b-6c6c-4ec0-b4f2-0a75d252d6c6/downloade59952dd96a68d9902a3f19f3a2b2a00MD53TEXTLicencia de uso_compressed.pdf.txtLicencia de uso_compressed.pdf.txtExtracted texttext/plain5265https://repository.ucc.edu.co/bitstreams/09bbf5f5-9ce1-4c33-ab95-dc373fcafcd2/download5b5e4a36f5fc4a61f8088984e70700b4MD542023_Turning_the_physicochemical_features_of_titanium_oxide_nanomaterials_by_ultrasound.pdf.txt2023_Turning_the_physicochemical_features_of_titanium_oxide_nanomaterials_by_ultrasound.pdf.txtExtracted texttext/plain61919https://repository.ucc.edu.co/bitstreams/666dd5a8-6540-4024-9613-f4e5ed9197c1/download11249f7032427cc1413afa3d3c55351fMD56THUMBNAILLicencia de uso_compressed.pdf.jpgLicencia de uso_compressed.pdf.jpgGenerated Thumbnailimage/jpeg11254https://repository.ucc.edu.co/bitstreams/b5a3e695-ea46-4843-8114-691d76f79f59/download8f250bae95c5022a8dcd2b85c1cdcebdMD552023_Turning_the_physicochemical_features_of_titanium_oxide_nanomaterials_by_ultrasound.pdf.jpg2023_Turning_the_physicochemical_features_of_titanium_oxide_nanomaterials_by_ultrasound.pdf.jpgGenerated Thumbnailimage/jpeg15072https://repository.ucc.edu.co/bitstreams/8b1ea2d5-2d43-445f-95bb-2549761dd772/downloadaeec1aef1220ae4364521b72d450dd8fMD5720.500.12494/52763oai:repository.ucc.edu.co:20.500.12494/527632024-08-20 16:23:43.36open.accesshttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo=