Efecto del estatus ovárico sobre la producción in vitro de embriones ovinos

El objetivo de este estudio fue evaluar el efecto del estatus ovárico sobre la producción in vitro de embriones ovinos. Fueron colectados pares de ovarios provenientes de una planta de beneficio ubicada en la ciudad de Bucaramanga, y transportados para ser procesados en el laboratorio de Biotecnolog...

Full description

Autores:
Remolina Castrillón, Wendy
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2022
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/46282
Acceso en línea:
https://hdl.handle.net/20.500.12494/46282
Palabra clave:
Blastocistos
Cuerpo lúteo
Ovinos
Fecundación in vitro
TG 2022 MVZ 46282
Blastocysts
Corpus luteum
Sheep
In vitro fertilization
Rights
openAccess
License
Atribución – No comercial – Sin Derivar
id COOPER2_b1c9e5137b0bacb76bcc7b0d0690c644
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/46282
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.spa.fl_str_mv Efecto del estatus ovárico sobre la producción in vitro de embriones ovinos
title Efecto del estatus ovárico sobre la producción in vitro de embriones ovinos
spellingShingle Efecto del estatus ovárico sobre la producción in vitro de embriones ovinos
Blastocistos
Cuerpo lúteo
Ovinos
Fecundación in vitro
TG 2022 MVZ 46282
Blastocysts
Corpus luteum
Sheep
In vitro fertilization
title_short Efecto del estatus ovárico sobre la producción in vitro de embriones ovinos
title_full Efecto del estatus ovárico sobre la producción in vitro de embriones ovinos
title_fullStr Efecto del estatus ovárico sobre la producción in vitro de embriones ovinos
title_full_unstemmed Efecto del estatus ovárico sobre la producción in vitro de embriones ovinos
title_sort Efecto del estatus ovárico sobre la producción in vitro de embriones ovinos
dc.creator.fl_str_mv Remolina Castrillón, Wendy
dc.contributor.advisor.none.fl_str_mv Moreno Jerez, Edgar Ricardo
dc.contributor.author.none.fl_str_mv Remolina Castrillón, Wendy
dc.subject.spa.fl_str_mv Blastocistos
Cuerpo lúteo
Ovinos
Fecundación in vitro
topic Blastocistos
Cuerpo lúteo
Ovinos
Fecundación in vitro
TG 2022 MVZ 46282
Blastocysts
Corpus luteum
Sheep
In vitro fertilization
dc.subject.classification.spa.fl_str_mv TG 2022 MVZ 46282
dc.subject.other.spa.fl_str_mv Blastocysts
Corpus luteum
Sheep
In vitro fertilization
description El objetivo de este estudio fue evaluar el efecto del estatus ovárico sobre la producción in vitro de embriones ovinos. Fueron colectados pares de ovarios provenientes de una planta de beneficio ubicada en la ciudad de Bucaramanga, y transportados para ser procesados en el laboratorio de Biotecnología de la reproducción animal LBRA de la Universidad Cooperativa de Colombia UCC. Inicialmente, fueron clasificados de acuerdo con la presencia de cuerpo lúteo (CL) en dos grupos de la siguiente manera: Monovulatorios+ (M+): con presencia de un cuerpo lúteo ; Poliovulatorios+ (P+): más de un cuerpo lúteo en el par de ovarios; y a partir de esta clasificación, se derivaron otros tres grupos, de la siguiente manera: Monovulatorios- (M-): sin cuerpo lúteo, pero proveniente de un animal con un cuerpo lúteo en el ovario contralateral; Poliovulatorios- (P-): sin cuerpo lúteo, pero proveniente de un animal con más de un cuerpo lúteo en el ovario contralateral; Sin cuerpo lúteo (NCL): ovarios de hembras en anestro. A partir de los 5 grupos experimentales propuestos, los ovocitos fueron recuperados, contados y clasificados, de acuerdo con su morfología en cuatro grados de calidad, y únicamente los calificados como grado I y grado II de cada grupo fueron sometidos a maduración in vitro (MIV). La MIV de los CCOs se realizó en incubadora durante 22-24 horas, en gotas de 100 µL de medio, Una vez transcurrido el tiempo de maduración, los ovocitos fueron sometidos a fertilización in vitro (FIV) mediante co -incubación durante 18-22 horas con 4 millones de espermatozoides/mL congelados/descongelados. Finalmente, los posibles embriones fueron cultivados in vitro (CIV) durante 7 días en incubadora a 38,5°C, humedad saturada, y una mezcla de gases compuesta por 90% nitrógeno, 5% CO2, y 5% O2. Fueron evaluadas las tasas de clivaje y la producción de blastocistos, a las 48 h y a los 6 y 7 días del CIV, respectivamente.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-09-02T15:27:10Z
dc.date.available.none.fl_str_mv 2022-09-02T15:27:10Z
dc.date.issued.none.fl_str_mv 2022-08-31
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12494/46282
dc.identifier.bibliographicCitation.spa.fl_str_mv Remolina Castrillón, W. (2022). Efecto del estatus ovárico sobre la producción in vitro de embriones ovinos. [Tesis de pregrado, Universidad Cooperativa de Colombia]. Repositorio Institucional UCC. https://repository.ucc.edu.co/handle/20.500.12494/46282
url https://hdl.handle.net/20.500.12494/46282
identifier_str_mv Remolina Castrillón, W. (2022). Efecto del estatus ovárico sobre la producción in vitro de embriones ovinos. [Tesis de pregrado, Universidad Cooperativa de Colombia]. Repositorio Institucional UCC. https://repository.ucc.edu.co/handle/20.500.12494/46282
dc.relation.references.spa.fl_str_mv Agronews Castilla y León. "Beneficios y propiedades de la carne de cordero".
FAOSTAT-DATA. Live Animals.
Zhu J, Moawad AR, Wang CY, Li HF, Ren JY, Dai YF. Advances in in vitro production of sheep embryos. International Journal of Veterinary Science and Medicine. 2018; p. S15-S26.
Viana J. 2018 Statistics of embryo production and transfer in domestic farm animals. The International Embryo Transfer Society (IETS), Data Retrieval Committee.
Gonçalves de Souza-Fabjan JM, Panneau B, Duffard N, Locatelli Y, de Figueiredo JR, de Figueirêdo-Freitas VJ, et al. In vitro production of small ruminant embryos: Late improvements and further research. Theriogenology. 2014; p. 1149-1162.
Marsico T, de Camargo J, Valente RS, Sudano MJ. Embryo competence and cryosurvival: Molecular and cellular features. Animal Reproduction. 2019; p. 423–439.
Reader K, Stanton JA, Juengel J. The Role of Oocyte Organelles in Determining Developmental Competence. Biology (Basel). 2017.
Graña-Baumgartner A, Meikle A, Fernández-Foren A, Neimaur K, Barrera N, Cuadro F, et al. Local influence of the corpus luteum on the ipsilateral oviduct and early embryo development in the ewe. Theriogenology. 2020; p. 7-15.
Niswender GD, Juengel JL, Silva PJ, Rollyson MK, McIntush EW. Mechanisms controlling the function and life span of the corpus luteum. Physiol Rev. 2000; p. 1-29.
Manjunatha BM, Gupta PSP, Ravindra JP, Devaraj M, Ramesh HS, Nandi S. In vitro developmental competence of buffalo oocytes collected at various stages of the estrous cycle. Theriogenology. 2007; p. 882-888.
Pirestani A, Hosseini SM, Hajian M, Forouzanfar M, Moulavi F, Abedi P, et al. Effect of ovarian cyclic status on in vitro embryo production in cattle. Int J Fertil Steril. 2011; p. 172- 175.
