Antibacterial and osteoinductive properties of wollastonite scaffolds impregnated with propolis produced by additive manufacturing

Biocompatible ceramic scaffolds offer a promising approach to address the challenges in bone reconstruction. Wollastonite, well-known for its exceptional biocompatibility, has attracted significant attention in orthopedics and craniofacial fields. However, the antimicrobial properties of wollastonit...

Full description

Autores:
Moreno Florez, Ana Isabel
Malagon, Sarita
Ocampo, Sebastian
Leal Marín, Sara
Gil Gonzalez, Jesus Humberto
Diaz Cano, Andrés
Lopera, Alex
Paucar, Carlos
Ossa, Edgar Alexander
Glasmacher, Birgit
Peláez Vargas, Alejandro
García, Claudia
Tipo de recurso:
Article of journal
Fecha de publicación:
2023
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
eng
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/55111
Acceso en línea:
https://hdl.handle.net/20.500.12494/55111
Palabra clave:
Propolis
Scaffolds
3D printing
Cell proliferation
Abtibacterial activity
Rights
openAccess
License
http://creativecommons.org/publicdomain/zero/1.0/
id COOPER2_b070c4973b7c2ee6387e2a92995b67de
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/55111
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.eng.fl_str_mv Antibacterial and osteoinductive properties of wollastonite scaffolds impregnated with propolis produced by additive manufacturing
title Antibacterial and osteoinductive properties of wollastonite scaffolds impregnated with propolis produced by additive manufacturing
spellingShingle Antibacterial and osteoinductive properties of wollastonite scaffolds impregnated with propolis produced by additive manufacturing
Propolis
Scaffolds
3D printing
Cell proliferation
Abtibacterial activity
title_short Antibacterial and osteoinductive properties of wollastonite scaffolds impregnated with propolis produced by additive manufacturing
title_full Antibacterial and osteoinductive properties of wollastonite scaffolds impregnated with propolis produced by additive manufacturing
title_fullStr Antibacterial and osteoinductive properties of wollastonite scaffolds impregnated with propolis produced by additive manufacturing
title_full_unstemmed Antibacterial and osteoinductive properties of wollastonite scaffolds impregnated with propolis produced by additive manufacturing
title_sort Antibacterial and osteoinductive properties of wollastonite scaffolds impregnated with propolis produced by additive manufacturing
dc.creator.fl_str_mv Moreno Florez, Ana Isabel
Malagon, Sarita
Ocampo, Sebastian
Leal Marín, Sara
Gil Gonzalez, Jesus Humberto
Diaz Cano, Andrés
Lopera, Alex
Paucar, Carlos
Ossa, Edgar Alexander
Glasmacher, Birgit
Peláez Vargas, Alejandro
García, Claudia
dc.contributor.author.none.fl_str_mv Moreno Florez, Ana Isabel
Malagon, Sarita
Ocampo, Sebastian
Leal Marín, Sara
Gil Gonzalez, Jesus Humberto
Diaz Cano, Andrés
Lopera, Alex
Paucar, Carlos
Ossa, Edgar Alexander
Glasmacher, Birgit
Peláez Vargas, Alejandro
García, Claudia
dc.contributor.researchgroup.none.fl_str_mv GIOM
dc.subject.proposal.none.fl_str_mv Propolis
Scaffolds
3D printing
Cell proliferation
Abtibacterial activity
topic Propolis
Scaffolds
3D printing
Cell proliferation
Abtibacterial activity
description Biocompatible ceramic scaffolds offer a promising approach to address the challenges in bone reconstruction. Wollastonite, well-known for its exceptional biocompatibility, has attracted significant attention in orthopedics and craniofacial fields. However, the antimicrobial properties of wollastonite have contradictory findings, necessitating further research to enhance its antibacterial characteristics. This study aimed to explore a new approach to improve in vitro biological response in terms of antimicrobial activity and cell proliferation by taking advantage of additive manufacturing for the development of scaffolds with complex geometries by 3D printing using propolis-modified wollastonite. The scaffolds were designed with a TPMS (Triply Periodic Minimal Surface) gyroid geometric shape and 3D printed prior to impregnation with propolis extract. The paste formulation was characterized by rheometric measurements, and the presence of propolis was confirmed by FTIR spectroscopy. The scaffolds were omprehensively assessed for their mechanical strength. The biological characterization involved evaluating the antimicrobial effects against Staphylococcus aureus and Staphylococcus epidermidis, employing Minimum Inhibitory Concentration (MIC), Zone of Inhibition (ZOI), and biofilm formation assays. Additionally, SaOs-2 cultures were used to study cell proliferation (Alamar blue assay), and potential osteogenic was tested (von Kossa, Alizarin Red, and ALP stainings) at different time points. Propolis impregnation did not compromise the mechanical properties of the scaffolds, which exhibited values comparable to human trabecular bone. Propolis incorporation conferred antibacterial activity against both Staphylococcus aureus and Staphylococcus epidermidis. The implementation of TPMS gyroid geometry in the scaffold design demonstrated favorable cell proliferation with increased metabolic activity and osteogenic potential after 21 days of cell cultures.
publishDate 2023
dc.date.issued.none.fl_str_mv 2023-12-18
dc.date.accessioned.none.fl_str_mv 2024-03-01T21:15:03Z
dc.date.available.none.fl_str_mv 2024-03-01T21:15:03Z
dc.type.none.fl_str_mv Artículo
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Florez AI, Malagon S, Ocampo S, Leal-Marin S, González JH, Diaz-Cano A, Lopera A, Paucar C, Ossa A, Glasmacher B, Peláez-Vargas A. (2024)Antibacterial and osteoinductive properties of wollastonite scaffolds impregnated with propolis produced by additive manufacturing. Heliyon. 2024 Jan 15;10(1).https://hdl.handle.net/20.500.12494/55111
dc.identifier.issn.none.fl_str_mv 2405-8440
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12494/55111
dc.identifier.doi.none.fl_str_mv ttps://doi.org/10.1016/j.heliyon.2023.e23955
identifier_str_mv Florez AI, Malagon S, Ocampo S, Leal-Marin S, González JH, Diaz-Cano A, Lopera A, Paucar C, Ossa A, Glasmacher B, Peláez-Vargas A. (2024)Antibacterial and osteoinductive properties of wollastonite scaffolds impregnated with propolis produced by additive manufacturing. Heliyon. 2024 Jan 15;10(1).https://hdl.handle.net/20.500.12494/55111
2405-8440
ttps://doi.org/10.1016/j.heliyon.2023.e23955
url https://hdl.handle.net/20.500.12494/55111
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.citationendpage.none.fl_str_mv 16 p.
dc.relation.citationissue.none.fl_str_mv e23955
dc.relation.citationstartpage.none.fl_str_mv 1
dc.relation.citationvolume.none.fl_str_mv 10
dc.relation.ispartofjournal.none.fl_str_mv Heliyon
dc.relation.references.none.fl_str_mv A. Alyahya, G.R.J. Swennen, Bone grafting in orthognathic surgery: a systematic review, Int. J. Oral Maxillofac. Surg. 48 (2019) 322–331, https://doi.org/ 10.1016/j.ijom.2018.08.014.
L. Roseti, V. Parisi, M. Petretta, C. Cavallo, G. Desando, I. Bartolotti, B. Grigolo, Scaffolds for bone tissue engineering: State of the art and new perspectives, Mater. Sci. Eng. C 78 (2017) 1246–1262, https://doi.org/10.1016/j.msec.2017.05.017.
G.G. Wang, S. Deb, L.D.S. Coelho, Earthworm optimisation algorithm: a bio-inspired metaheuristic algorithm for global optimisation problems, IJBIC 12 (2018) 1, https://doi.org/10.1504/IJBIC.2018.093328.
P.V. Giannoudis, H. Dinopoulos, E. Tsiridis, Bone substitutes: an update, Injury 36 (2005), https://doi.org/10.1016/j.injury.2005.07.029. S20–S27.
M. Panteli, P.V. Giannoudis, Chronic osteomyelitis: what the surgeon needs to know, EFORT Open Reviews 1 (2016) 128–135, https://doi.org/10.1302/2058- 5241.1.000017.
K. Jerzy, H. Francis, Chronic osteomyelitis - bacterial flora, antibiotic sensitivity and treatment challenges, TOORTHJ 12 (2018) 153–163, https://doi.org/ 10.2174/1874325001812010153.
M. Rossi, P. Marrazzo, The potential of honeybee products for biomaterial applications, Biomimetics 6 (2021) 6, https://doi.org/10.3390/biomimetics6010006.
N. Martelli, C. Serrano, H. van den Brink, J. Pineau, P. Prognon, I. Borget, S. El Batti, Advantages and disadvantages of 3-dimensional printing in surgery: a systematic review, Surgery 159 (2016) 1485–1500, https://doi.org/10.1016/j.surg.2015.12.017.
J. Breeze, D. Tong, A. Gibbons, Contemporary management of maxillofacial ballistic trauma, Br. J. Oral Maxillofac. Surg. 55 (2017) 661–665, https://doi.org/ 10.1016/j.bjoms.2017.05.001.
A.L. Jardini, M.A. Larosa, R.M. Filho, C.A. de C. Zavaglia, L.F. Bernardes, C.S. Lambert, D.R. Calderoni, P. Kharmandayan, Cranial reconstruction: 3D biomodel and custom-built implant created using additive manufacturing, J. Cranio-Maxillofacial Surg. 42 (2014) 1877, https://doi.org/10.1016/j.jcms.2014.07.006, 1884.
S. Bhumiratana, G. Vunjak-Novakovic, Concise review: personalized human bone grafts for reconstructing head and face, Stem Cells Translational Medicine 1 (2012) 64–69, https://doi.org/10.5966/sctm.2011-0020.
H.E. Jazayeri, M. Tahriri, M. Razavi, K. Khoshroo, F. Fahimipour, E. Dashtimoghadam, L. Almeida, L. Tayebi, A current overview of materials and strategies for potential use in maxillofacial tissue regeneration, Mater. Sci. Eng. C 70 (2017) 913–929, https://doi.org/10.1016/j.msec.2016.08.055.
Y. Lin, S. Huang, R. Zou, X. Gao, J. Ruan, M.D. Weir, M.A. Reynolds, W. Qin, X. Chang, H. Fu, H.H.K. Xu, Calcium phosphate cement scaffold with stem cell coculture and prevascularization for dental and craniofacial bone tissue engineering, Dent. Mater. 35 (2019) 1031–1041, https://doi.org/10.1016/j. dental.2019.04.009.
S. Hollister, C. Lin, E. Saito, C. Lin, R. Schek, J. Taboas, J. Williams, B. Partee, C. Flanagan, A. Diggs, E. Wilke, G. Van Lenthe, R. Muller, T. Wirtz, S. Das, S. Feinberg, P. Krebsbach, Engineering craniofacial scaffolds, Orthod. Craniofac. Res. 8 (2005) 162–173, https://doi.org/10.1111/j.1601-6343.2005.00329.x.
F. Darus, R.M. Isa, N. Mamat, M. Jaafar, Techniques for fabrication and construction of three-dimensional bioceramic scaffolds: effect on pores size, porosity and compressive strength, Ceram. Int. 44 (2018) 18400–18407, https://doi.org/10.1016/j.ceramint.2018.07.056.
R. van Noort, The future of dental devices is digital, Dent. Mater. 28 (2012) 3–12, https://doi.org/10.1016/j.dental.2011.10.014.
H.N. Chia, B.M. Wu, Recent advances in 3D printing of biomaterials, J. Biol. Eng. 9 (2015) 4, https://doi.org/10.1186/s13036-015-0001-4.
G.M. Azarov, E.V. Maiorova, M.A. Oborina, A.V. Belyakov, Wollastonite raw materials and their applications (a review), Glass Ceram. 52 (1995) 237–240, https://doi.org/10.1007/BF00681090.
L.D. Maxim, R. Niebo, M.J. Utell, E.E. McConnell, S. LaRosa, A.M. Segrave, Wollastonite toxicity: an update, Inhal. Toxicol. 26 (2014) 95–112, https://doi.org/ 10.3109/08958378.2013.857372.
E. Mancuso, N. Alharbi, O.A. Bretcanu, M. Marshall, M.A. Birch, A.W. McCaskie, K.W. Dalgarno, Three-dimensional printing of porous load-bearing bioceramic scaffolds, Proc. Inst. Mech. Eng. H 231 (2017) 575–585, https://doi.org/10.1177/0954411916682984.
M.A. Berthaume, P.C. Dechow, J. Iriarte-Diaz, C.F. Ross, D.S. Strait, Q. Wang, I.R. Grosse, Probabilistic finite element analysis of a craniofacial finite element model, J. Theor. Biol. 300 (2012) 242–253, https://doi.org/10.1016/j.jtbi.2012.01.031.
M.V. Reddy, M. Pathak, Sol-gel combustion synthesis of Ag doped CaSiO 3 : in vitro bioactivity, antibacterial activity and cytocompatibility studies for biomedical applications, Materials Technology 33 (2018) 38–47, https://doi.org/10.1080/10667857.2017.1389050.
S. Palakurthy, A.A. P, V.R. K, in vitro evaluation of silver doped wollastonite synthesized from natural waste for biomedical applications, Ceram. Int. 45 (2019) 25044–25051, https://doi.org/10.1016/j.ceramint.2019.03.169.
S. Azeena, N. Subhapradha, N. Selvamurugan, S. Narayan, N. Srinivasan, R. Murugesan, T. Chung, A. Moorthi, Antibacterial activity of agricultural waste derived wollastonite doped with copper for bone tissue engineering, Mater. Sci. Eng. C 71 (2017) 1156–1165, https://doi.org/10.1016/j.msec.2016.11.118.
W. Ortega-Lara, D.A. Cort´es-Hern´andez, S. Best, R. Brooks, A. Hern´andez-Ramírez, Antibacterial properties, in vitro bioactivity and cell proliferation of titania–wollastonite composites, Ceram. Int. 36 (2010) 513–519, https://doi.org/10.1016/j.ceramint.2009.09.024.
V. Martin, I.A. Ribeiro, M.M. Alves, L. Gonçalves, R.A. Claudio, L. Grenho, M.H. Fernandes, P. Gomes, C.F. Santos, A.F. Bettencourt, Engineering a multifunctional 3D-printed PLA-collagen-minocycline-nanoHydroxyapatite scaffold with combined antimicrobial and osteogenic effects for bone regeneration, Mater. Sci. Eng. C 101 (2019) 15–26, https://doi.org/10.1016/j.msec.2019.03.056.
A.S. Tiffany, D.L. Gray, T.J. Woods, K. Subedi, B.A.C. Harley, The inclusion of zinc into mineralized collagen scaffolds for craniofacial bone repair applications, Acta Biomater. 93 (2019) 86–96, https://doi.org/10.1016/j.actbio.2019.05.031
A. Sabir, A. Sumidarti, Interleukin-6 expression on inflamed rat dental pulp tissue after capped with Trigona sp. propolis from south Sulawesi, Indonesia, Saudi J. Biol. Sci. 24 (2017) 1034–1037, https://doi.org/10.1016/j.sjbs.2016.12.019.
M.J.A.M. Araújo, S.D.M.G. Bosco, J.M. Sforcin, Pythium insidiosum: inhibitory effects of propolis and geopropolis on hyphal growth, Braz. J. Microbiol. 47 (2016) 863–869, https://doi.org/10.1016/j.bjm.2016.06.008.
A. Del Carpio-Perochena, A. Kishen, R. Felitti, A.Y. Bhagirath, M.R. Medapati, C. Lai, R.S. Cunha, Antibacterial properties of chitosan nanoparticles and propolis associated with calcium hydroxide against Single- and multispecies biofilms: an in vitro and in Situ study, J. Endod. 43 (2017) 1332–1336, https://doi.org/ 10.1016/j.joen.2017.03.017.
S. Duarte, P.L. Rosalen, M.F. Hayacibara, J.A. Cury, W.H. Bowen, R.E. Marquis, V.L.G. Rehder, A. Sartoratto, M. Ikegaki, H. Koo, The influence of a novel propolis on mutans streptococci biofilms and caries development in rats, Arch. Oral Biol. 51 (2006) 15–22, https://doi.org/10.1016/j.archoralbio.2005.06.002.
M.F. Hayacibara, H. Koo, P.L. Rosalen, S. Duarte, E.M. Franco, W.H. Bowen, M. Ikegaki, J.A. Cury, In vitro and in vivo effects of isolated fractions of Brazilian propolis on caries development, J. Ethnopharmacol. 101 (2005) 110–115, https://doi.org/10.1016/j.jep.2005.04.001.
S.A. Lib´erio, A.L.A. Pereira, M.J.A.M. Araújo, R.P. Dutra, F.R.F. Nascimento, V. Monteiro-Neto, M.N.S. Ribeiro, A.G. Gonçalves, R.N.M. Guerra, The potential use of propolis as a cariostatic agent and its actions on mutans group streptococci, J. Ethnopharmacol. 125 (2009) 1–9, https://doi.org/10.1016/j.jep.2009.04.047.
A.W. Gjertsen, K.A. Stothz, K.G. Neiva, R. Pileggi, Effect of propolis on proliferation and apoptosis of periodontal ligament fibroblasts, Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology. 112 (2011) 843–848, https://doi.org/10.1016/j.tripleo.2011.08.004.
M.C. Marcucci, Propolis: chemical composition, biological properties and therapeutic activity, Apidologie 26 (1995) 83–99, https://doi.org/10.1051/apido: 19950202.
K.B. Santiago, G.M. Piana, B.J. Conti, E.D.O. Cardoso, B.F. Murbach Teles Andrade, M.R. Zanutto, V.L. Mores Rall, A. Fernandes, J.M. Sforcin, Microbiological control and antibacterial action of a propolis-containing mouthwash and control of dental plaque in humans, Nat. Prod. Res. 32 (2018) 1441–1445, https://doi. org/10.1080/14786419.2017.1344664.
I.-A.I. Thamnopoulos, G.F. Michailidis, D.J. Fletouris, A. Badeka, M.G. Kontominas, A.S. Angelidis, Inhibitory activity of propolis against Listeria monocytogenes in milk stored under refrigeration, Food Microbiol. 73 (2018) 168–176, https://doi.org/10.1016/j.fm.2018.01.021.
L.A.R. Valadas, E.M. Rodrigues Neto, M.A.L. Lotif, S.G.C. Fonseca, F.O. Chagas, F.V. Fechine, C.B.M. Carvalho, M.A.M. Bandeira, M.M.F. Fonteles, P.L.D. Lobo, Evaluation of propolis dental varnish against Streptococcus mutans in children, Dent. Mater. 33 (2017), https://doi.org/10.1016/j.dental.2017.08.162 e80–e81.
A. Fogden, M. Haeberlein, S. Lidin, Generalizations of the gyroid surface, J. Phys. I France. 3 (1993) 2371–2385, https://doi.org/10.1051/jp1:1993250.
H. Shao, Y. He, J. Fu, D. He, X. Yang, J. Xie, C. Yao, J. Ye, S. Xu, Z. Gou, 3D printing magnesium-doped wollastonite/β-TCP bioceramics scaffolds with high strength and adjustable degradation, J. Eur. Ceram. Soc. 36 (2016) 1495–1503, https://doi.org/10.1016/j.jeurceramsoc.2016.01.010
C21 Committee, Test Method for Water Absorption, Bulk Density, Apparent Porosity, and Apparent Specific Gravity of Fired Whiteware Products, Ceramic Tiles, and Glass Tiles, ASTM International, n.d. https://doi.org/10.1520/C0373-88R06.
J. Liu, X. Miao, Porous alumina ceramics prepared by slurry infiltration of expanded polystyrene beads, J. Mater. Sci. 40 (2005) 6145–6150, https://doi.org/ 10.1007/s10853-005-3165-3
D04 Committee, Test Method for Density of Semi-Solid Asphalt Binder (Pycnometer Method), ASTM International, n.d. https://doi.org/10.1520/D0070_ D0070M-21.
V. Seidel, E. Peyfoon, D.G. Watson, J. Fearnley, Comparative study of the antibacterial activity of propolis from different geographical and climatic zones: antibacterial activity of propolis from different zones, Phytother Res. 22 (2008) 1256–1263, https://doi.org/10.1002/ptr.2480.
S. Leal-Marin, G. Gallaway, K. H¨oltje, A. Lopera-Sepulveda, B. Glasmacher, O. Gryshkov, Scaffolds with magnetic nanoparticles for tissue Stimulation, Current Directions in Biomedical Engineering 7 (2021) 460–463, https://doi.org/10.1515/cdbme-2021-2117.
Pel´aez-Vargas, Alejandro, Daniel Gallego-Perez, D.F. Gomez, M.H. Fernandes, D.J. Hansford, F.J. Monteiro, Propagation of human bone marrow stem cells for craniofacial applications, in: M.A. Hayat (Ed.), Stem Cells and Cancer Stem Cells, 2012, pp. 107–122.
S. Teixeira, M.A. Rodriguez, P. Pena, A.H. De Aza, S. De Aza, M.P. Ferraz, F.J. Monteiro, Physical characterization of hydroxyapatite porous scaffolds for tissue engineering, Mater. Sci. Eng. C 29 (2009) 1510–1514, https://doi.org/10.1016/j.msec.2008.09.052.
E. Cunningham, N. Dunne, G. Walker, C. Maggs, R. Wilcox, F. Buchanan, Hydroxyapatite bone substitutes developed via replication of natural marine sponges, J. Mater. Sci. Mater. Med. 21 (2010) 2255–2261, https://doi.org/10.1007/s10856-009-3961-4.
Y. Guo, H.S. Patanwala, B. Bognet, A.W.K. Ma, Inkjet and inkjet-based 3D printing: connecting fluid properties and printing performance, RPJ 23 (2017) 562–576, https://doi.org/10.1108/RPJ-05-2016-0076.
P.S.R.K. Prasad, A.V. Reddy, P.K. Rajesh, P. Ponnambalam, K. Prakasan, Studies on rheology of ceramic inks and spread of ink droplets for direct ceramic ink jet printing, J. Mater. Process. Technol. 176 (2006) 222–229, https://doi.org/10.1016/j.jmatprotec.2006.04.001.
R. Jayathilakage, P. Rajeev, J. Sanjayan, Rheometry for concrete 3D printing: a review and an experimental comparison, Buildings 12 (2022) 1190, https://doi. org/10.3390/buildings12081190
Mott Robert, Untener Joseph, Applied Fluid Mechanics, seventh ed., Pearson, 2014.
L. Zhang, G. Yang, B.N. Johnson, X. Jia, Three-dimensional (3D) printed scaffold and material selection for bone repair, Acta Biomater. 84 (2019) 16–33, https://doi.org/10.1016/j.actbio.2018.11.039.
Mary Lilliman, Control of Mortar Rheology for 3D Concrete Printing, Doctoral thesis, Loughborough University, 2017. https://hdl.handle.net/2134/25216.
S.S.L. Chan, R.M. Pennings, L. Edwards, G.V. Franks, 3D printing of clay for decorative architectural applications: effect of solids volume fraction on rheology and printability, Addit. Manuf. 35 (2020), 101335, https://doi.org/10.1016/j.addma.2020.101335.
Delgado, María de Lourdes, Andrade, Jesús ´Angel, Ramirez, Carlos Alberto, Caracterizaci´on fisicoquímica de prop´oleos colectados en el Bosque La Primavera Zapopan, Jalisco., Rev. mex. de cienc. forestales. 6 (2015) 74–87
M.B. Sedelnikova, A.V. Ugodchikova, T.V. Tolkacheva, V.V. Chebodaeva, I.A. Cluklhov, M.A. Khimich, O.V. Bakina, M.I. Lerner, V.S. Egorkin, J. Schmidt, Y. P. Sharkeev, Surface modification of Mg0.8Ca alloy via wollastonite micro-arc coatings: significant improvement in corrosion resistance, Metals 11 (2021) 754, https://doi.org/10.3390/met11050754.
W. Chen, Y. Liang, X. Hou, J. Zhang, H. Ding, S. Sun, H. Cao, Mechanical grinding preparation and characterization of TiO2-coated wollastonite composite pigments, Materials 11 (2018) 593, https://doi.org/10.3390/ma11040593.
F. Scazzocchio, F.D. D’Auria, D. Alessandrini, F. Pantanella, Multifactorial aspects of antimicrobial activity of propolis, Microbiol. Res. 161 (2006) 327–333, https://doi.org/10.1016/j.micres.2005.12.003.
S. Moussaoui, M. Lahouel, Propolis extract: a potent bacteria efflux pump inhibitor, Journal of Biologically Active Products from Nature 4 (2014) 216–223, https://doi.org/10.1080/22311866.2014.936906.
A. Uzel, K. Sorkun, ¨O. ¨Onça˘g, D. Ço˘gulu, ¨O. Gençay, B. Sali˙h, Chemical compositions and antimicrobial activities of four different Anatolian propolis samples, Microbiol. Res. 160 (2005) 189–195, https://doi.org/10.1016/j.micres.2005.01.002.
U.A. Qureshi, Z. Khatri, F. Ahmed, M. Khatri, I.-S. Kim, Electrospun zein nanofiber as a green and recyclable adsorbent for the removal of reactive black 5 from the aqueous phase, ACS Sustainable Chem. Eng. 5 (2017) 4340–4351, https://doi.org/10.1021/acssuschemeng.7b00402.
J. Ito, F.-R. Chang, H.-K. Wang, Y.K. Park, M. Ikegaki, N. Kilgore, K.-H. Lee, Anti-AIDS agents. 48. Anti-HIV activity of moronic acid derivatives and the new melliferone-related triterpenoid isolated from Brazilian propolis, J. Nat. Prod. 64 (2001) 1278–1281, https://doi.org/10.1021/np010211x.
C.C. Duke, V.H. Tran, R.K. Duke, A. Abu-Mellal, G.T. Plunkett, D.I. King, K. Hamid, K.L. Wilson, R.L. Barrett, J.J. Bruhl, A sedge plant as the source of Kangaroo Island propolis rich in prenylated p-coumarate ester and stilbenes, Phytochemistry 134 (2017) 87–97, https://doi.org/10.1016/j.phytochem.2016.11.005.
A.I. Moreno, Y. Orozco, S. Ocampo, S. Malag´on, A. Ossa, A. Pel´aez-Vargas, C. Paucar, A. Lopera, C. Garcia, Effects of propolis impregnation on polylactic acid (PLA) scaffolds loaded with wollastonite particles against Staphylococcus aureus, Staphylococcus epidermidis, and their coculture for potential medical devices, Polymers 15 (2023) 2629, https://doi.org/10.3390/polym15122629.
M.S. Almuhayawi, Propolis as a novel antibacterial agent, Saudi J. Biol. Sci. 27 (2020) 3079–3086, https://doi.org/10.1016/j.sjbs.2020.09.016.
O.K. Mirzoeva, R.N. Grishanin, P.C. Calder, Antimicrobial action of propolis and some of its components: the effects on growth, membrane potential and motility of bacteria, Microbiol. Res. 152 (1997) 239–246, https://doi.org/10.1016/S0944-5013(97)80034-1.
N. Vera, E. Solorzano, R. Ordo˜nez, L. Maldonado, E. Bedascarrasbure, M.I. Isla, Chemical composition of Argentinean propolis collected in extreme regions and its relation with antimicrobial and antioxidant activities, Nat. Prod. Commun. 6 (2011), 1934578X1100600618.
R. Silva-Carvalho, F. Baltazar, C. Almeida-Aguiar, Propolis: A Complex Natural Product with a Plethora of Biological Activities that Can Be Explored for Drug Development, Evidence-Based Complementary and Alternative Medicine. 2015, 2015, pp. 1–29, https://doi.org/10.1155/2015/206439.
W. Zhang, G.E. Margarita, D. Wu, W. Yuan, S. Yan, S. Qi, X. Xue, K. Wang, L. Wu, Antibacterial activity of Chinese red propolis against Staphylococcus aureus and MRSA, Molecules 27 (2022) 1693, https://doi.org/10.3390/molecules27051693.
F. Saeed, R.S. Ahmad, M.U. Arshad, B. Niaz, R. Batool, R. Naz, H. Ansar Rasul Suleria, Propolis to curb lifestyle related disorders: an overview, Int. J. Food Prop. 19 (2016) 420–437, https://doi.org/10.1080/10942912.2012.745131.
S. Demir, Y. Aliyazicioglu, I. Turan, S. Misir, A. Mentese, S.O. Yaman, K. Akbulut, K. Kilinc, O. Deger, Antiproliferative and proapoptotic activity of Turkish propolis on human lung cancer cell line, Nutr. Cancer 68 (2016) 165–172, https://doi.org/10.1080/01635581.2016.1115096.
A. Pantosti, A. Sanchini, M. Monaco, Mechanisms of antibiotic resistance in Staphylococcus aureus, Future Microbiol. 2 (2007) 323–334.
S. Periasamy, S.S. Chatterjee, G.Y.C. Cheung, M. Otto, Phenol-soluble modulins in staphylococci: what are they originally for? Commun. Integr. Biol. 5 (2012) 275–277, https://doi.org/10.4161/cib.19420
M.G. Gandolfi, F. Perut, G. Ciapetti, R. Mongiorgi, C. Prati, New portland cement–based materials for endodontics mixed with articaine solution: a study of cellular response, J. Endod. 34 (2008) 39–44, https://doi.org/10.1016/j.joen.2007.09.001.
N. Higuita-Castro, D. Gallego-Perez, A. Pelaez-Vargas, F. García Quiroz, O.M. Posada, L.E. L´opez, C.A. Sarassa, P. Agudelo-Florez, F.J. Monteiro, A.S. Litsky, D. J. Hansford, Reinforced Portland cement porous scaffolds for load-bearing bone tissue engineering applications, J. Biomed. Mater. Res. 100B (2012) 501–507, https://doi.org/10.1002/jbm.b.31976.
A.H. Banskota, Y. Tezuka, S. Kadota, Recent progress in pharmacological research of propolis, Phytother Res. 15 (2001) 561–571, https://doi.org/10.1002/ ptr.1029.
M. Tyszka-Czochara, P. Pa´sko, W. Reczy´nski, M. Szl´osarczyk, B. Bystrowska, W. Opoka, Zinc and propolis reduces cytotoxicity and proliferation in Skin fibroblast cell culture: total polyphenol content and antioxidant capacity of propolis, Biol. Trace Elem. Res. 160 (2014) 123–131, https://doi.org/10.1007/ s12011-014-0019-3.
A.H. Banskota, Y. Tezuka, J.K. Prasain, K. Matsushige, I. Saiki, S. Kadota, Chemical constituents of Brazilian propolis and their cytotoxic activities, J. Nat. Prod. 61 (1998) 896–900, https://doi.org/10.1021/np980028c.
J. Su, S. Hua, A. Chen, P. Chen, L. Yang, X. Yuan, D. Qi, H. Zhu, C. Yan, J. Xiao, Y. Shi, Three-dimensional printing of gyroid-structured composite bioceramic scaffolds with tuneable degradability, Biomater. Adv. 133 (2022), 112595, https://doi.org/10.1016/j.msec.2021.112595.
J.A. Ramírez, V. Ospina, A.A. Rozo, M.I. Viana, S. Ocampo, S. Restrepo, N.A. V´asquez, C. Paucar, C. García, Influence of geometry on cell proliferation of PLA and alumina scaffolds constructed by additive manufacturing, J. Mater. Res. 34 (2019) 3757–3765, https://doi.org/10.1557/jmr.2019.323
F. Baino, D.U. Tulyaganov, Z. Kahharov, A. Rahdar, E. Vern´e, Foam-replicated diopside/fluorapatite/wollastonite-based glass–ceramic scaffolds, Ceramics 5 (2022) 120–130, https://doi.org/10.3390/ceramics5010011.
B. Battulga, K. Shiizaki, Y. Miura, Y. Osanai, R. Yamazaki, Y. Shinohara, Y. Kubota, T. Hara, M. Kuro-o, N. Ohno, Correlative light and electron microscopic observation of calcium phosphate particles in a mouse kidney formed under a high-phosphate diet, Sci. Rep. 13 (2023) 852, https://doi.org/10.1038/s41598- 023-28103-3.
Y.-C. Huang, P.-C. Hsiao, H.-J. Chai, Hydroxyapatite extracted from fish scale: effects on MG63 osteoblast-like cells, Ceram. Int. 37 (2011) 1825–1831, https:// doi.org/10.1016/j.ceramint.2011.01.018.
P.S. Gomes, M.H. Fernandes, Effect of therapeutic levels of doxycycline and minocycline in the proliferation and differentiation of human bone marrow osteoblastic cells, Arch. Oral Biol. 52 (2007) 251–259, https://doi.org/10.1016/j.archoralbio.2006.10.005.
K. Song, Q. Kong, L. Li, Y. Wang, R. Parungao, S. Zheng, Y. Nie, Z. Jiao, H. Wang, T. Liu, fabrication and biocompatibility assay of a biomimetic osteoblastic niche, Appl. Biochem. Biotechnol. 189 (2019) 471–484, https://doi.org/10.1007/s12010-019-03015-z.
H. Iqbal, M. Ali, R. Zeeshan, Z. Mutahir, F. Iqbal, M.A.H. Nawaz, L. Shahzadi, A.A. Chaudhry, M. Yar, S. Luan, A.F. Khan, I. Rehman, Chitosan/hydroxyapatite (HA)/hydroxypropylmethyl cellulose (HPMC) spongy scaffolds-synthesis and evaluation as potential alveolar bone substitutes, Colloids and Surfaces B: Biointerfaces. 160 (2017) 553–563, https://doi.org/10.1016/j.colsurfb.2017.09.059.
W.E.G. Müller, E. Tolba, H.C. Schr¨oder, B. Diehl-Seifert, T. Link, X. Wang, Biosilica-loaded poly(ϵ-caprolactone) nanofibers mats provide a morphogenetically active surface scaffold for the growth and mineralization of the osteoclast-related SaOS-2 cells, Biotechnol. J. 9 (2014) 1312–1321, https://doi.org/10.1002/ biot.201400277.
H.H. Lu, S.F. El-Amin, K.D. Scott, C.T. Laurencin, Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cellsin vitro, J. Biomed. Mater. Res. 64A (2003) 465–474, https:// doi.org/10.1002/jbm.a.10399.
H. Shao, A. Liu, X. Ke, M. Sun, Y. He, X. Yang, J. Fu, L. Zhang, G. Yang, Y. Liu, S. Xu, Z. Gou, 3D robocasting magnesium-doped wollastonite/TCP bioceramic scaffolds with improved bone regeneration capacity in critical sized calvarial defects, J. Mater. Chem. B 5 (2017) 2941–2951, https://doi.org/10.1039/ C7TB00217C
A. Liu, M. Sun, H. Shao, X. Yang, C. Ma, D. He, Q. Gao, Y. Liu, S. Yan, S. Xu, Y. He, J. Fu, Z. Gou, The outstanding mechanical response and bone regeneration capacity of robocast dilute magnesium-doped wollastonite scaffolds in critical size bone defects, J. Mater. Chem. B 4 (2016) 3945–3958, https://doi.org/ 10.1039/C6TB00449K.
A. Meimandi-Parizi, A. Oryan, E. Sayahi, A. Bigham-Sadegh, Propolis extract a new reinforcement material in improving bone healing: an in vivo study, Int. J. Surg. 56 (2018) 94–101, https://doi.org/10.1016/j.ijsu.2018.06.006.
G. Kaur, V. Kumar, F. Baino, J.C. Mauro, G. Pickrell, I. Evans, O. Bretcanu, Mechanical properties of bioactive glasses, ceramics, glass-ceramics and composites: State-of-the-art review and future challenges, Mater. Sci. Eng. C 104 (2019), 109895, https://doi.org/10.1016/j.msec.2019.109895.
L. Rinc´on-Kohli, P.K. Zysset, Multi-axial mechanical properties of human trabecular bone, Biomech. Model. Mechanobiol. 8 (2009) 195–208, https://doi.org/ 10.1007/s10237-008-0128-z.