Gonzalez-Bulnes A, Berlinguer F, Cocero MJ, Garcia-Garcia RM, Leoni G, Naitana S, et al. Induction of the presence of corpus luteum during superovulatory treatments enhances in vivo and in vitro blastocysts output in sheep. Theriogenology. 2005; p. 1392-1403.
Contreras-Solis I, Diaz T, Lopez G, Caigua A, Lopez-Sebastian A, Gonzalez-Bulnes A. Systemic and intraovarian effects of corpus luteum on follicular dynamics during estrous cycle in hair breed sheep. Anim. Reprod. Science. 2008; p. 47-55.
Shabankareha H, Habibizadb J, Sarsaifia K, Cheghamirzac K, Kazemein V. The effect of the absence or presence of a corpus luteum on the ovarian follicular population and serum o estradiol concentrations during the estrous cycle in Sanjabi ewes. Small Ruminant Research. 2010;: p. 180–185.
Argudo D, Tenemaza M, Merchán S, Balvoa J, Méndez M, Soria M, et al. Intraovarian influence of bovine corpus luteum on oocyte morphometry and developmental competence, embryo production and cryotolerance. Theriogenology. 2020; p. 232-239.
Rizos D, Clemente M, Bermejo‐Alvarez P, de La Fuente J, Lonergan P, Gutiérrez‐Adán A. Consequences of in vitro culture conditions on embryo development and quality. Reproduction in Domestic Animals. 2008; p. 44-50.
Penitente-Filho J M, Carrascal E, Oliveira FA, Zolini AM, Oliveira C, Costa Soares ÍA, et al. Influence of Dominant Follicle and Corpus luteum on Recovery of Good Quality Oocytes for In vitro Embryo Production in Cattle. Br Biotechnol J. 2014; p. 1305-1312.
Pfeifer LFM, Campos H, Miguel Jr JC, Silveira LL, Schneider A, Correa MN, et al. Aumento da qualidade de ovócitos recuperados por punção folicular de vacas submetidas previamente à superovulação Increasing of oocytes quality retrieved by ovum pick-up from cows previously superovulated.. Rev. Bras Reprod Anim. 2011; p. 363-367.
Yamamoto T, Iwata H, Goto H, Shiratuki S, Tanaka H, Monji Y, et al. Effect of Maternal Age on the Developmental Competence and Progression of Nuclear Maturation in Bovine Oocytes.. Molecular Reproduction & Development. 2010; p. 595–604.
Moreno J ER. Efecto del Estatus Ovárico sobre la Producción in vitro en Embriones Bovinos. Tesis de Maestría. Universidad Nacional de Córdoba, Facultad de Ciencias Agropecuarias.
Hajarian H, Shahsavari M, Karami S H, Dashtizad M. The presence of corpus luteum may have a negative impact on in vitro developmental competency of bovine oocytes. Reproductive Biology. 2016; p. 47-52.
Paramino MT, Izquierdo D. Recent advances in in vitro embryo production in small ruminants. Theriogenology. 2016; 86(1): p. 152-159.
Godke R, Sansinena M, Youngs C. Assisted Reproductive Technologies and Embryo Culture Methods for Farm Animals. Transgenic Animal Technology (Third Edition). 2014; p. 581-638.
Chavez-Zapana JD. Efecto del Suero de Oveja Súper Ovulada sobre la Maduración y Fertilización in vitro de Ovocitos de Ovino. Tesis de Pregrado. Universidad Nacional del Altiplano - PUNO, Facultad de Medicina Veterinaria y Zootecnia.
Maalouf WE, Lee JH, Campbell KHS. Effects of caffeine, cumulus cell removal and aging on polyspermy and embryo development on in vitro matured and fertilized ovine oocytes. Theriogenology. 2009; p. 1083-1092.
Sutton-McDowall ML, Gilchrist RB, Thompson JG. The pivotal role of glucose metabolism in determining oocyte developmental competence. Reproduction. 2010; p. 1741–7899.
Khurana N, Niemann H. Effects of oocyte quality, oxygen tension, embryo density, cumulus cells and energy substrates on cleavage and morula/blastocyst formation of bovine embryos. Theriogenology. 2000; p. 741-756.
Colonna R, Cecconi S, Buccione R, Mangia F. Amino acid transport systems in growing mouse oocytes. Cell Biology International Reports. 1983; p. 1007-1015.
Al-Mutary M, Al-Ghadi M, Al-himaidi , A , Iwamoto D, Al-anazi Y, et al. Using RT-PCR and glutathione level to study the effect of follicular fluid on in vitro maturation and gene expression of sheep oocytes. Saudi Journal of Biological Sciences. 2019; p. 1216-1222.
Lojkic M, Getz I, Samardzija M, Matkovic M, Bacic G, Karadjole T, et al. Effect of cysteamine supplementation during in vitro culture of early-stage bovine embryos on blastocyst rate and quality. Acta Veterinaria Brno. 2012; p. 229-234.
Sirard MA, Richard F, Blondin P, Robert C. Contribution of the oocyte to embryo quality. Theriogenology. 2006; p. 126-136.
Swain JE, Pool TB. ART failure: oocyte contributions to unsuccessful fertilization. Human Reproduction Update. 2008; p. 431-446.
Labrecque R, Sirard MA. The study of mammalian oocyte competence by transcriptome analysis: progress and challenges. Molecular Human Reproduction. 2014; p. 103-116.
Krisher R. The effect of oocyte quality on development. Journal of Animal Science. 2004; p. 14-23.
Conti M, Franciosi F. Acquisition of oocyte competence to develop as an embryo: integrated nuclear and cytoplasmic events. Hum Reprod Update. 2018; p. 245–266.
Aguila L, Treulen F, Therrien J, Felmer R, Valdivia M, Smith L. Oocyte Selection for In vitro Embryo Production in Bovine Species: Noninvasive Approaches for New Challenges of Oocyte Competence. Animals. 2020.
Lonergan P, Fair T. Maduración de ovocitos in vitro. Revisión anual de biociencias animales. 2016; p. 255-268.
Rizos D, Ward F, Duffy PAT, Boland MP, Lonergan P. Consequences of bovine oocyte maturation, fertilization or early embryo development in vitro versus in vivo: implications for blastocyst yield and blastocyst quality. Molecular reproduction and development. 2002; p. 234-248.
Dumollard R, Duchen M, Carroll J. The role of mitochondrial function in the oocyte and embryo. Current Topics in Developmental Biology. 2007; p. 21-49.
Reader K, Cox N, Stanton JA, Juengel J. Mitochondria and vesicles differ between adult and prepubertal sheep oocytes during IVM. Reproduction, Fertility and Development. 2015; p. 513-522.
Galloway C, Lee H, Yoon Y. Mitochondrial morphology-emerging role in bioenergetics. Free Radical Biology & Medicine. 2012; p. 2218-2228.
Brevini T, Vassena R, Francisci C, Gandolfi F. Role of adenosine triphosphate, active mitochondria, and microtubules in the acquisition of developmental competence of parthenogenetically activated pig oocytes. Biology of Reproduction. 2005; p. 1218-1223.
Stojkovic M, Machado S, Stojkovic P, Zakhartchenko V, Hutzler P, Gonçalves P, et al. Mitochondrial distribution and adenosine triphosphate content of bovine oocytes before and after in vitro maturation: correlation with morphological criteria and developmental capacity after in vitro fertilization and culture. Biology of Reproduction. 2001; p. 904-909.
Lee HS, Ma H, Cervera R, Tachibana M, Sparman M, Woodward J, et al. Rapid mitochondrial DNA segregation in primate preimplantation embryos precedes somatic and germline bottleneck. Cells Reports. 2012; p. 506-515.
Wakefield SL, Lane M, Mitchell M. Impaired mitochondrial function in the preimplantation embryo perturbs fetal and placental development in the mouse. Biology of Reproduction. 2011;: p. 572-580.
Latham KE. Endoplasmic reticulum stress signaling in mammalian oocytes and embryos: life in balance. International Review of Cell and Molecular Biology. 2015; p. 227-265.
Luo S, Mao C, Lee B, Lee AS. GRP78/BiP is required for cell proliferation and protecting the inner cell mass from apoptosis during early mouse embryonic development. Molecular and Cellurar Biology. 2006; p. 5688-5697.
Penitente-Filho J, Jiménez C, Zolini A, Carrascal E, Azevedo J, Silveira C, et al. Influence of corpus luteum and ovarian volume on the number and quality of bovine oocytes. Animal science journal = Nihon chikusan Gakkaihō. 2015; p. 148-152.
Bartlewski PM, Beard AP, Rawlings NC. Ultrasonographic study of the effects of the corpus luteum on antral follicular development in unilaterally ovulating western white-faced ewes. Animal Reproduction Science. 2001; p. 231-244.
Islam MR, Khandoker MAMY, Afroz S, Rahman MGM, Khan RI. Qualitative and quantitative analysis of goat ovaries, follicles and oocytes in view of in vitro production of embryos. Journal of Zhejiang University SCIENCE B. 2007; p. 465-469.
Quezada-Casasola A, Martínez-Armendáriz KE, Itzá-Ortiz MF, Escárcega-Ávila AM, Pérez-Eguía E, Filipiak Y, et al. Effect of presence of corpora lutea on cumulus expansion of in vitro matured bovine oocytes selected by trypan blue and brilliant cresyl blue tests. Journal of Applied Animal Research. 2018; p. 967-972.
Peralta-Torres J, Aké-López J, Segura-Correa J, Aké-Villanueva J. Effect of season on follicular population, quality and nuclear maturation of bovine oocytes under tropical conditions. Animal reproduction science. 2017; p. 47-53.
Abdelnaby EA, Abo El-Maaty AM, Ragab RSA, Seida AA. Dynamics of uterine and ovarian arteries flow velocity waveforms and their relation to follicular and luteal growth and blood flow vascularization during the estrous cycle in Friesian cows. Theriogenology. 2018; p. 112-121.
Shabankareh HK, Kor NM, Hajarian H. The influence of the corpus luteum on metabolites composition of follicular fluid from different sized follicles and their relationship to serum concentrations in dairy cows. Animal reproduction science. 2013; p. 109-114.
Quezada-Casasola A, Roldán-Domínguez HP, Cano-Reagan DE, Escárcega-Ávila AM, Itza- Ortiz MF, Carrera-Chávez J, et al. Corpora lutea affect in vitro maturation of bovine cumulus-oocyte complexes and embryonic development after fertilization with sex-sorted or conventional semen. Tropical Animal Health and Production. 2020; p. 3493–3499.
Marchal R, Vigneron C, Perreau C, Bali-Papp A, Mermillod P. Effect of follicular size on meiotic and developmental competence of porcine oocytes. Theriogenology. 2002; p. 1523- 1532.
Annes K, Müller D, Vilela JA, Valente RS, Caetano DP, Cibin FW, et al. Influence of follicle size on bovine oocyte lipid composition, follicular metabolic and stress markers, embryo development and blastocyst lipid content. Reproduction, Fertility and Development. 2019; p. 462-472.
Alves GP, Cordeiro FB, de Lima CB, Annes K, dos Santos ÉC, Ispada J, et al. Follicular environment as a predictive tool for embryo development and kinetics in cattle. Reproduction, Fertility and Development. 2019; p. 451-461.
Tan JH, Wang HL, Sol XS, Liu Y, Sui HS, Zhang J. Chromatin configurations in the germinal vesicle of mammalian oocytes. Molecular Human Reproduction. 2009; p. 1-9.
Quan GB, Wu GQ, Wang YJ, Ma Y, Lv CR, Hong QH. Meiotic maturation and developmental capability of ovine oocytes at germinal vesicle stage following vitrification using different cryodevice. Cryobiology. 2016; p. 33-40.
Cecconi S, Mauro A, Capacchietti G, Berardinelli P, Bernabò N, Di Vincenzo A, et al. Meiotic maturation of incompetent prepubertal sheep oocytes is induced by paracrine factor(s) released by gonadotropin-stimulated oocyte-cumulus cell complexes and involves mitogen-activated protein kinase activation. Endocrinology. 2008; p. 100-107.
De Wit AAC, Wurth YA, Kruip TA. Effect of ovarian phase and follicle quality on morphology and developmental capacity of the bovine cumulus-oocyte complex. Journal of animal science. 2000; p. 1277-1283.
McKeegan PJ, Sturmey RG. The role of fatty acids in oocyte and early embryo development. Reproduction, Fertility and Development. 2011; p. 59-67.
Sturmey R, Reis A, Leese H, McEvoy T. Role of fatty acids in energy provision during oocyte maturation and early embryo development. Reproduction in Domestic Animals. 2009; p. 50-58.
Dadarwal D, Honparkhe M, Dias FCF, Alce T, Lessard C, Singh J. Effect of superstimulation protocols on nuclear maturation and distribution of lipid droplets in bovine oocytes. Reproduction, Fertility and Development. 2015; p. 1137-1146.
Dunning KR, Russell DL, Robker RL. Lipids and oocyte developmental competence: the role of fatty acids and β-oxidation. Reproduction. 2014; p. R15-27.
Salamone DF, Canel NG, Rodríguez MB. Intracytoplasmic sperm injection in domestic and wild mammals. Reproduction. 2017; p. F111-F124.
Nagano M. Acquisition of developmental competence and in vitro growth culture of bovine oocytes. Journal of Reproduction and Development. 2019.
69.McEvoy T, Coull G, Broadbent P, Hutchinson J, Speake B. Fatty acid composition of lipids in immature cattle, pig and sheep oocytes with intact zona pellucida. Journal of Reproduction and Fertility. 2000; p. 163–170.
Genicot G, Leroy J, Soom A, Donnay I. The use of a fluorescent dye, Nile red, to evaluate the lipid content of single mammalian oocytes. Theriogenology. 2005; p. 1181–1194.
Kim J, Kinoshita M, Ohnishi M, Fukui Y. Lipid and fatty acid analysis of fresh and frozen– thawed immature and in vitro matured bovine oocytes. Reproduction. 2001; p. 131–138.
Su Y, Sugiura K, Wigglesworth K, O'Brien M, Affourtit J, Pangas S, et al. Oocyte regulation of metabolic cooperativity between mouse cumulus cells and oocytes: BMP15 and GDF9 control cholesterol biosynthesis in cumulus cells. Development. 2008; p. 111–121.
Zhu J, Moawad AR, Wang CY, Li HF, Ren JY, Dai YF. Advances in in vitro production of sheep embryos. International Journal of Veterinary Science and Medicine. 2018; p. S15-S26.
Mara L, Sanna D, Casu S, Dattena M, Muñoz IM. Blastocyst rate of in vitro embryo production in sheep is affected by season. Zygote. 2014.
Shi JM, Yi JY, Tian XZ, Wang F, Lian ZX, Han HB, et al. Effects of seasonal changes on the ovulation rate and embryo quality in superovulated Black Suffolk ewes. Neuroendocrinology Letters. 2015.