L.-C. Gerhardt, A.R. Boccaccini, Bioactive glass and glass-ceramic scaffolds for bone tissue engineering, Materials 3 (2010) 3867–3910, https://doi.org/ 10.3390/ma3073867.
dc.rights.uri.none.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.none.fl_str_mv CC0 1.0 Universal
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/publicdomain/zero/1.0/
CC0 1.0 Universal
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 16
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Netherlands
Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Odontología, Medellín y Envigado
publisher.none.fl_str_mv Netherlands
Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Odontología, Medellín y Envigado
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/cac86a49-e16c-4005-bd50-7094d516cfcb/download
https://repository.ucc.edu.co/bitstreams/42a8a69f-45f8-48f2-b4fc-ff11c597f84e/download
https://repository.ucc.edu.co/bitstreams/1b3486af-ea28-4d13-9d1c-7981c5fb7204/download
https://repository.ucc.edu.co/bitstreams/7c53946a-d149-4b98-833f-ebc2d3307db1/download
https://repository.ucc.edu.co/bitstreams/c316102c-f16c-4e5e-80dd-ac44cf20bf98/download
https://repository.ucc.edu.co/bitstreams/947a4614-b286-4fdb-ad77-6f63b9e9ac4a/download
https://repository.ucc.edu.co/bitstreams/af1eda83-e887-4122-a312-f2c217b6b33c/download
https://repository.ucc.edu.co/bitstreams/d817e6a8-f794-4b3e-af33-4022c80c9207/download
bitstream.checksum.fl_str_mv d38e48b34a462991f8eba4fbd8c4f511
8f108ba7fa7dab690a84a2a5ee3f9b28
42fd4ad1e89814f5e4a476b409eb708c
3bce4f7ab09dfc588f126e1e36e98a45
952442da759d7d835de843769691e569
2cca0bb3ad3f2e7c9bda09b98d4288bd
fca9b3776fe876a1279717b845318900
f39b2e8ca4089e989adcf9af4740675b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1814247241418801152
spelling Moreno Florez, Ana IsabelMalagon, SaritaOcampo, SebastianLeal Marín, SaraGil Gonzalez, Jesus HumbertoDiaz Cano, Andrés Lopera, AlexPaucar, CarlosOssa, Edgar Alexander Glasmacher, BirgitPeláez Vargas, AlejandroGarcía, ClaudiaGIOM2024-03-01T21:15:03Z2024-03-01T21:15:03Z2023-12-18Florez AI, Malagon S, Ocampo S, Leal-Marin S, González JH, Diaz-Cano A, Lopera A, Paucar C, Ossa A, Glasmacher B, Peláez-Vargas A. (2024)Antibacterial and osteoinductive properties of wollastonite scaffolds impregnated with propolis produced by additive manufacturing. Heliyon. 2024 Jan 15;10(1).https://hdl.handle.net/20.500.12494/551112405-8440https://hdl.handle.net/20.500.12494/55111ttps://doi.org/10.1016/j.heliyon.2023.e23955Biocompatible ceramic scaffolds offer a promising approach to address the challenges in bone reconstruction. Wollastonite, well-known for its exceptional biocompatibility, has attracted significant attention in orthopedics and craniofacial fields. However, the antimicrobial properties of wollastonite have contradictory findings, necessitating further research to enhance its antibacterial characteristics. This study aimed to explore a new approach to improve in vitro biological response in terms of antimicrobial activity and cell proliferation by taking advantage of additive manufacturing for the development of scaffolds with complex geometries by 3D printing using propolis-modified wollastonite. The scaffolds were designed with a TPMS (Triply Periodic Minimal Surface) gyroid geometric shape and 3D printed prior to impregnation with propolis extract. The paste formulation was characterized by rheometric measurements, and the presence of propolis was confirmed by FTIR spectroscopy. The scaffolds were omprehensively assessed for their mechanical strength. The biological characterization involved evaluating the antimicrobial effects against Staphylococcus aureus and Staphylococcus epidermidis, employing Minimum Inhibitory Concentration (MIC), Zone of Inhibition (ZOI), and biofilm formation assays. Additionally, SaOs-2 cultures were used to study cell proliferation (Alamar blue assay), and potential osteogenic was tested (von Kossa, Alizarin Red, and ALP stainings) at different time points. Propolis impregnation did not compromise the mechanical properties of the scaffolds, which exhibited values comparable to human trabecular bone. Propolis incorporation conferred antibacterial activity against both Staphylococcus aureus and Staphylococcus epidermidis. The implementation of TPMS gyroid geometry in the scaffold design demonstrated favorable cell proliferation with increased metabolic activity and osteogenic potential after 21 days of cell cultures.Biomaterials16application/pdfengNetherlandsUniversidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Odontología, Medellín y Envigadohttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccessCC0 1.0 Universalhttp://purl.org/coar/access_right/c_abf2Antibacterial and osteoinductive properties of wollastonite scaffolds impregnated with propolis produced by additive manufacturingArtículohttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersion16 p.e23955110HeliyonA. Alyahya, G.R.J. Swennen, Bone grafting in orthognathic surgery: a systematic review, Int. J. Oral Maxillofac. Surg. 48 (2019) 322–331, https://doi.org/ 10.1016/j.ijom.2018.08.014.L. Roseti, V. Parisi, M. Petretta, C. Cavallo, G. Desando, I. Bartolotti, B. Grigolo, Scaffolds for bone tissue engineering: State of the art and new perspectives, Mater. Sci. Eng. C 78 (2017) 1246–1262, https://doi.org/10.1016/j.msec.2017.05.017.G.G. Wang, S. Deb, L.D.S. Coelho, Earthworm optimisation algorithm: a bio-inspired metaheuristic algorithm for global optimisation problems, IJBIC 12 (2018) 1, https://doi.org/10.1504/IJBIC.2018.093328.P.V. Giannoudis, H. Dinopoulos, E. Tsiridis, Bone substitutes: an update, Injury 36 (2005), https://doi.org/10.1016/j.injury.2005.07.029. S20–S27.M. Panteli, P.V. Giannoudis, Chronic osteomyelitis: what the surgeon needs to know, EFORT Open Reviews 1 (2016) 128–135, https://doi.org/10.1302/2058- 5241.1.000017.K. Jerzy, H. Francis, Chronic osteomyelitis - bacterial flora, antibiotic sensitivity and treatment challenges, TOORTHJ 12 (2018) 153–163, https://doi.org/ 10.2174/1874325001812010153.M. Rossi, P. Marrazzo, The potential of honeybee products for biomaterial applications, Biomimetics 6 (2021) 6, https://doi.org/10.3390/biomimetics6010006.N. Martelli, C. Serrano, H. van den Brink, J. Pineau, P. Prognon, I. Borget, S. El Batti, Advantages and disadvantages of 3-dimensional printing in surgery: a systematic review, Surgery 159 (2016) 1485–1500, https://doi.org/10.1016/j.surg.2015.12.017.J. Breeze, D. Tong, A. Gibbons, Contemporary management of maxillofacial ballistic trauma, Br. J. Oral Maxillofac. Surg. 55 (2017) 661–665, https://doi.org/ 10.1016/j.bjoms.2017.05.001.A.L. Jardini, M.A. Larosa, R.M. Filho, C.A. de C. Zavaglia, L.F. Bernardes, C.S. Lambert, D.R. Calderoni, P. Kharmandayan, Cranial reconstruction: 3D biomodel and custom-built implant created using additive manufacturing, J. Cranio-Maxillofacial Surg. 42 (2014) 1877, https://doi.org/10.1016/j.jcms.2014.07.006, 1884.S. Bhumiratana, G. Vunjak-Novakovic, Concise review: personalized human bone grafts for reconstructing head and face, Stem Cells Translational Medicine 1 (2012) 64–69, https://doi.org/10.5966/sctm.2011-0020.H.E. Jazayeri, M. Tahriri, M. Razavi, K. Khoshroo, F. Fahimipour, E. Dashtimoghadam, L. Almeida, L. Tayebi, A current overview of materials and strategies for potential use in maxillofacial tissue regeneration, Mater. Sci. Eng. C 70 (2017) 913–929, https://doi.org/10.1016/j.msec.2016.08.055.Y. Lin, S. Huang, R. Zou, X. Gao, J. Ruan, M.D. Weir, M.A. Reynolds, W. Qin, X. Chang, H. Fu, H.H.K. Xu, Calcium phosphate cement scaffold with stem cell coculture and prevascularization for dental and craniofacial bone tissue engineering, Dent. Mater. 35 (2019) 1031–1041, https://doi.org/10.1016/j. dental.2019.04.009.S. Hollister, C. Lin, E. Saito, C. Lin, R. Schek, J. Taboas, J. Williams, B. Partee, C. Flanagan, A. Diggs, E. Wilke, G. Van Lenthe, R. Muller, T. Wirtz, S. Das, S. Feinberg, P. Krebsbach, Engineering craniofacial scaffolds, Orthod. Craniofac. Res. 8 (2005) 162–173, https://doi.org/10.1111/j.1601-6343.2005.00329.x.F. Darus, R.M. Isa, N. Mamat, M. Jaafar, Techniques for fabrication and construction of three-dimensional bioceramic scaffolds: effect on pores size, porosity and compressive strength, Ceram. Int. 44 (2018) 18400–18407, https://doi.org/10.1016/j.ceramint.2018.07.056.R. van Noort, The future of dental devices is digital, Dent. Mater. 28 (2012) 3–12, https://doi.org/10.1016/j.dental.2011.10.014.H.N. Chia, B.M. Wu, Recent advances in 3D printing of biomaterials, J. Biol. Eng. 9 (2015) 4, https://doi.org/10.1186/s13036-015-0001-4.G.M. Azarov, E.V. Maiorova, M.A. Oborina, A.V. Belyakov, Wollastonite raw materials and their applications (a review), Glass Ceram. 52 (1995) 237–240, https://doi.org/10.1007/BF00681090.L.D. Maxim, R. Niebo, M.J. Utell, E.E. McConnell, S. LaRosa, A.M. Segrave, Wollastonite toxicity: an update, Inhal. Toxicol. 26 (2014) 95–112, https://doi.org/ 10.3109/08958378.2013.857372.E. Mancuso, N. Alharbi, O.A. Bretcanu, M. Marshall, M.A. Birch, A.W. McCaskie, K.W. Dalgarno, Three-dimensional printing of porous load-bearing bioceramic scaffolds, Proc. Inst. Mech. Eng. H 231 (2017) 575–585, https://doi.org/10.1177/0954411916682984.M.A. Berthaume, P.C. Dechow, J. Iriarte-Diaz, C.F. Ross, D.S. Strait, Q. Wang, I.R. Grosse, Probabilistic finite element analysis of a craniofacial finite element model, J. Theor. Biol. 300 (2012) 242–253, https://doi.org/10.1016/j.jtbi.2012.01.031.M.V. Reddy, M. Pathak, Sol-gel combustion synthesis of Ag doped CaSiO 3 : in vitro bioactivity, antibacterial activity and cytocompatibility studies for biomedical applications, Materials Technology 33 (2018) 38–47, https://doi.org/10.1080/10667857.2017.1389050.S. Palakurthy, A.A. P, V.R. K, in vitro evaluation of silver doped wollastonite synthesized from natural waste for biomedical applications, Ceram. Int. 45 (2019) 25044–25051, https://doi.org/10.1016/j.ceramint.2019.03.169.S. Azeena, N. Subhapradha, N. Selvamurugan, S. Narayan, N. Srinivasan, R. Murugesan, T. Chung, A. Moorthi, Antibacterial activity of agricultural waste derived wollastonite doped with copper for bone tissue engineering, Mater. Sci. Eng. C 71 (2017) 1156–1165, https://doi.org/10.1016/j.msec.2016.11.118.W. Ortega-Lara, D.A. Cort´es-Hern´andez, S. Best, R. Brooks, A. Hern´andez-Ramírez, Antibacterial properties, in vitro bioactivity and cell proliferation of titania–wollastonite composites, Ceram. Int. 36 (2010) 513–519, https://doi.org/10.1016/j.ceramint.2009.09.024.V. Martin, I.A. Ribeiro, M.M. Alves, L. Gonçalves, R.A. Claudio, L. Grenho, M.H. Fernandes, P. Gomes, C.F. Santos, A.F. Bettencourt, Engineering a multifunctional 3D-printed PLA-collagen-minocycline-nanoHydroxyapatite scaffold with combined antimicrobial and osteogenic effects for bone regeneration, Mater. Sci. Eng. C 101 (2019) 15–26, https://doi.org/10.1016/j.msec.2019.03.056.A.S. Tiffany, D.L. Gray, T.J. Woods, K. Subedi, B.A.C. Harley, The inclusion of zinc into mineralized collagen scaffolds for craniofacial bone repair applications, Acta Biomater. 93 (2019) 86–96, https://doi.org/10.1016/j.actbio.2019.05.031A. Sabir, A. Sumidarti, Interleukin-6 expression on inflamed rat dental pulp tissue after capped with Trigona sp. propolis from south Sulawesi, Indonesia, Saudi J. Biol. Sci. 24 (2017) 1034–1037, https://doi.org/10.1016/j.sjbs.2016.12.019.M.J.A.M. Araújo, S.D.M.G. Bosco, J.M. Sforcin, Pythium insidiosum: inhibitory effects of propolis and geopropolis on hyphal growth, Braz. J. Microbiol. 47 (2016) 863–869, https://doi.org/10.1016/j.bjm.2016.06.008.A. Del Carpio-Perochena, A. Kishen, R. Felitti, A.Y. Bhagirath, M.R. Medapati, C. Lai, R.S. Cunha, Antibacterial properties of chitosan nanoparticles and propolis associated with calcium hydroxide against Single- and multispecies biofilms: an in vitro and in Situ study, J. Endod. 43 (2017) 1332–1336, https://doi.org/ 10.1016/j.joen.2017.03.017.S. Duarte, P.L. Rosalen, M.F. Hayacibara, J.A. Cury, W.H. Bowen, R.E. Marquis, V.L.G. Rehder, A. Sartoratto, M. Ikegaki, H. Koo, The influence of a novel propolis on mutans streptococci biofilms and caries development in rats, Arch. Oral Biol. 51 (2006) 15–22, https://doi.org/10.1016/j.archoralbio.2005.06.002.M.F. Hayacibara, H. Koo, P.L. Rosalen, S. Duarte, E.M. Franco, W.H. Bowen, M. Ikegaki, J.A. Cury, In vitro and in vivo effects of isolated fractions of Brazilian propolis on caries development, J. Ethnopharmacol. 101 (2005) 110–115, https://doi.org/10.1016/j.jep.2005.04.001.S.A. Lib´erio, A.L.A. Pereira, M.J.A.M. Araújo, R.P. Dutra, F.R.F. Nascimento, V. Monteiro-Neto, M.N.S. Ribeiro, A.G. Gonçalves, R.N.M. Guerra, The potential use of propolis as a cariostatic agent and its actions on mutans group streptococci, J. Ethnopharmacol. 125 (2009) 1–9, https://doi.org/10.1016/j.jep.2009.04.047.A.W. Gjertsen, K.A. Stothz, K.G. Neiva, R. Pileggi, Effect of propolis on proliferation and apoptosis of periodontal ligament fibroblasts, Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology. 112 (2011) 843–848, https://doi.org/10.1016/j.tripleo.2011.08.004.M.C. Marcucci, Propolis: chemical composition, biological properties and therapeutic activity, Apidologie 26 (1995) 83–99, https://doi.org/10.1051/apido: 19950202.K.B. Santiago, G.M. Piana, B.J. Conti, E.D.O. Cardoso, B.F. Murbach Teles Andrade, M.R. Zanutto, V.L. Mores Rall, A. Fernandes, J.M. Sforcin, Microbiological control and antibacterial action of a propolis-containing mouthwash and control of dental plaque in humans, Nat. Prod. Res. 32 (2018) 1441–1445, https://doi. org/10.1080/14786419.2017.1344664.I.-A.I. Thamnopoulos, G.F. Michailidis, D.J. Fletouris, A. Badeka, M.G. Kontominas, A.S. Angelidis, Inhibitory activity of propolis against Listeria monocytogenes in milk stored under refrigeration, Food Microbiol. 73 (2018) 168–176, https://doi.org/10.1016/j.fm.2018.01.021.L.A.R. Valadas, E.M. Rodrigues Neto, M.A.L. Lotif, S.G.C. Fonseca, F.O. Chagas, F.V. Fechine, C.B.M. Carvalho, M.A.M. Bandeira, M.M.F. Fonteles, P.L.D. Lobo, Evaluation of propolis dental varnish against Streptococcus mutans in children, Dent. Mater. 33 (2017), https://doi.org/10.1016/j.dental.2017.08.162 e80–e81.A. Fogden, M. Haeberlein, S. Lidin, Generalizations of the gyroid surface, J. Phys. I France. 