Ahmadi E, Nazari H, Hossini-Fahraji H. Low developmental competence and high tolerance to thermal stress of ovine oocytes in the warm compared with the cold season. Tropical Animal Health and Production. 2019; p. 1611–1618.
Hansen P. Reproductive physiology of the heat-stressed dairy cow: implications for fertility and assisted reproduction. Animal Reproduction. 2019; p. 497-507.
Paes V, Vieira L, Correia H, Sa N, Moura A, Sales A, et al. Effect of heat stress on the survival and development of in vitro cultured bovine preantral follicles and on in vitro maturation of cumulus-oocyte complex. Theriogenology. 2016; p. 994-1003.
Roth Z. Stress-induced alterations in oocyte transcripts are further expressed in the developing blastocyst. Molecular Reproduction and Development. 2018; p. 821-835.
Pérez R, Cruz U, Avendaño-Reyes L, Correa-Calderón A, López-Baca M, Lara-Rivera A. Heat stress impacts in hair sheep production. Review. Revista Mexicana de Ciencias Pecuarias. 2018.
Iwata H, Goto H, Tanaka H, Sakaguchi Y, Kimura K, Kuwayama T, et al. Effect of maternal age on mitochondrial DNA copy number, ATP content and IVF outcome of bovine oocytes. Reproduction, Fertility and Development. 2011; p. 424-432.
Armstrong D. Effects of maternal age on oocyte developmental competence. Theriogenology. 2001; p. 1303-1322.
Ptak G, Matsukawa K, Palmieri C, Della Salda L, Scapolo PA, Loi P. Developmental and functional evidence of nuclear immaturity in prepubertal oocytes. Human Reproduction. 2006; p. 2228-2237.
Rodríguez-Cornejo WF. Estandarización de Procesos para la Produccion in vitro de Embriones Ovinos en el Laboratorio de Reprodución Animal en el Centro Académico Guatiguará-Piedecuesta. Tesis de Pregrado. Universidad Cooperativa de Colombia, Facultad de Medicina Veterianaria y Zootecnia.
Kaczmarek M, Schams D, Ziecik A. Role of vascular endothelial growth factor in ovarian physiology – an overview. Reprod Biol. 2005; p. 111-136.
García-Arévalo J, Restrepo-González S, Gómez-Sánchez N, Moreno-Jerez E, Dubeibe- Marín D, Mogollón-Waltero E. Manual de Procedimientos para la Producción y Vitrificación de Embriones Bovinos en Laboratorios de Reproducción Animal. Servicio Nacional de Aprendizaje – SENA, Universidad Cooperativa de Colombia - UCC.
Hernández Pichardo JERSJL, Sánchez Martínez C, Ramírez Franco R. Efecto de técnicas de separación espermática en la viabilidad y estado acrosomal de espermatozoides posdescongelados de ovinos. Revista de Salud Animal. 2015; p. 15-20.
Wan Pc, Hao Zd, Zhou P, Wu Y, Yang L, Cui Ms, et al. Effects of SOF and CR1 media on developmental competence and cell apoptosis of ovine in vitro fertilization embryos. Animal Reproduction Science. 2009; p. 279-288.
Souza-Fabjan JM, Locatelli Y, Duffard N, Corbin E, Touzé JL, Perreau C, et al. In vitro embryo production in goats: Slaughterhouse and laparoscopic ovum pick up–derived oocytes have different kinetics and requirements regarding maturation media. Theriogenology. 2014; p. 1021-1031.
dos Santos-Neto PC, Vilariño M, Cuadro F, Barrera N, Crispo M, Menchaca A. Cumulus cells during in vitro fertilization and oocyte vitrification in sheep: Remove, maintain or add? Cryobiology. 2020; p. 161-167.
Paramino T, Izquierdo D. Recent advances in in vitro embryo production in small ruminants. Theriogenology. 2016; p. 152-159.
Hajariana H, Aghaz F, Karami-Shabankareha H. Replacement of serum with sericin in in vitro maturation and culture media: Effects on embryonic developmental competence of Sanjabi sheep embryo during breeding season. Theriogenology. 2017; p. 144-148.
Sánchez-Ajofrín I, Iniesta-Cuerda M, Sánchez-Calabuig M, Peris-Frau P, Martín-Maestro A, Ortiz J, et al. Oxygen tension during in vitro oocyte maturation and fertilization affects embryo quality in sheep and deer. Anim Reprod Ciencia. 2020.
Reza-Ebrahimi M, Mara L, Parham A, Dattena M. Reduced effect of mineral oil toxicity using four-well culture dish in sheep embryo production. Small Ruminant Research. 2020.
Leifried L, First N. 1979. Characterization of bovine follicular oocytes and their ability to mature in vitro.
dc.rights.license.none.fl_str_mv Atribución – No comercial – Sin Derivar
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución – No comercial – Sin Derivar
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 69 p.
dc.publisher.spa.fl_str_mv Universidad Coopertativa de Colombia, Facultad de Ciencias de la Salud, Medicina Veterinaria y Zootecnia, Bucaramanga
dc.publisher.program.spa.fl_str_mv Medicina veterinaria y zootecnia
dc.publisher.place.spa.fl_str_mv Bucaramanga
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/86eb83b0-2a82-443c-a012-d52ccda0d803/download
https://repository.ucc.edu.co/bitstreams/b060300b-b47d-425b-a043-bfd04d2bb1e3/download
https://repository.ucc.edu.co/bitstreams/c38ec470-35a9-402f-a8db-6bdacc972a7c/download
https://repository.ucc.edu.co/bitstreams/307ae30a-d4ff-4b6a-9d31-14e138ad2531/download
https://repository.ucc.edu.co/bitstreams/4a4fcb57-6629-4f19-9fcc-81b80bc9c423/download
https://repository.ucc.edu.co/bitstreams/5555a4be-f289-45d8-a713-b935bbc69603/download
https://repository.ucc.edu.co/bitstreams/c21c0a0d-157f-44c3-8b18-1988313ac552/download
https://repository.ucc.edu.co/bitstreams/f82c2baa-b97d-4dbc-afa5-773ed572d52d/download
https://repository.ucc.edu.co/bitstreams/a579b05d-d752-4772-a27c-124045d2fd7a/download
https://repository.ucc.edu.co/bitstreams/5cebe6c9-e2ad-4e2f-984f-d12874a9f657/download
bitstream.checksum.fl_str_mv 1b46a3734e2c0c05bdc35ab9c458436d
e3c98f26391e490669d5f6f0ae0a792a
7f7e3719300c5df006318274c1ef9c71
8a4605be74aa9ea9d79846c1fba20a33
b373d731a759b71e22667d91fc1e6d58
0ae22c1f3d7da3268df157fe52d99fa2
b3145ffa47c8046e68a63e8803f0b0e1
8262c2cf5e379adbb5ce28a755db282c
c8b52624a84e0f72a6f6d108f1aee762
219c3fcee1c3bb2957ff8d91393add4a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1814247128657035264
spelling Moreno Jerez, Edgar RicardoRemolina Castrillón, Wendy2022-09-02T15:27:10Z2022-09-02T15:27:10Z2022-08-31https://hdl.handle.net/20.500.12494/46282Remolina Castrillón, W. (2022). Efecto del estatus ovárico sobre la producción in vitro de embriones ovinos. [Tesis de pregrado, Universidad Cooperativa de Colombia]. Repositorio Institucional UCC. https://repository.ucc.edu.co/handle/20.500.12494/46282El objetivo de este estudio fue evaluar el efecto del estatus ovárico sobre la producción in vitro de embriones ovinos. Fueron colectados pares de ovarios provenientes de una planta de beneficio ubicada en la ciudad de Bucaramanga, y transportados para ser procesados en el laboratorio de Biotecnología de la reproducción animal LBRA de la Universidad Cooperativa de Colombia UCC. Inicialmente, fueron clasificados de acuerdo con la presencia de cuerpo lúteo (CL) en dos grupos de la siguiente manera: Monovulatorios+ (M+): con presencia de un cuerpo lúteo ; Poliovulatorios+ (P+): más de un cuerpo lúteo en el par de ovarios; y a partir de esta clasificación, se derivaron otros tres grupos, de la siguiente manera: Monovulatorios- (M-): sin cuerpo lúteo, pero proveniente de un animal con un cuerpo lúteo en el ovario contralateral; Poliovulatorios- (P-): sin cuerpo lúteo, pero proveniente de un animal con más de un cuerpo lúteo en el ovario contralateral; Sin cuerpo lúteo (NCL): ovarios de hembras en anestro. A partir de los 5 grupos experimentales propuestos, los ovocitos fueron recuperados, contados y clasificados, de acuerdo con su morfología en cuatro grados de calidad, y únicamente los calificados como grado I y grado II de cada grupo fueron sometidos a maduración in vitro (MIV). La MIV de los CCOs se realizó en incubadora durante 22-24 horas, en gotas de 100 µL de medio, Una vez transcurrido el tiempo de maduración, los ovocitos fueron sometidos a fertilización in vitro (FIV) mediante co -incubación durante 18-22 horas con 4 millones de espermatozoides/mL congelados/descongelados. Finalmente, los posibles embriones fueron cultivados in vitro (CIV) durante 7 días en incubadora a 38,5°C, humedad saturada, y una mezcla de gases compuesta por 90% nitrógeno, 5% CO2, y 5% O2. Fueron evaluadas las tasas de clivaje y la producción de blastocistos, a las 48 h y a los 6 y 7 días del CIV, respectivamente.The objective of this study was to evaluate the effect of ovarian status on the in vitro production of sheep embryos. Pairs of ovaries were collected from a processing plant located in the city of Bucaramanga and transported to be processed in the LBRA Animal Reproduction Biotechnology Laboratory of the Universidad Cooperative de Colombia UCC. Initially, they were classified according to the presence of the corpus luteum (CL) into two groups as follows: Monovulatory + (M +): with the presence of a corpus luteum; Poliovulatory + (P +): more than one corpus luteum in the pair of ovaries; and from this classification, three other groups were derived, as follows: Monovulatory- (M-): without corpus luteum, but from an animal with a corpus luteum in the contralateral ovary; Poliovulatory- (P-): without corpus luteum, but from an animal with more than one corpus luteum in the contralateral ovary; Without corpus luteum (NCL): female ovaries in anestrus. From the 5 proposed experimental groups, the oocytes were recovered, counted and classified, according to their morphology into four quality grades, and only those classified as grade I and grade II of each group were subjected to in vitro maturation (IVM ). IVM of the CCOs was performed in an incubator for 22-24 hours, in drops of 100 µL of medium. Once the maturation time had elapsed, the oocytes were subjected to in vitro fertilization (IVF) by co-incubation for 18-22 hours. hours with 4 million frozen / thawed sperm / mL. Finally, the possible embryos were cultured in vitro (IVC) for 7 days in an incubator at 38.5 ° C, saturated humidity, and a gas mixture composed of 90% nitrogen, 5% CO2, and 5% O2. Cleavage rates and blastocyst production were evaluated at 48 h and at 6 and 7 days after VSD, respectively.Resumen. -- Introducción. -- 1. Planteamiento del problema. -- 2. Justificación. -- 3. Objetivos. -- 3.1. Objetivo general. -- 3.2. Objetivos específicos. -- 4. Marco teórico. -- 4.1. Etapas de la Producción in vitro de Embriones. -- 4.1.1. Maduración Ovocitaria. -- 4.1.2. Preparación Espermática. -- 4.1.3. Fertilización in vitro. -- 4.1.4. Cultivo in vitro. -- 4.2. Competencia ovocitaria. -- 4.2.1. Factores que afectan la competencia ovocitaria. -- 5. Materiales y métodos. -- 5.1. Colecta de ovarios. -- 5.2. Grupos experimentales. -- 5.3. Recuperación y clasificación de los CCOs. -- 5.4. Maduración in vitro de los ovocitos. -- 5.5. Fertilización in vitro. -- 5.6. Cultivo in vitro. -- 5.7. Evaluación de la tasa de clivaje y producción de blastocistos. -- 6. Resultados y Discusión. -- 7. Conclusiones. -- 8. Recomendaciones. -- 9. Referencias Bibliográficas.wendy.remolinac@campusucc.edu.co69 p.Universidad Coopertativa de Colombia, Facultad de Ciencias de la Salud, Medicina Veterinaria y Zootecnia, BucaramangaMedicina veterinaria y zootecniaBucaramangaBlastocistosCuerpo lúteoOvinosFecundación in vitroTG 2022 MVZ 46282BlastocystsCorpus luteumSheepIn vitro fertilizationEfecto del estatus ovárico sobre la producción in vitro de embriones ovinosTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionAtribución – No comercial – Sin Derivarinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Agronews Castilla y León. "Beneficios y propiedades de la carne de cordero".FAOSTAT-DATA. Live Animals.Zhu J, Moawad AR, Wang CY, Li HF, Ren JY, Dai YF. Advances in in vitro production of sheep embryos. International Journal of Veterinary Science and Medicine. 2018; p. S15-S26.Viana J. 2018 Statistics of embryo production and transfer in domestic farm animals. The International Embryo Transfer Society (IETS), Data Retrieval Committee.Gonçalves de Souza-Fabjan JM, Panneau B, Duffard N, Locatelli Y, de Figueiredo JR, de Figueirêdo-Freitas VJ, et al. In vitro production of small ruminant embryos: Late improvements and further research. Theriogenology. 2014; p. 1149-1162.Marsico T, de Camargo J, Valente RS, Sudano MJ. Embryo competence and cryosurvival: Molecular and cellular features. Animal Reproduction. 2019; p. 423–439.Reader K, Stanton JA, Juengel J. The Role of Oocyte Organelles in Determining Developmental Competence. Biology (Basel). 2017.Graña-Baumgartner A, Meikle A, Fernández-Foren A, Neimaur K, Barrera N, Cuadro F, et al. Local influence of the corpus luteum on the ipsilateral oviduct and early embryo development in the ewe. Theriogenology. 2020; p. 7-15.Niswender GD, Juengel JL, Silva PJ, Rollyson MK, McIntush EW. Mechanisms controlling the function and life span of the corpus luteum. Physiol Rev. 2000; p. 1-29.Manjunatha BM, Gupta PSP, Ravindra JP, Devaraj M, Ramesh HS, Nandi S. In vitro developmental competence of buffalo oocytes collected at various stages of the estrous cycle. Theriogenology. 2007; p. 882-888.Pirestani A, Hosseini SM, Hajian M, Forouzanfar M, Moulavi F, Abedi P, et al. Effect of ovarian cyclic status on in vitro embryo production in cattle. Int J Fertil Steril. 2011; p. 172- 175.Gonzalez-Bulnes A, Berlinguer F, Cocero MJ, Garcia-Garcia RM, Leoni G, Naitana S, et al. Induction of the presence of corpus luteum during superovulatory treatments enhances in vivo and in vitro blastocysts output in sheep. Theriogenology. 2005; p. 1392-1403.Contreras-Solis I, Diaz T, Lopez G, Caigua A, Lopez-Sebastian A, Gonzalez-Bulnes A. Systemic and intraovarian effects of corpus luteum on follicular dynamics during estrous cycle in hair breed sheep. Anim. Reprod. Science. 2008; p. 47-55.Shabankareha H, Habibizadb J, Sarsaifia K, Cheghamirzac K, Kazemein V. The effect of the absence or presence of a corpus luteum on the ovarian follicular population and serum o estradiol concentrations during the estrous cycle in Sanjabi ewes. Small Ruminant Research. 2010;: p. 180–185.Argudo D, Tenemaza M, Merchán S, Balvoa J, Méndez M, Soria M, et al. Intraovarian influence of bovine corpus luteum on oocyte morphometry and developmental competence, embryo production and cryotolerance. Theriogenology. 2020; p. 232-239.Rizos D, Clemente M, Bermejo‐Alvarez P, de La Fuente J, Lonergan P, Gutiérrez‐Adán A. Consequences of in vitro culture conditions on embryo development and quality. Reproduction in Domestic Animals. 2008; p. 44-50.Penitente-Filho J M, Carrascal E, Oliveira FA, Zolini AM, Oliveira C, Costa Soares ÍA, et al. Influence of Dominant Follicle and Corpus luteum on Recovery of Good Quality Oocytes for In vitro Embryo Production in Cattle. Br Biotechnol J. 2014; p. 1305-1312.Pfeifer LFM, Campos H, Miguel Jr JC, Silveira LL, Schneider A, Correa MN, et al. Aumento da qualidade de ovócitos recuperados por punção folicular de vacas submetidas previamente à superovulação Increasing of oocytes quality retrieved by ovum pick-up from cows previously superovulated.. Rev. Bras Reprod Anim. 2011; p. 363-367.Yamamoto T, Iwata H, Goto H, Shiratuki S, Tanaka H, Monji Y, et al. Effect of Maternal Age on the Developmental Competence and Progression of Nuclear Maturation in Bovine Oocytes.. Molecular Reproduction & Development. 2010; p. 595–604.Moreno J ER. Efecto del Estatus Ovárico sobre la Producción in vitro en Embriones Bovinos. Tesis de Maestría. Universidad Nacional de Córdoba, Facultad de Ciencias Agropecuarias.Hajarian H, Shahsavari M, Karami S H, Dashtizad M. The presence of corpus luteum may have a negative impact on in vitro developmental competency of bovine oocytes. Reproductive Biology. 2016; p. 47-52.Paramino MT, Izquierdo D. Recent advances in in vitro embryo production in small ruminants. Theriogenology. 2016; 86(1): p. 152-159.Godke R, Sansinena M, Youngs C. Assisted Reproductive Technologies and Embryo Culture Methods for Farm Animals. Transgenic Animal Technology (Third Edition). 2014; p. 581-638.Chavez-Zapana JD. Efecto del Suero de Oveja Súper Ovulada sobre la Maduración y Fertilización in vitro de Ovocitos de Ovino. Tesis de Pregrado. Universidad Nacional del Altiplano - PUNO, Facultad de Medicina Veterinaria y Zootecnia.Maalouf WE, Lee JH, Campbell KHS. Effects of caffeine, cumulus cell removal and aging on polyspermy and embryo development on in vitro matured and fertilized ovine oocytes. Theriogenology. 2009; p. 1083-1092.Sutton-McDowall ML, Gilchrist RB, Thompson JG. The pivotal role of glucose metabolism in determining oocyte developmental competence. Reproduction. 2010; p. 1741–7899.Khurana N, Niemann H. Effects of oocyte quality, oxygen tension, embryo density, cumulus cells and energy substrates on cleavage and morula/blastocyst formation of bovine embryos. Theriogenology. 2000; p. 741-756.Colonna R, Cecconi S, Buccione R, Mangia F. Amino acid transport systems in growing mouse oocytes. Cell Biology International Reports. 1983; p. 1007-1015.Al-Mutary M, Al-Ghadi M, Al-himaidi , A , Iwamoto D, Al-anazi Y, et al. Using RT-PCR and glutathione level to study the effect of follicular fluid on in vitro maturation and gene expression of sheep oocytes. Saudi Journal of Biological Sciences. 2019; p. 1216-1222.Lojkic M, Getz I, Samardzija M, Matkovic M, Bacic G, Karadjole T, et al. Effect of cysteamine supplementation during in vitro culture of early-stage bovine embryos on blastocyst rate and quality. Acta Veterinaria Brno. 2012; p. 229-234.Sirard MA, Richard F, Blondin P, Robert C. Contribution of the oocyte to embryo quality. Theriogenology. 2006; p. 126-136.Swain JE, Pool TB. ART failure: oocyte contributions to unsuccessful fertilization. Human Reproduction Update. 2008; p. 431-446.Labrecque R, Sirard MA. The study of mammalian oocyte competence by transcriptome analysis: progress and challenges. Molecular Human Reproduction. 2014; p. 103-116.Krisher R. The effect of oocyte quality on development. Journal of Animal Science. 2004; p. 14-23.Conti M, Franciosi F. Acquisition of oocyte competence to develop as an embryo: integrated nuclear and cytoplasmic events. Hum Reprod Update. 2018; p. 245–266.Aguila L, Treulen F, Therrien J, Felmer R, Valdivia M, Smith L. Oocyte Selection for In vitro Embryo Production in Bovine Species: Noninvasive Approaches for New Challenges of Oocyte Competence. Animals. 2020.Lonergan P, Fair T. Maduración de ovocitos in vitro. Revisión anual de biociencias animales. 2016; p. 255-268.Rizos D, Ward F, Duffy PAT, Boland MP, Lonergan P. Consequences of bovine oocyte maturation, fertilization or early embryo development in vitro versus in vivo: implications for blastocyst yield and blastocyst quality. Molecular reproduction and development. 2002; p. 234-248.Dumollard R, Duchen M, Carroll J. The role of mitochondrial function in the oocyte and embryo. Current Topics in Developmental Biology. 2007; p. 21-49.Reader K, Cox N, Stanton JA, Juengel J. Mitochondria and vesicles differ between adult and prepubertal sheep oocytes during IVM. Reproduction, Fertility and Development. 2015; p. 513-522.Galloway C, Lee H, Yoon Y. Mitochondrial morphology-emerging role in bioenergetics. Free Radical Biology & Medicine. 2012; p. 2218-2228.Brevini T, Vassena R, Francisci C, Gandolfi F. Role of adenosine triphosphate, active mitochondria, and microtubules in the acquisition of developmental competence of parthenogenetically activated pig oocytes. Biology of Reproduction. 2005; p. 1218-1223.Stojkovic M, Machado S, Stojkovic P, Zakhartchenko V, Hutzler P, Gonçalves P, et al. Mitochondrial distribution and adenosine triphosphate content of bovine oocytes before and after in vitro maturation: correlation with morphological criteria and developmental capacity after in vitro fertilization and culture. Biology of Reproduction. 2001; p. 904-909.Lee HS, Ma H, Cervera R, Tachibana M, Sparman M, Woodward J, et al. Rapid mitochondrial DNA segregation in primate preimplantation embryos precedes somatic and germline bottleneck. Cells Reports. 