3 (1993) 2371–2385, https://doi.org/10.1051/jp1:1993250.H. Shao, Y. He, J. Fu, D. He, X. Yang, J. Xie, C. Yao, J. Ye, S. Xu, Z. Gou, 3D printing magnesium-doped wollastonite/β-TCP bioceramics scaffolds with high strength and adjustable degradation, J. Eur. Ceram. Soc. 36 (2016) 1495–1503, https://doi.org/10.1016/j.jeurceramsoc.2016.01.010C21 Committee, Test Method for Water Absorption, Bulk Density, Apparent Porosity, and Apparent Specific Gravity of Fired Whiteware Products, Ceramic Tiles, and Glass Tiles, ASTM International, n.d. https://doi.org/10.1520/C0373-88R06.J. Liu, X. Miao, Porous alumina ceramics prepared by slurry infiltration of expanded polystyrene beads, J. Mater. Sci. 40 (2005) 6145–6150, https://doi.org/ 10.1007/s10853-005-3165-3D04 Committee, Test Method for Density of Semi-Solid Asphalt Binder (Pycnometer Method), ASTM International, n.d. https://doi.org/10.1520/D0070_ D0070M-21.V. Seidel, E. Peyfoon, D.G. Watson, J. Fearnley, Comparative study of the antibacterial activity of propolis from different geographical and climatic zones: antibacterial activity of propolis from different zones, Phytother Res. 22 (2008) 1256–1263, https://doi.org/10.1002/ptr.2480.S. Leal-Marin, G. Gallaway, K. H¨oltje, A. Lopera-Sepulveda, B. Glasmacher, O. Gryshkov, Scaffolds with magnetic nanoparticles for tissue Stimulation, Current Directions in Biomedical Engineering 7 (2021) 460–463, https://doi.org/10.1515/cdbme-2021-2117.Pel´aez-Vargas, Alejandro, Daniel Gallego-Perez, D.F. Gomez, M.H. Fernandes, D.J. Hansford, F.J. Monteiro, Propagation of human bone marrow stem cells for craniofacial applications, in: M.A. Hayat (Ed.), Stem Cells and Cancer Stem Cells, 2012, pp. 107–122.S. Teixeira, M.A. Rodriguez, P. Pena, A.H. De Aza, S. De Aza, M.P. Ferraz, F.J. Monteiro, Physical characterization of hydroxyapatite porous scaffolds for tissue engineering, Mater. Sci. Eng. C 29 (2009) 1510–1514, https://doi.org/10.1016/j.msec.2008.09.052.E. Cunningham, N. Dunne, G. Walker, C. Maggs, R. Wilcox, F. Buchanan, Hydroxyapatite bone substitutes developed via replication of natural marine sponges, J. Mater. Sci. Mater. Med. 21 (2010) 2255–2261, https://doi.org/10.1007/s10856-009-3961-4.Y. Guo, H.S. Patanwala, B. Bognet, A.W.K. Ma, Inkjet and inkjet-based 3D printing: connecting fluid properties and printing performance, RPJ 23 (2017) 562–576, https://doi.org/10.1108/RPJ-05-2016-0076.P.S.R.K. Prasad, A.V. Reddy, P.K. Rajesh, P. Ponnambalam, K. Prakasan, Studies on rheology of ceramic inks and spread of ink droplets for direct ceramic ink jet printing, J. Mater. Process. Technol. 176 (2006) 222–229, https://doi.org/10.1016/j.jmatprotec.2006.04.001.R. Jayathilakage, P. Rajeev, J. Sanjayan, Rheometry for concrete 3D printing: a review and an experimental comparison, Buildings 12 (2022) 1190, https://doi. org/10.3390/buildings12081190Mott Robert, Untener Joseph, Applied Fluid Mechanics, seventh ed., Pearson, 2014.L. Zhang, G. Yang, B.N. Johnson, X. Jia, Three-dimensional (3D) printed scaffold and material selection for bone repair, Acta Biomater. 84 (2019) 16–33, https://doi.org/10.1016/j.actbio.2018.11.039.Mary Lilliman, Control of Mortar Rheology for 3D Concrete Printing, Doctoral thesis, Loughborough University, 2017. https://hdl.handle.net/2134/25216.S.S.L. Chan, R.M. Pennings, L. Edwards, G.V. Franks, 3D printing of clay for decorative architectural applications: effect of solids volume fraction on rheology and printability, Addit. Manuf. 35 (2020), 101335, https://doi.org/10.1016/j.addma.2020.101335.Delgado, María de Lourdes, Andrade, Jesús ´Angel, Ramirez, Carlos Alberto, Caracterizaci´on fisicoquímica de prop´oleos colectados en el Bosque La Primavera Zapopan, Jalisco., Rev. mex. de cienc. forestales. 6 (2015) 74–87M.B. Sedelnikova, A.V. Ugodchikova, T.V. Tolkacheva, V.V. Chebodaeva, I.A. Cluklhov, M.A. Khimich, O.V. Bakina, M.I. Lerner, V.S. Egorkin, J. Schmidt, Y. P. Sharkeev, Surface modification of Mg0.8Ca alloy via wollastonite micro-arc coatings: significant improvement in corrosion resistance, Metals 11 (2021) 754, https://doi.org/10.3390/met11050754.W. Chen, Y. Liang, X. Hou, J. Zhang, H. Ding, S. Sun, H. Cao, Mechanical grinding preparation and characterization of TiO2-coated wollastonite composite pigments, Materials 11 (2018) 593, https://doi.org/10.3390/ma11040593.F. Scazzocchio, F.D. D’Auria, D. Alessandrini, F. Pantanella, Multifactorial aspects of antimicrobial activity of propolis, Microbiol. Res. 161 (2006) 327–333, https://doi.org/10.1016/j.micres.2005.12.003.S. Moussaoui, M. Lahouel, Propolis extract: a potent bacteria efflux pump inhibitor, Journal of Biologically Active Products from Nature 4 (2014) 216–223, https://doi.org/10.1080/22311866.2014.936906.A. Uzel, K. Sorkun, ¨O. ¨Onça˘g, D. Ço˘gulu, ¨O. Gençay, B. Sali˙h, Chemical compositions and antimicrobial activities of four different Anatolian propolis samples, Microbiol. Res. 160 (2005) 189–195, https://doi.org/10.1016/j.micres.2005.01.002.U.A. Qureshi, Z. Khatri, F. Ahmed, M. Khatri, I.-S. Kim, Electrospun zein nanofiber as a green and recyclable adsorbent for the removal of reactive black 5 from the aqueous phase, ACS Sustainable Chem. Eng. 5 (2017) 4340–4351, https://doi.org/10.1021/acssuschemeng.7b00402.J. Ito, F.-R. Chang, H.-K. Wang, Y.K. Park, M. Ikegaki, N. Kilgore, K.-H. Lee, Anti-AIDS agents. 48. Anti-HIV activity of moronic acid derivatives and the new melliferone-related triterpenoid isolated from Brazilian propolis, J. Nat. Prod. 64 (2001) 1278–1281, https://doi.org/10.1021/np010211x.C.C. Duke, V.H. Tran, R.K. Duke, A. Abu-Mellal, G.T. Plunkett, D.I. King, K. Hamid, K.L. Wilson, R.L. Barrett, J.J. Bruhl, A sedge plant as the source of Kangaroo Island propolis rich in prenylated p-coumarate ester and stilbenes, Phytochemistry 134 (2017) 87–97, https://doi.org/10.1016/j.phytochem.2016.11.005.A.I. Moreno, Y. Orozco, S. Ocampo, S. Malag´on, A. Ossa, A. Pel´aez-Vargas, C. Paucar, A. Lopera, C. Garcia, Effects of propolis impregnation on polylactic acid (PLA) scaffolds loaded with wollastonite particles against Staphylococcus aureus, Staphylococcus epidermidis, and their coculture for potential medical devices, Polymers 15 (2023) 2629, https://doi.org/10.3390/polym15122629.M.S. Almuhayawi, Propolis as a novel antibacterial agent, Saudi J. Biol. Sci. 27 (2020) 3079–3086, https://doi.org/10.1016/j.sjbs.2020.09.016.O.K. Mirzoeva, R.N. Grishanin, P.C. Calder, Antimicrobial action of propolis and some of its components: the effects on growth, membrane potential and motility of bacteria, Microbiol. Res. 152 (1997) 239–246, https://doi.org/10.1016/S0944-5013(97)80034-1.N. Vera, E. Solorzano, R. Ordo˜nez, L. Maldonado, E. Bedascarrasbure, M.I. Isla, Chemical composition of Argentinean propolis collected in extreme regions and its relation with antimicrobial and antioxidant activities, Nat. Prod. Commun. 6 (2011), 1934578X1100600618.R. Silva-Carvalho, F. Baltazar, C. Almeida-Aguiar, Propolis: A Complex Natural Product with a Plethora of Biological Activities that Can Be Explored for Drug Development, Evidence-Based Complementary and Alternative Medicine. 2015, 2015, pp. 1–29, https://doi.org/10.1155/2015/206439.W. Zhang, G.E. Margarita, D. Wu, W. Yuan, S. Yan, S. Qi, X. Xue, K. Wang, L. Wu, Antibacterial activity of Chinese red propolis against Staphylococcus aureus and MRSA, Molecules 27 (2022) 1693, https://doi.org/10.3390/molecules27051693.F. Saeed, R.S. Ahmad, M.U. Arshad, B. Niaz, R. Batool, R. Naz, H. Ansar Rasul Suleria, Propolis to curb lifestyle related disorders: an overview, Int. J. Food Prop. 19 (2016) 420–437, https://doi.org/10.1080/10942912.2012.745131.S. Demir, Y. Aliyazicioglu, I. Turan, S. Misir, A. Mentese, S.O. Yaman, K. Akbulut, K. Kilinc, O. Deger, Antiproliferative and proapoptotic activity of Turkish propolis on human lung cancer cell line, Nutr. Cancer 68 (2016) 165–172, https://doi.org/10.1080/01635581.2016.1115096.A. Pantosti, A. Sanchini, M. Monaco, Mechanisms of antibiotic resistance in Staphylococcus aureus, Future Microbiol. 2 (2007) 323–334.S. Periasamy, S.S. Chatterjee, G.Y.C. Cheung, M. Otto, Phenol-soluble modulins in staphylococci: what are they originally for? Commun. Integr. Biol. 5 (2012) 275–277, https://doi.org/10.4161/cib.19420M.G. Gandolfi, F. Perut, G. Ciapetti, R. Mongiorgi, C. Prati, New portland cement–based materials for endodontics mixed with articaine solution: a study of cellular response, J. Endod. 