2012; p. 506-515.Wakefield SL, Lane M, Mitchell M. Impaired mitochondrial function in the preimplantation embryo perturbs fetal and placental development in the mouse. Biology of Reproduction. 2011;: p. 572-580.Latham KE. Endoplasmic reticulum stress signaling in mammalian oocytes and embryos: life in balance. International Review of Cell and Molecular Biology. 2015; p. 227-265.Luo S, Mao C, Lee B, Lee AS. GRP78/BiP is required for cell proliferation and protecting the inner cell mass from apoptosis during early mouse embryonic development. Molecular and Cellurar Biology. 2006; p. 5688-5697.Penitente-Filho J, Jiménez C, Zolini A, Carrascal E, Azevedo J, Silveira C, et al. Influence of corpus luteum and ovarian volume on the number and quality of bovine oocytes. Animal science journal = Nihon chikusan Gakkaihō. 2015; p. 148-152.Bartlewski PM, Beard AP, Rawlings NC. Ultrasonographic study of the effects of the corpus luteum on antral follicular development in unilaterally ovulating western white-faced ewes. Animal Reproduction Science. 2001; p. 231-244.Islam MR, Khandoker MAMY, Afroz S, Rahman MGM, Khan RI. Qualitative and quantitative analysis of goat ovaries, follicles and oocytes in view of in vitro production of embryos. Journal of Zhejiang University SCIENCE B. 2007; p. 465-469.Quezada-Casasola A, Martínez-Armendáriz KE, Itzá-Ortiz MF, Escárcega-Ávila AM, Pérez-Eguía E, Filipiak Y, et al. Effect of presence of corpora lutea on cumulus expansion of in vitro matured bovine oocytes selected by trypan blue and brilliant cresyl blue tests. Journal of Applied Animal Research. 2018; p. 967-972.Peralta-Torres J, Aké-López J, Segura-Correa J, Aké-Villanueva J. Effect of season on follicular population, quality and nuclear maturation of bovine oocytes under tropical conditions. Animal reproduction science. 2017; p. 47-53.Abdelnaby EA, Abo El-Maaty AM, Ragab RSA, Seida AA. Dynamics of uterine and ovarian arteries flow velocity waveforms and their relation to follicular and luteal growth and blood flow vascularization during the estrous cycle in Friesian cows. Theriogenology. 2018; p. 112-121.Shabankareh HK, Kor NM, Hajarian H. The influence of the corpus luteum on metabolites composition of follicular fluid from different sized follicles and their relationship to serum concentrations in dairy cows. Animal reproduction science. 2013; p. 109-114.Quezada-Casasola A, Roldán-Domínguez HP, Cano-Reagan DE, Escárcega-Ávila AM, Itza- Ortiz MF, Carrera-Chávez J, et al. Corpora lutea affect in vitro maturation of bovine cumulus-oocyte complexes and embryonic development after fertilization with sex-sorted or conventional semen. Tropical Animal Health and Production. 2020; p. 3493–3499.Marchal R, Vigneron C, Perreau C, Bali-Papp A, Mermillod P. Effect of follicular size on meiotic and developmental competence of porcine oocytes. Theriogenology. 2002; p. 1523- 1532.Annes K, Müller D, Vilela JA, Valente RS, Caetano DP, Cibin FW, et al. Influence of follicle size on bovine oocyte lipid composition, follicular metabolic and stress markers, embryo development and blastocyst lipid content. Reproduction, Fertility and Development. 2019; p. 462-472.Alves GP, Cordeiro FB, de Lima CB, Annes K, dos Santos ÉC, Ispada J, et al. Follicular environment as a predictive tool for embryo development and kinetics in cattle. Reproduction, Fertility and Development. 2019; p. 451-461.Tan JH, Wang HL, Sol XS, Liu Y, Sui HS, Zhang J. Chromatin configurations in the germinal vesicle of mammalian oocytes. Molecular Human Reproduction. 2009; p. 1-9.Quan GB, Wu GQ, Wang YJ, Ma Y, Lv CR, Hong QH. Meiotic maturation and developmental capability of ovine oocytes at germinal vesicle stage following vitrification using different cryodevice. Cryobiology. 2016; p. 33-40.Cecconi S, Mauro A, Capacchietti G, Berardinelli P, Bernabò N, Di Vincenzo A, et al. Meiotic maturation of incompetent prepubertal sheep oocytes is induced by paracrine factor(s) released by gonadotropin-stimulated oocyte-cumulus cell complexes and involves mitogen-activated protein kinase activation. Endocrinology. 2008; p. 100-107.De Wit AAC, Wurth YA, Kruip TA. Effect of ovarian phase and follicle quality on morphology and developmental capacity of the bovine cumulus-oocyte complex. Journal of animal science. 2000; p. 1277-1283.McKeegan PJ, Sturmey RG. The role of fatty acids in oocyte and early embryo development. Reproduction, Fertility and Development. 2011; p. 59-67.Sturmey R, Reis A, Leese H, McEvoy T. Role of fatty acids in energy provision during oocyte maturation and early embryo development. Reproduction in Domestic Animals. 2009; p. 50-58.Dadarwal D, Honparkhe M, Dias FCF, Alce T, Lessard C, Singh J. Effect of superstimulation protocols on nuclear maturation and distribution of lipid droplets in bovine oocytes. Reproduction, Fertility and Development. 2015; p. 1137-1146.Dunning KR, Russell DL, Robker RL. Lipids and oocyte developmental competence: the role of fatty acids and β-oxidation. Reproduction. 2014; p. R15-27.Salamone DF, Canel NG, Rodríguez MB. Intracytoplasmic sperm injection in domestic and wild mammals. Reproduction. 2017; p. F111-F124.Nagano M. Acquisition of developmental competence and in vitro growth culture of bovine oocytes. Journal of Reproduction and Development. 2019.69.McEvoy T, Coull G, Broadbent P, Hutchinson J, Speake B. Fatty acid composition of lipids in immature cattle, pig and sheep oocytes with intact zona pellucida. Journal of Reproduction and Fertility. 2000; p. 163–170.Genicot G, Leroy J, Soom A, Donnay I. The use of a fluorescent dye, Nile red, to evaluate the lipid content of single mammalian oocytes. Theriogenology. 2005; p. 1181–1194.Kim J, Kinoshita M, Ohnishi M, Fukui Y. Lipid and fatty acid analysis of fresh and frozen– thawed immature and in vitro matured bovine oocytes. Reproduction. 2001; p. 131–138.Su Y, Sugiura K, Wigglesworth K, O'Brien M, Affourtit J, Pangas S, et al. Oocyte regulation of metabolic cooperativity between mouse cumulus cells and oocytes: BMP15 and GDF9 control cholesterol biosynthesis in cumulus cells. Development. 2008; p. 111–121.Zhu J, Moawad AR, Wang CY, Li HF, Ren JY, Dai YF. Advances in in vitro production of sheep embryos. International Journal of Veterinary Science and Medicine. 2018; p. S15-S26.Mara L, Sanna D, Casu S, Dattena M, Muñoz IM. Blastocyst rate of in vitro embryo production in sheep is affected by season. Zygote. 2014.Shi JM, Yi JY, Tian XZ, Wang F, Lian ZX, Han HB, et al. Effects of seasonal changes on the ovulation rate and embryo quality in superovulated Black Suffolk ewes. Neuroendocrinology Letters. 2015.Ahmadi E, Nazari H, Hossini-Fahraji H. Low developmental competence and high tolerance to thermal stress of ovine oocytes in the warm compared with the cold season. Tropical Animal Health and Production. 2019; p. 1611–1618.Hansen P. Reproductive physiology of the heat-stressed dairy cow: implications for fertility and assisted reproduction. Animal Reproduction. 2019; p. 497-507.Paes V, Vieira L, Correia H, Sa N, Moura A, Sales A, et al. Effect of heat stress on the survival and development of in vitro cultured bovine preantral follicles and on in vitro maturation of cumulus-oocyte complex. Theriogenology. 2016; p. 994-1003.Roth Z. Stress-induced alterations in oocyte transcripts are further expressed in the developing blastocyst. Molecular Reproduction and Development. 2018; p. 821-835.Pérez R, Cruz U, Avendaño-Reyes L, Correa-Calderón A, López-Baca M, Lara-Rivera A. Heat stress impacts in hair sheep production. Review. Revista Mexicana de Ciencias Pecuarias. 2018.Iwata H, Goto H, Tanaka H, Sakaguchi Y, Kimura K, Kuwayama T, et al. Effect of maternal age on mitochondrial DNA copy number, ATP content and IVF outcome of bovine oocytes. Reproduction, Fertility and Development. 2011; p. 424-432.Armstrong D. Effects of maternal age on oocyte developmental competence. Theriogenology. 2001; p. 1303-1322.Ptak G, Matsukawa K, Palmieri C, Della Salda L, Scapolo PA, Loi P. Developmental and functional evidence of nuclear immaturity in prepubertal oocytes. Human Reproduction. 2006; p. 2228-2237.Rodríguez-Cornejo WF. Estandarización de Procesos para la Produccion in vitro de Embriones Ovinos en el Laboratorio de Reprodución Animal en el Centro Académico Guatiguará-Piedecuesta. Tesis de Pregrado. Universidad Cooperativa de Colombia, Facultad de Medicina Veterianaria y Zootecnia.Kaczmarek M, Schams D, Ziecik A. Role of vascular endothelial growth factor in ovarian physiology – an overview. Reprod Biol. 2005; p. 111-136.García-Arévalo J, Restrepo-González S, Gómez-Sánchez N, Moreno-Jerez E, Dubeibe- Marín D, Mogollón-Waltero E. Manual de Procedimientos para la Producción y Vitrificación de Embriones Bovinos en Laboratorios de Reproducción Animal. Servicio Nacional de Aprendizaje – SENA, Universidad Cooperativa de Colombia - UCC.Hernández Pichardo JERSJL, Sánchez Martínez C, Ramírez Franco R. Efecto de técnicas de separación espermática en la viabilidad y estado acrosomal de espermatozoides posdescongelados de ovinos. Revista de Salud Animal. 2015; p. 15-20.Wan Pc, Hao Zd, Zhou P, Wu Y, Yang L, Cui Ms, et al. Effects of SOF and CR1 media on developmental competence and cell apoptosis of ovine in vitro fertilization embryos. Animal Reproduction Science. 2009; p. 279-288.Souza-Fabjan JM, Locatelli Y, Duffard N, Corbin E, Touzé JL, Perreau C, et al. In vitro embryo production in goats: Slaughterhouse and laparoscopic ovum pick up–derived oocytes have different kinetics and requirements regarding maturation media. Theriogenology. 2014; p. 1021-1031.dos Santos-Neto PC, Vilariño M, Cuadro F, Barrera N, Crispo M, Menchaca A. Cumulus cells during in vitro fertilization and oocyte vitrification in sheep: Remove, maintain or add? Cryobiology. 2020; p. 161-167.Paramino T, Izquierdo D. Recent advances in in vitro embryo production in small ruminants. Theriogenology. 2016; p. 152-159.Hajariana H, Aghaz F, Karami-Shabankareha H. Replacement of serum with sericin in in vitro maturation and culture media: Effects on embryonic developmental competence of Sanjabi sheep embryo during breeding season. Theriogenology. 2017; p. 144-148.Sánchez-Ajofrín I, Iniesta-Cuerda M, Sánchez-Calabuig M, Peris-Frau P, Martín-Maestro A, Ortiz J, et al. Oxygen tension during in vitro oocyte maturation and fertilization affects embryo quality in sheep and deer. Anim Reprod Ciencia. 2020.Reza-Ebrahimi M, Mara L, Parham A, Dattena M. Reduced effect of mineral oil toxicity using four-well culture dish in sheep embryo production. Small Ruminant Research. 2020.Leifried L, First N. 1979. Characterization of bovine follicular oocytes and their ability to mature in vitro.PublicationORIGINAL2022_efecto_estatus_ovarico.pdf2022_efecto_estatus_ovarico.pdfTrabajo de gradoapplication/pdf1191788https://repository.ucc.edu.co/bitstreams/86eb83b0-2a82-443c-a012-d52ccda0d803/download1b46a3734e2c0c05bdc35ab9c458436dMD512022_efecto_estatus_ovarico-FormatoLicenciaUso.pdf2022_efecto_estatus_ovarico-FormatoLicenciaUso.pdfLicencia de usoapplication/pdf634737https://repository.ucc.edu.co/bitstreams/b060300b-b47d-425b-a043-bfd04d2bb1e3/downloade3c98f26391e490669d5f6f0ae0a792aMD522022_efecto_estatus_ovarico-ActaSustentacion.pdf2022_efecto_estatus_ovarico-ActaSustentacion.pdfActa de sustentaciónapplication/pdf709663https://repository.ucc.edu.co/bitstreams/c38ec470-35a9-402f-a8db-6bdacc972a7c/download7f7e3719300c5df006318274c1ef9c71MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repository.ucc.edu.co/bitstreams/307ae30a-d4ff-4b6a-9d31-14e138ad2531/download8a4605be74aa9ea9d79846c1fba20a33MD55THUMBNAIL2022_efecto_estatus_ovarico.pdf.jpg2022_efecto_estatus_ovarico.pdf.jpgGenerated Thumbnailimage/jpeg2928https://repository.ucc.edu.co/bitstreams/4a4fcb57-6629-4f19-9fcc-81b80bc9c423/downloadb373d731a759b71e22667d91fc1e6d58MD562022_efecto_estatus_ovarico-FormatoLicenciaUso.pdf.jpg2022_efecto_estatus_ovarico-FormatoLicenciaUso.pdf.jpgGenerated Thumbnailimage/jpeg5117https://repository.ucc.edu.co/bitstreams/5555a4be-f289-45d8-a713-b935bbc69603/download0ae22c1f3d7da3268df157fe52d99fa2MD572022_efecto_estatus_ovarico-ActaSustentacion.pdf.jpg2022_efecto_estatus_ovarico-ActaSustentacion.pdf.jpgGenerated Thumbnailimage/jpeg4838https://repository.ucc.edu.co/bitstreams/c21c0a0d-157f-44c3-8b18-1988313ac552/downloadb3145ffa47c8046e68a63e8803f0b0e1MD58TEXT2022_efecto_estatus_ovarico.pdf.txt2022_efecto_estatus_ovarico.pdf.txtExtracted texttext/plain101462https://repository.ucc.edu.co/bitstreams/f82c2baa-b97d-4dbc-afa5-773ed572d52d/download8262c2cf5e379adbb5ce28a755db282cMD592022_efecto_estatus_ovarico-FormatoLicenciaUso.pdf.txt2022_efecto_estatus_ovarico-FormatoLicenciaUso.pdf.txtExtracted texttext/plain5816https://repository.ucc.edu.co/bitstreams/a579b05d-d752-4772-a27c-124045d2fd7a/downloadc8b52624a84e0f72a6f6d108f1aee762MD5102022_efecto_estatus_ovarico-ActaSustentacion.pdf.txt2022_efecto_estatus_ovarico-ActaSustentacion.pdf.txtExtracted texttext/plain965https://repository.ucc.edu.co/bitstreams/5cebe6c9-e2ad-4e2f-984f-d12874a9f657/download219c3fcee1c3bb2957ff8d91393add4aMD51120.500.12494/46282oai:repository.ucc.edu.co:20.500.12494/462822024-08-09 12:44:54.564open.accesshttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=