34 (2008) 39–44, https://doi.org/10.1016/j.joen.2007.09.001.N. Higuita-Castro, D. Gallego-Perez, A. Pelaez-Vargas, F. García Quiroz, O.M. Posada, L.E. L´opez, C.A. Sarassa, P. Agudelo-Florez, F.J. Monteiro, A.S. Litsky, D. J. Hansford, Reinforced Portland cement porous scaffolds for load-bearing bone tissue engineering applications, J. Biomed. Mater. Res. 100B (2012) 501–507, https://doi.org/10.1002/jbm.b.31976.A.H. Banskota, Y. Tezuka, S. Kadota, Recent progress in pharmacological research of propolis, Phytother Res. 15 (2001) 561–571, https://doi.org/10.1002/ ptr.1029.M. Tyszka-Czochara, P. Pa´sko, W. Reczy´nski, M. Szl´osarczyk, B. Bystrowska, W. Opoka, Zinc and propolis reduces cytotoxicity and proliferation in Skin fibroblast cell culture: total polyphenol content and antioxidant capacity of propolis, Biol. Trace Elem. Res. 160 (2014) 123–131, https://doi.org/10.1007/ s12011-014-0019-3.A.H. Banskota, Y. Tezuka, J.K. Prasain, K. Matsushige, I. Saiki, S. Kadota, Chemical constituents of Brazilian propolis and their cytotoxic activities, J. Nat. Prod. 61 (1998) 896–900, https://doi.org/10.1021/np980028c.J. Su, S. Hua, A. Chen, P. Chen, L. Yang, X. Yuan, D. Qi, H. Zhu, C. Yan, J. Xiao, Y. Shi, Three-dimensional printing of gyroid-structured composite bioceramic scaffolds with tuneable degradability, Biomater. Adv. 133 (2022), 112595, https://doi.org/10.1016/j.msec.2021.112595.J.A. Ramírez, V. Ospina, A.A. Rozo, M.I. Viana, S. Ocampo, S. Restrepo, N.A. V´asquez, C. Paucar, C. García, Influence of geometry on cell proliferation of PLA and alumina scaffolds constructed by additive manufacturing, J. Mater. Res. 34 (2019) 3757–3765, https://doi.org/10.1557/jmr.2019.323F. Baino, D.U. Tulyaganov, Z. Kahharov, A. Rahdar, E. Vern´e, Foam-replicated diopside/fluorapatite/wollastonite-based glass–ceramic scaffolds, Ceramics 5 (2022) 120–130, https://doi.org/10.3390/ceramics5010011.B. Battulga, K. Shiizaki, Y. Miura, Y. Osanai, R. Yamazaki, Y. Shinohara, Y. Kubota, T. Hara, M. Kuro-o, N. Ohno, Correlative light and electron microscopic observation of calcium phosphate particles in a mouse kidney formed under a high-phosphate diet, Sci. Rep. 13 (2023) 852, https://doi.org/10.1038/s41598- 023-28103-3.Y.-C. Huang, P.-C. Hsiao, H.-J. Chai, Hydroxyapatite extracted from fish scale: effects on MG63 osteoblast-like cells, Ceram. Int. 37 (2011) 1825–1831, https:// doi.org/10.1016/j.ceramint.2011.01.018.P.S. Gomes, M.H. Fernandes, Effect of therapeutic levels of doxycycline and minocycline in the proliferation and differentiation of human bone marrow osteoblastic cells, Arch. Oral Biol. 52 (2007) 251–259, https://doi.org/10.1016/j.archoralbio.2006.10.005.K. Song, Q. Kong, L. Li, Y. Wang, R. Parungao, S. Zheng, Y. Nie, Z. Jiao, H. Wang, T. Liu, fabrication and biocompatibility assay of a biomimetic osteoblastic niche, Appl. Biochem. Biotechnol. 189 (2019) 471–484, https://doi.org/10.1007/s12010-019-03015-z.H. Iqbal, M. Ali, R. Zeeshan, Z. Mutahir, F. Iqbal, M.A.H. Nawaz, L. Shahzadi, A.A. Chaudhry, M. Yar, S. Luan, A.F. Khan, I. Rehman, Chitosan/hydroxyapatite (HA)/hydroxypropylmethyl cellulose (HPMC) spongy scaffolds-synthesis and evaluation as potential alveolar bone substitutes, Colloids and Surfaces B: Biointerfaces. 160 (2017) 553–563, https://doi.org/10.1016/j.colsurfb.2017.09.059.W.E.G. Müller, E. Tolba, H.C. Schr¨oder, B. Diehl-Seifert, T. Link, X. Wang, Biosilica-loaded poly(ϵ-caprolactone) nanofibers mats provide a morphogenetically active surface scaffold for the growth and mineralization of the osteoclast-related SaOS-2 cells, Biotechnol. J. 9 (2014) 1312–1321, https://doi.org/10.1002/ biot.201400277.H.H. Lu, S.F. El-Amin, K.D. Scott, C.T. Laurencin, Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cellsin vitro, J. Biomed. Mater. Res. 64A (2003) 465–474, https:// doi.org/10.1002/jbm.a.10399.H. Shao, A. Liu, X. Ke, M. Sun, Y. He, X. Yang, J. Fu, L. Zhang, G. Yang, Y. Liu, S. Xu, Z. Gou, 3D robocasting magnesium-doped wollastonite/TCP bioceramic scaffolds with improved bone regeneration capacity in critical sized calvarial defects, J. Mater. Chem. B 5 (2017) 2941–2951, https://doi.org/10.1039/ C7TB00217CA. Liu, M. Sun, H. Shao, X. Yang, C. Ma, D. He, Q. Gao, Y. Liu, S. Yan, S. Xu, Y. He, J. Fu, Z. Gou, The outstanding mechanical response and bone regeneration capacity of robocast dilute magnesium-doped wollastonite scaffolds in critical size bone defects, J. Mater. Chem. B 4 (2016) 3945–3958, https://doi.org/ 10.1039/C6TB00449K.A. Meimandi-Parizi, A. Oryan, E. Sayahi, A. Bigham-Sadegh, Propolis extract a new reinforcement material in improving bone healing: an in vivo study, Int. J. Surg. 56 (2018) 94–101, https://doi.org/10.1016/j.ijsu.2018.06.006.G. Kaur, V. Kumar, F. Baino, J.C. Mauro, G. Pickrell, I. Evans, O. Bretcanu, Mechanical properties of bioactive glasses, ceramics, glass-ceramics and composites: State-of-the-art review and future challenges, Mater. Sci. Eng. C 104 (2019), 109895, https://doi.org/10.1016/j.msec.2019.109895.L. Rinc´on-Kohli, P.K. Zysset, Multi-axial mechanical properties of human trabecular bone, Biomech. Model. Mechanobiol. 8 (2009) 195–208, https://doi.org/ 10.1007/s10237-008-0128-z.L.-C. Gerhardt, A.R. Boccaccini, Bioactive glass and glass-ceramic scaffolds for bone tissue engineering, Materials 3 (2010) 3867–3910, https://doi.org/ 10.3390/ma3073867.PropolisScaffolds3D printingCell proliferationAbtibacterial activityPublicationORIGINAL2023_OthersandPelaez-Vargas_Antimicrobial_wollastonite_scaffolds_impregnated_propolis_Heliyon.pdf2023_OthersandPelaez-Vargas_Antimicrobial_wollastonite_scaffolds_impregnated_propolis_Heliyon.pdfapplication/pdf9318245https://repository.ucc.edu.co/bitstreams/cac86a49-e16c-4005-bd50-7094d516cfcb/downloadd38e48b34a462991f8eba4fbd8c4f511MD512023_OthersandPelaez-Vargas_Antimicrobial_wollastonite_scaffolds_impregnated_propolis_HeliyonLicence.pdf2023_OthersandPelaez-Vargas_Antimicrobial_wollastonite_scaffolds_impregnated_propolis_HeliyonLicence.pdfapplication/pdf190065https://repository.ucc.edu.co/bitstreams/42a8a69f-45f8-48f2-b4fc-ff11c597f84e/download8f108ba7fa7dab690a84a2a5ee3f9b28MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repository.ucc.edu.co/bitstreams/1b3486af-ea28-4d13-9d1c-7981c5fb7204/download42fd4ad1e89814f5e4a476b409eb708cMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/7c53946a-d149-4b98-833f-ebc2d3307db1/download3bce4f7ab09dfc588f126e1e36e98a45MD54TEXT2023_OthersandPelaez-Vargas_Antimicrobial_wollastonite_scaffolds_impregnated_propolis_Heliyon.pdf.txt2023_OthersandPelaez-Vargas_Antimicrobial_wollastonite_scaffolds_impregnated_propolis_Heliyon.pdf.txtExtracted texttext/plain90102https://repository.ucc.edu.co/bitstreams/c316102c-f16c-4e5e-80dd-ac44cf20bf98/download952442da759d7d835de843769691e569MD552023_OthersandPelaez-Vargas_Antimicrobial_wollastonite_scaffolds_impregnated_propolis_HeliyonLicence.pdf.txt2023_OthersandPelaez-Vargas_Antimicrobial_wollastonite_scaffolds_impregnated_propolis_HeliyonLicence.pdf.txtExtracted texttext/plain5755https://repository.ucc.edu.co/bitstreams/947a4614-b286-4fdb-ad77-6f63b9e9ac4a/download2cca0bb3ad3f2e7c9bda09b98d4288bdMD57THUMBNAIL2023_OthersandPelaez-Vargas_Antimicrobial_wollastonite_scaffolds_impregnated_propolis_Heliyon.pdf.jpg2023_OthersandPelaez-Vargas_Antimicrobial_wollastonite_scaffolds_impregnated_propolis_Heliyon.pdf.jpgGenerated Thumbnailimage/jpeg12925https://repository.ucc.edu.co/bitstreams/af1eda83-e887-4122-a312-f2c217b6b33c/downloadfca9b3776fe876a1279717b845318900MD562023_OthersandPelaez-Vargas_Antimicrobial_wollastonite_scaffolds_impregnated_propolis_HeliyonLicence.pdf.jpg2023_OthersandPelaez-Vargas_Antimicrobial_wollastonite_scaffolds_impregnated_propolis_HeliyonLicence.pdf.jpgGenerated Thumbnailimage/jpeg12791https://repository.ucc.edu.co/bitstreams/d817e6a8-f794-4b3e-af33-4022c80c9207/downloadf39b2e8ca4089e989adcf9af4740675bMD5820.500.12494/55111oai:repository.ucc.edu.co:20.500.12494/551112024-08-10 22:47:09.763http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalrestrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo=