Alteración en la expresión de proteínas transportadoras de colesterol y moléculas inmunomoduladoras en pacientes con VIH-1

Debido a que la terapia antirretroviral no logra controlar la activación inmune asociada a la infección por VIH-1, el estudio de moléculas inmunomoduladoras puede proporcionar alternativas para su control. En este sentido, el propósito de este estudio fue evaluar la expresión transcripcional de molé...

Full description

Autores:
Arboleda Álvarez, Nataly
Sánchez Gómez, Catalina
Arias Pérez, Rubén Darío
Flórez Álvarez, Lizdany
Marín Palma, Damariz
Taborda, Natalia Andrea
Hernández López, Juan Carlos
Tipo de recurso:
Article of investigation
Fecha de publicación:
2021
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/44468
Acceso en línea:
https://hdl.handle.net/20.500.12494/44468
Palabra clave:
HIV-1
high-density lipoproteins
ABCA transporters
inflammation
Rights
openAccess
License
Atribución
id COOPER2_abfe5c1bb56d9b168ef9d06ee79433cd
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/44468
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.spa.fl_str_mv Alteración en la expresión de proteínas transportadoras de colesterol y moléculas inmunomoduladoras en pacientes con VIH-1
title Alteración en la expresión de proteínas transportadoras de colesterol y moléculas inmunomoduladoras en pacientes con VIH-1
spellingShingle Alteración en la expresión de proteínas transportadoras de colesterol y moléculas inmunomoduladoras en pacientes con VIH-1
HIV-1
high-density lipoproteins
ABCA transporters
inflammation
title_short Alteración en la expresión de proteínas transportadoras de colesterol y moléculas inmunomoduladoras en pacientes con VIH-1
title_full Alteración en la expresión de proteínas transportadoras de colesterol y moléculas inmunomoduladoras en pacientes con VIH-1
title_fullStr Alteración en la expresión de proteínas transportadoras de colesterol y moléculas inmunomoduladoras en pacientes con VIH-1
title_full_unstemmed Alteración en la expresión de proteínas transportadoras de colesterol y moléculas inmunomoduladoras en pacientes con VIH-1
title_sort Alteración en la expresión de proteínas transportadoras de colesterol y moléculas inmunomoduladoras en pacientes con VIH-1
dc.creator.fl_str_mv Arboleda Álvarez, Nataly
Sánchez Gómez, Catalina
Arias Pérez, Rubén Darío
Flórez Álvarez, Lizdany
Marín Palma, Damariz
Taborda, Natalia Andrea
Hernández López, Juan Carlos
dc.contributor.author.none.fl_str_mv Arboleda Álvarez, Nataly
Sánchez Gómez, Catalina
Arias Pérez, Rubén Darío
Flórez Álvarez, Lizdany
Marín Palma, Damariz
Taborda, Natalia Andrea
Hernández López, Juan Carlos
dc.subject.spa.fl_str_mv HIV-1
high-density lipoproteins
ABCA transporters
inflammation
topic HIV-1
high-density lipoproteins
ABCA transporters
inflammation
description Debido a que la terapia antirretroviral no logra controlar la activación inmune asociada a la infección por VIH-1, el estudio de moléculas inmunomoduladoras puede proporcionar alternativas para su control. En este sentido, el propósito de este estudio fue evaluar la expresión transcripcional de moléculas asociadas con el metabolismo del colesterol-HDL (C-HDL) y con la respuesta inflamatoria mediada por el inflamasoma NLRP3 en pacientes infectados con VIH-1. En este estudio transversal, se incluyeron 23 pacientes VIH-1 sin tratamiento antirretroviral, con diferentes estadios de progresión, 7 de los cuales son controladores (Carga viral <2000 copias/mL) y 16 progresores (Carga viral >2000 copias/mL), además de 7 controles sanos. En células mononucleares de sangre periférica, se cuantificaron los niveles de la expresión transcripcional de ABCA-1, ABCA-3, Caspasa-5 y TXNIP mediante RT-PCR. Se evaluó la asociación de estos parámetros con variables demográficas y de laboratorio, y se encontró que los individuos VIH-1 progresores mostraron niveles significativamente menores de TXNIP y ABCA-3, sugiriendo que durante la infección por VIH-1 se produce una alteración en la expresión de estas moléculas. Dada la complejidad de las interacciones inmuno-metabólicas durante la infección por VIH-1, se necesitan estudios adicionales para establecer los mecanismos precisos involucrados en estas alteraciones.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-01
dc.date.accessioned.none.fl_str_mv 2022-04-01T20:46:18Z
dc.date.available.none.fl_str_mv 2022-04-01T20:46:18Z
dc.type.none.fl_str_mv Artículos Científicos
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.uri.spa.fl_str_mv 10.5281/zenodo.4780969
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12494/44468
dc.identifier.bibliographicCitation.spa.fl_str_mv Arias Pérez RD, Arboleda Álvarez N, Sánchez Gómez C, FlorezAlvarez L, Marín Palma D, Taborda NA, Hernández JC. (2021). Alteración en la expresión de proteínas transportadoras de colesterol y moléculas inmunomoduladoras en pacientes con VIH-1. Kasmera. 2021;49(1):e49133736. doi: 10.5281/zenodo.4780969
identifier_str_mv 10.5281/zenodo.4780969
Arias Pérez RD, Arboleda Álvarez N, Sánchez Gómez C, FlorezAlvarez L, Marín Palma D, Taborda NA, Hernández JC. (2021). Alteración en la expresión de proteínas transportadoras de colesterol y moléculas inmunomoduladoras en pacientes con VIH-1. Kasmera. 2021;49(1):e49133736. doi: 10.5281/zenodo.4780969
url https://hdl.handle.net/20.500.12494/44468
dc.relation.isversionof.spa.fl_str_mv https://zenodo.org/record/4780969#.YkSa3CjMLfs
dc.relation.ispartofjournal.spa.fl_str_mv Kasmera
dc.relation.references.spa.fl_str_mv ONUSIDA [Internet]. [citado 15 de febrero de 2021]. Disponible en: https://www.unaids.org/es
Perdomo-Celis F, Taborda NA, Rugeles MT. Circulating CXCR5-Expressing CD8+ T-Cells Are Major Producers of IL21 and Associate With Limited HIV Replication. J Acquir Immune Defic Syndr [Internet]. 2018;78(4):476-82. Disponible en: https://journals.lww.com/jaids/Fulltext/2018/08010/Circula ting_CXCR5_Expressing_CD8__T_Cells_Are.16.aspx DOI: 10.1097/QAI.0000000000001700 PMID 29649077 Google Académico Microsoft Académico
Taborda NA, Gonzalez SM, Correa LA, Montoya CJ, Rugeles MT. Spontaneous HIV Controllers Exhibit Preserved Immune Parameters in Peripheral Blood and Gastrointestinal Mucosa. J Acquir Immune Defic Syndr [Internet]. 2015;70(2):115-21. Disponible en: https://journals.lww.com/jaids/Fulltext/2015/10010/Sponta neous_HIV_Controllers_Exhibit_Preserved.2.aspx DOI: 10.1097/QAI.0000000000000729 PMID 26102449 Google Académico Microsoft Académico
Taborda NA, González SM, Alvarez CM, Correa LA, Montoya CJ, Rugeles MT. Higher Frequency of NK and CD4+ T-Cells in Mucosa and Potent Cytotoxic Response in HIV Controllers. PLoS One [Internet]. 2015;10(8):e0136292. Disponible en: https://doi.org/10.1371/journal.pone.0136292 DOI: 10.1371/journal.pone.0136292 PMID 26291824 PMCID PMC4546229 Google Académico Microsoft Académico
Feria MG, Taborda NA, Hernandez JC, Rugeles MT. HIV replication is associated to inflammasomes activation, IL1β, IL-18 and caspase-1 expression in GALT and peripheral blood. PLoS One [Internet]. 2018;13(4):e0192845. Disponible en: https://doi.org/10.1371/journal.pone.0192845 DO
Borrow P. Innate immunity in acute HIV-1 infection. Curr Opin HIV AIDS [Internet]. 2011;6(5):353-63. Disponible en: https://journals.lww.com/cohivandaids/Fulltext/2011/09000/Innate_immunity_in_acute _HIV_1_infection.4.aspx DOI: 10.1097/COH.0b013e3283495996 PMID 21734567 PMCID PMC3266478 Google Académico Microsoft Académico
Abad-Fernández M, Vallejo A, Hernández-Novoa B, Díaz L, Gutiérrez C, Madrid N, et al. Correlation Between Different Methods to Measure Microbial Translocation and Its Association With Immune Activation in Long-Term Suppressed HIV-1–Infected Individuals. J Acquir Immune Defic Syndr [Internet]. 2013;64(2):149-53. Disponible en: https://journals.lww.com/jaids/Fulltext/2013/10010/Correla tion_Between_Different_Methods_to_Measure.6.aspx DOI: 10.1097/QAI.0b013e31829a2f12 PMID 24047967 Google Académico Microsoft Académico
Boasso A, Shearer GM. Chronic innate immune activation as a cause of HIV-1 immunopathogenesis. Clin Immunol [Internet]. 2008;126(3):235-42. Disponible en: https://www.sciencedirect.com/science/article/pii/S1521 661607013290 DOI: 10.1016/j.clim.2007.08.015 PMID 17916442 PMCID PMC2275778 Google Académico Microsoft Académico
Merlini E, Luzi K, Suardi E, Barassi A, Cerrone M, Martínez JS, et al. T-Cell Phenotypes, Apoptosis and Inflammation in HIV+ Patients on Virologically Effective cART with Early Atherosclerosis. PLoS One [Internet]. 2012;7(9):e46073. Disponible en: https://doi.org/10.1371/journal.pone.0046073 DOI: 10.1371/journal.pone.0046073 PMID 23029393 PMCID PMC3459872 Google Académico Microsoft Académico
Montoya Guarín CJ, Moreno Fernández ME, Rugelés López MT. Reacciones y alteraciones del sistema inmune durante la infección por el VIH-1. Infectio [Internet]. 2006;10(4):250- 65. Disponible en: http://revistainfectio.org/index.php/infectio/article/view/ 191 SciELO Google Académico Microsoft Académico
Chong C-R, Chan WPA, Nguyen TH, Liu S, Procter NEK, Ngo DT, et al. Thioredoxin-Interacting Protein: Pathophysiology and Emerging Pharmacotherapeutics in Cardiovascular Disease and Diabetes. Cardiovasc Drugs Ther [Internet]. 2014;28(4):347-60. Disponible en: https://doi.org/10.1007/s10557-014-6538-5 DOI: 10.1007/s10557-014-6538-5 PMID 25088927 Google Académico Microsoft Académico
Višković K, Židovec Lepej S, Gorenec A, Grgić I, Lukas D, Zekan Š, et al. Cardiovascular markers of inflammation and serum lipid levels in HIV-infected patients with undetectable viremia. Sci Rep [Internet]. 2018;8(1):6113. Disponible en: https://doi.org/10.1038/s41598-018-24446-4 DOI: 10.1038/s41598-018-24446-4 PMID 29666424 PMCID PMC5904142 Google Académico Microsoft Académico
Zhou R, Tardivel A, Thorens B, Choi I, Tschopp J. Thioredoxininteracting protein links oxidative stress to inflammasome activation. Nat Immunol [Internet]. 2010;11(2):136-40. Disponible en: https://doi.org/10.1038/ni.1831 DOI: 10.1038/ni.1831 PMID 20023662 Google Académico Microsoft Académico
Kim DO, Byun J-E, Seong H-A, Yoon SR, Choi I, Jung H. Thioredoxin-interacting protein-derived peptide (TN13)inhibits LPS-induced inflammation by inhibiting p38 MAPK signaling. Biochem Biophys Res Commun [Internet]. 2018;507(1):489-95. Disponible en: https://www.sciencedirect.com/science/article/pii/S0006 291X18324847 DOI: 10.1016/j.bbrc.2018.11.069 PMID 30448175 Google Académico Microsoft Académico
He K, Zhu X, Liu Y, Miao C, Wang T, Li P, et al. Inhibition of NLRP3 inflammasome by thioredoxin-interacting protein in mouse Kupffer cells as a regulatory mechanism for nonalcoholic fatty liver disease development. Oncotarget [Internet]. 2017;8(23):37657-72. Disponible en: https://www.oncotarget.com/article/17489/text/ DOI: 10.18632/oncotarget.17489 PMID 28499273 PMCID PMC5514938 Google Académico Microsoft Académico
Viganò E, Diamond CE, Spreafico R, Balachander A, Sobota RM, Mortellaro A. Human caspase-4 and caspase5 regulate the one-step non-canonical inflammasome activation in monocytes. Nat Commun [Internet]. 2015;6(1):8761. Disponible en: https://doi.org/10.1038/ncomms9761 DOI: 10.1038/ncomms9761 PMID 26508369 PMCID PMC4640152 Google Académico Microsoft Académico
Man SM, Karki R, Kanneganti T-D. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol Rev [Internet]. 2017;277(1):61-75. Disponible en: https://doi.org/10.1111/imr.12534 DOI: 10.1111/imr.12534 PMID 28462526 PMCID PMC5416822 Google Académico Microsoft Académico
. Pillon NJ, Chan KL, Zhang S, Mejdani M, Jacobson MR, Ducos A, et al. Saturated fatty acids activate caspase-4/5 in human monocytes, triggering IL-1β and IL-18 release. Am J Physiol Metab [Internet]. 2016;311(5):E825-35. Disponible en: https://doi.org/10.1152/ajpendo.00296.2016 DOI: 10.1152/ajpendo.00296.2016 PMID 27624102 Google Académico Microsoft Académico
Marín-Palma D, Castro GA, Cardona-Arias JA, UrcuquiInchima S, Hernandez JC. Lower High-Density Lipoproteins Levels During Human Immunodeficiency Virus Type 1 Infection Are Associated With Increased Inflammatory Markers and Disease Progression. Front Immunol [Internet]. 2018;9:1350. Disponible en: https://www.frontiersin.org/article/10.3389/fimmu.2018.013 50 DOI: 10.3389/fimmu.2018.01350 PMID 29963050 PMCID PMC6010517 Google Académico Microsoft Académico
Taborda NA, Blanquiceth Y, Urcuqui-Inchima S, Latz E, Hernandez JC. High-Density Lipoproteins Decrease Proinflammatory Activity and Modulate the Innate Immune Response. J Interf Cytokine Res [Internet]. 2019;39(12):760- 70. Disponible en: https://doi.org/10.1089/jir.2019.0029 DOI: 10.1089/jir.2019.0029 PMID 31335262 Google Académico Microsoft Académico
Thacker SG, Zarzour A, Chen Y, Alcicek MS, Freeman LA, Sviridov DO, et al. High-density lipoprotein reduces inflammation from cholesterol crystals by inhibiting inflammasome activation. Immunology [Internet]. 2016;149(3):306-19. Disponible en: https://doi.org/10.1111/imm.12638 DOI: 10.1111/imm.12638 PMID 27329564 PMCID PMC5046053 Google Académico Microsoft Académico
Marín-Palma D, Cardona-Arias JA, Hernández JC. Immunological factors related to HIV-1 in colombian patients. Rev Ciencias la Salud [Internet]. 2019;17(2):245- 58. Disponible en:
Varshney P, Yadav V, Saini N. Lipid rafts in immune signalling: current progress and future perspective. Immunology [Internet]. 2016;149(1):13-24. Disponible en: https://doi.org/10.1111/imm.12617 DOI: 10.1111/imm.12617 PMID 27153983 PMCID PMC4981613 Google Académico Microsoft Académico
Catapano AL, Pirillo A, Bonacina F, Norata GD. HDL in innate and adaptive immunity. Cardiovasc Res [Internet]. 2014;103(3):372-83. Disponible en: https://doi.org/10.1093/cvr/cvu150 DOI: 10.1093/cvr/cvu150 PMID 24935428 Google Académico Microsoft Académico
Gupta N, DeFranco AL. Lipid rafts and B cell signaling. Semin Cell Dev Biol [Internet]. 2007;18(5):616-26. Disponible en: https://www.sciencedirect.com/science/article/pii/S1084 952107000997 DOI: 10.1016/j.semcdb.2007.07.009 PMID 17719248 PMCID PMC2169358 Google Académico Microsoft Académico
Jury EC, Flores-Borja F, Kabouridis PS. Lipid rafts in T cell signalling and disease. Semin Cell Dev Biol [Internet]. 2007;18(5):608-15. Disponible en: https://www.sciencedirect.com/science/article/pii/S1084 952107001176 DOI: 10.1016/j.semcdb.2007.08.002 PMID 17890113 PMCID PMC2596300 Google Académico Microsoft Académico
De Nardo D, Labzin LI, Kono H, Seki R, Schmidt S V, Beyer M, et al. High-density lipoprotein mediates anti-inflammatory reprogramming of macrophages via the transcriptional regulator ATF3. Nat Immunol [Internet]. 2014;15(2):152-60. Disponible en: https://doi.org/10.1038/ni.2784 DOI: 10.1038/ni.2784 PMID 24317040 PMCID PMC4009731 Google Académico Microsoft Académico
Marín-Palma D, Taborda NA, Urcuqui-Inchima S, Hernandez JC. Inflamación y respuesta inmune innata: participación de las lipoproteínas de alta densidad. Iatreia [Internet]. 2017;30(4):426-35. Disponible en: https://revistas.udea.edu.co/index.php/iatreia/article/vie w/325591 DOI: 10.17533/udea.iatreia.v30n4a06 SciELO Lilacs Redalyc Google Académico Microsoft Académico
Vaisar T, Pennathur S, Green PS, Gharib SA, Hoofnagle AN, Cheung MC, et al. Shotgun proteomics implicates protease inhibition and complement activation in the antiinflammatory properties of HDL. J Clin Invest [Internet]. 2007;117(3):746-56. Disponible en: https://doi.org/10.1172/JCI26206 DOI: 10.1172/JCI26206 PMID 17332893 PMCID PMC1804352 Google Académico Microsoft Académico
Koseki M, Hirano K, Masuda D, Ikegami C, Tanaka M, Ota A, et al. Increased lipid rafts and accelerated lipopolysaccharide-induced tumor necrosis factor-α secretion in Abca1-deficient macrophagess. J Lipid Res [Internet]. 2007;48(2):299-306. Disponible en: https://www.sciencedirect.com/science/article/pii/S0022 22752043665X DOI: 10.1194/jlr.M600428-JLR200 PMID 17079792 Google Académico Microsoft Académico
Song GJ, Kim S-M, Park K-H, Kim J, Choi I, Cho K-H. SR-BI mediates high density lipoprotein (HDL)-induced antiinflammatory effect in macrophages. Biochem Biophys ResCommun [Internet]. 2015;457(1):112-8. Disponible en: https://www.sciencedirect.com/science/article/pii/S0006 291X14021937 DOI: 10.1016/j.bbrc.2014.12.028 PMID 25528585 Google Académico Microsoft Académico
Marin-Palma D, Sirois CM, Urcuqui-Inchima S, Hernandez JC. Inflammatory status and severity of disease in dengue patients are associated with lipoprotein alterations. PLoS One [Internet]. 2019;14(3):e0214245. Disponible en: https://doi.org/10.1371/journal.pone.0214245 DOI: 10.1371/journal.pone.0214245 PMID 30901375 PMCID PMC6430398 Google Académico Microsoft Académico
Barrientos-Arenas E, Henao-García V, Giraldo DM, Cardona MM, Urcuqui-Inchima S, Castaño JC, et al. Modulación de los niveles de lipoproteínas de alta densidad y las citoquinas IL-1β e IL-6 en pacientes con dengue. Rev Peru Med Exp y Salud Pública [Internet]. 2018;35(1):15-24. Disponible en: https://rpmesp.ins.gob.pe/index.php/rpmesp/article/view /3568 DOI: 10.17843/rpmesp.2018.351.3568 SciELO Lilacs Google Académico Microsoft Académico
Montecucco F, Favari E, Norata GD, Ronda N, Nofer J-R, Vuilleumier N. Impact of Systemic Inflammation and Autoimmune Diseases on apoA-I and HDL Plasma Levels and Functions. En: von Eckardstein A, Kardassis D, editores. High Density Lipoproteins: From Biological Understanding to Clinical Exploitation [Internet]. Cham: Springer International Publishing; 2015. p. 455-82. Disponible en: https://doi.org/10.1007/978-3-319-09665-0_14 DOI: 10.1007/978-3-319-09665-0_14 PMID 25522998 Google Académico Microsoft Académico
Ye D, Lammers B, Zhao Y, Meurs I, Eck TJCVB and M Van. ATP-Binding Cassette Transporters A1 and G1, HDL Metabolism, Cholesterol Efflux, and Inflammation: Important Targets for the Treatment of Atherosclerosis. Curr Drug Targets [Internet]. 2011;12(5):647-60. Disponible en: http://www.eurekaselect.com/node/73655/article DOI: 10.2174/138945011795378522 PMID 21039336 Google Académico Microsoft Académico
Laurent Y-C, Nan W, Alan RT. Role of HDL, ABCA1, and ABCG1 Transporters in Cholesterol Efflux and Immune Responses. Arterioscler Thromb Vasc Biol [Internet]. 2010;30(2):139-43. Disponible en: https://doi.org/10.1161/ATVBAHA.108.179283 DOI: 10.1161/ATVBAHA.108.179283 PMID 19797709 PMCID PMC2812788 Google Académico Microsoft Académico
Zarubica A, Trompier D, Chimini G. ABCA1, from pathology to membrane function. Pflügers Arch - Eur J Physiol [Internet]. 2007;453(5):569-79. Disponible en: https://doi.org/10.1007/s00424-006-0108-z DOI: 10.1007/s00424-006-0108-z PMID 16858612 Google Académico Microsoft Académico
Tarling EJ, Vallim TQ de A, Edwards PA. Role of ABC transporters in lipid transport and human disease. Trends Endocrinol Metab [Internet]. 2013;24(7):342-50. Disponible en: https://doi.org/10.1016/j.tem.2013.01.006 DOI: 10.1016/j.tem.2013.01.006 PMID 23415156 PMCID PMC3659191 Google Académico Microsoft Académico
Estrada V, Martínez-Larrad MT, González-Sánchez JL, de Villar NGP, Zabena C, Fernández C, et al. Lipodystrophy and metabolic syndrome in HIV-infected patients treated with antiretroviral therapy. Metab Clin Exp [Internet]. 2006;55(7):940-5. Disponible en: https://doi.org/10.1016/j.metabol.2006.02.024 DOI: PMID 16784968 Google Académico Microsoft Académico
Anastos K, Lu D, Shi Q, Tien PC, Kaplan RC, Hessol NA, et al. Association of Serum Lipid Levels With HIV Serostatus, Specific Antiretroviral Agents, and Treatment Regimens. J Acquir Immune Defic Syndr [Internet]. 2007;45(1):34-42. Disponible en: https://journals.lww.com/jaids/Fulltext/2007/05010/Associa tion_of_Serum_Lipid_Levels_With_HIV.6.aspx DOI: 10.1097/QAI.0b013e318042d5fe PMID 17460470 Google Académico Microsoft Académico
Bernal E, Masiá M, Padilla S, Gutiérrez F. High-Density Lipoprotein Cholesterol in HIV-Infected Patients: Evidence for an Association with HIV-1 Viral Load, Antiretroviral Therapy Status, and Regimen Composition. AIDS Patient Care STDS [Internet]. 2008;22(7):569-75. Disponible en: https://doi.org/10.1089/apc.2007.0186 DOI: 10.1089/apc.2007.0186 PMID 18479224 Google Académico Microsoft Académico
Zhang N, Lei J, Lei H, Ruan X, Liu Q, Chen Y, et al. MicroRNA101 overexpression by IL-6 and TNF-α inhibits cholesterol efflux by suppressing ATP-binding cassette transporter A1 expression. Exp Cell Res [Internet]. 2015;336(1):33-42. Disponible en: https://www.sciencedirect.com/science/article/pii/S0014 482715300070 DOI: 10.1016/j.yexcr.2015.05.023 PMID 26033364 Google Académico Microsoft Académico
Yin K, Liao D, Tang C. ATP-Binding Membrane Cassette Transporter A1 (ABCA1): A Possible Link between Inflammation and Reverse Cholesterol Transport. Mol Med [Internet]. 2010;16(9):438-49. Disponible en: https://doi.org/10.2119/molmed.2010.00004 DOI: 10.2119/molmed.2010.00004 PMID 20485864 PMCID PMC2935947 Google Académico Microsoft Académico
Chen M, Li W, Wang N, Zhu Y, Wang X. ROS and NF-κB but not LXR mediate IL-1β signaling for the downregulation of ATP-binding cassette transporter A1. Am J Physiol Cell Physiol [Internet]. 2007;292(4):C1493-501. Disponible en: https://doi.org/10.1152/ajpcell.00016.2006 DOI: 10.1152/ajpcell.00016.2006 PMID 17135302 Google Académico Microsoft Académico
Alfaro Leon ML, Evans GF, Farmen MW, Zuckerman SH. Post-transcriptional regulation of macrophage ABCA1, an early response gene to IFN-γ. Biochem Biophys Res Commun [Internet]. 2005;333(2):596-602. Disponible en: https://www.sciencedirect.com/science/article/pii/S0006 291X0501106X DOI: 10.1016/j.bbrc.2005.05.112 PMID 15946645 Google Académico Microsoft Académico
Xinwen W, Dan L, Uddalak B, Min L, Qizhi Y, Changyi C. CReactive Protein Inhibits Cholesterol Efflux From Human Macrophage-Derived Foam Cells. Arterioscler Thromb Vasc Biol [Internet]. 2008;28(3):519-26. Disponible en: https://doi.org/10.1161/ATVBAHA.107.159467 DOI: 10.1161/ATVBAHA.107.159467 PMID: 18096828 PMCID PMC2927966 Google Académico Microsoft Académico
McGillicuddy FC, de la Llera Moya M, Hinkle C, Joshi MR, Chiquoine EH, Billheimern JT, et al. Inflammation Impairs Reverse Cholesterol Transport In Vivo. Circulation [Internet]. 2009;119(8):1135-45. Disponible en: https://doi.org/10.1161/CIRCULATIONAHA.108.810721 DOI: 10.1161/CIRCULATIONAHA.108.810721 PMID 19221221 PMCID PMC4937877 Google Académico Microsoft Académico
Baranova I, Vishnyakova T, Bocharov A, Chen Z, Remaley AT, Stonik J, et al. Lipopolysaccharide Down Regulates Both Scavenger Receptor B1 and ATP Binding Cassette Transporter A1 in RAW Cells. Infect Immun [Internet]. 2002;70(6):2995-3003. Disponible en: http://iai.asm.org/content/70/6/2995.abstract DOI: 10.1128/IAI.70.6.2995-3003.2002 PMID 12010990 PMCID PMC127996 Google Académico Microsoft Académico
Morrow MP, Grant A, Mujawar Z, Dubrovsky L, Pushkarsky T, Kiselyeva Y, et al. Stimulation of the Liver X Receptor Pathway Inhibits HIV-1 Replication via Induction of ATPBinding Cassette Transporter A1. Mol Pharmacol [Internet]. 2010;78(2):215-225. Disponible en: http://molpharm.aspetjournals.org/content/78/2/215.abst ract DOI: 10.1124/mol.110.065029 PMID 20479131 PMCID PMC2917859 Google Académico Microsoft Académico
Jennelle L, Hunegnaw R, Dubrovsky L, Pushkarsky T, Fitzgerald ML, Sviridov D, et al. HIV-1 Protein Nef Inhibits Activity of ATP-binding Cassette Transporter A1 by Targeting Endoplasmic Reticulum Chaperone Calnexin. J Biol Chem [Internet]. 2014;289(42):28870-84. Disponible en: https://doi.org/10.1074/jbc.M114.583591 DOI: 10.1074/jbc.M114.583591 PMID 25170080 PMCID PMC4200247 Google Académico Microsoft Académico
Aiello RJ, Brees D, Francone OL. ABCA1-deficient mice: insights into the role of monocyte lipid efflux in HDL formation and inflammation. Arterioscler Thromb Vasc Biol [Internet]. 2003;23(6):972-80. Disponible en: https://doi.org/10.1161/01.ATV.0000054661.21499.FB DOI: 10.1161/01.ATV.0000054661.21499.FB PMID 12615679 Google Académico Microsoft Académico
Lin S, Nadeau PE, Mergia A. HIV inhibits endothelial reverse cholesterol transport through impacting subcellular Caveolin-1 trafficking. Retrovirology [Internet]. 2015;12(1):62. Disponible en: https://doi.org/10.1186/s12977-015-0188-y DOI: 10.1186/s12977-015-0188-y PMID 26169283 PMCID PMC4501058 Google Académico Microsoft Académico
Van Eck M, Singaraja RR, Ye D, Hildebrand RB, James ER, Hayden MR, et al. Macrophage ATP-Binding Cassette Transporter A1 Overexpression Inhibits Atherosclerotic Lesion Progression in Low-Density Lipoprotein Receptor Knockout Mice. Arterioscler Thromb Vasc Biol [Internet]. 2006;26(4):929-34. Disponible en: https://doi.org/10.1161/01.ATV.0000208364.22732.16 DOI: 10.1161/01.ATV.0000208364.22732.16 PMID 16456089 Google Académico Microsoft Académico
Amberbir A, Banda V, Singano V, Matengeni A, Pfaff C, Ismail Z, et al. Effect of cardio-metabolic risk factors on allcause mortality among HIV patients on antiretroviral therapy in Malawi: A prospective cohort study. PLoS One [Internet]. 2019;14(1):e0210629. Disponible en: https://doi.org/10.1371/journal.pone.0210629 DOI: 10.1371/journal.pone.0210629 PMID 30653539 PMCID PMC6336397 Google Académico Microsoft Académico
Tang C, Oram JF. The cell cholesterol exporter ABCA1 as a protector from cardiovascular disease and diabetes. Biochim Biophys Acta Mol Cell Biol Lipids [Internet]. 2009;1791(7):563-72. Disponible en: https://www.sciencedirect.com/science/article/pii/S1388 198109000882 DOI: 10.1016/j.bbalip.2009.03.011 PMID 19344785 Google Académico Microsoft Académico
Hofmann N, Galetskiy D, Rauch D, Wittmann T, Marquardt A, Griese M, et al. Analysis of the Proteolytic Processing ofABCA3: Identification of Cleavage Site and Involved Proteases. PLoS One [Internet]. 2016;11(3):e0152594. Disponible en: https://doi.org/10.1371/journal.pone.0152594 DOI: 10.1371/journal.pone.0152594 PMID 27031696 PMCID PMC4816274 Google Académico Microsoft Académico
Zarbock R, Kaltenborn E, Frixel S, Wittmann T, Liebisch G, Schmitz G, et al. ABCA3 protects alveolar epithelial cells against free cholesterol induced cell death. Biochim Biophys Acta Mol Cell Biol Lipids [Internet]. 2015;1851(7):987-95. Disponible en: https://www.sciencedirect.com/science/article/pii/S1388 198115000761 DOI: 10.1016/j.bbalip.2015.03.004 PMID 25817392 Google Académico Microsoft Académico
Chai AB, Ammit AJ, Gelissen IC. Examining the role of ABC lipid transporters in pulmonary lipid homeostasis and inflammation. Respir Res [Internet]. 2017;18(1):41. Disponible en: https://doi.org/10.1186/s12931-017-0526-9 DOI: 10.1186/s12931-017-0526-9 PMID 28241820 PMCID PMC5330150 Google Académico Microsoft Académico
Beers MF, Mulugeta S. The biology of the ABCA3 lipid transporter in lung health and disease. Cell Tissue Res [Internet]. 2017;367(3):481-93. Disponible en: https://doi.org/10.1007/s00441-016-2554-z DOI: 10.1007/s00441-016-2554-z PMID 28025703 PMCID PMC5321817 Google Académico Microsoft Académico
Chutkow WA, Lee RT. Thioredoxin Regulates Adipogenesis through Thioredoxin-interacting Protein (Txnip) Protein Stability. J Biol Chem [Internet]. 2011;286(33):29139-45. Disponible en: https://doi.org/10.1074/jbc.M111.267666 DOI: 10.1074/jbc.M111.267666 PMID 21705327 PMCID PMC3190721 Google Académico Microsoft Académico
Alhawiti NM, Al Mahri S, Aziz MA, Malik SS, Mohammad S. TXNIP in Metabolic Regulation: Physiological Role and Therapeutic Outlook. Curr Drug Targets [Internet]. 2017;18(9). Disponible en: http://www.eurekaselect.com/149631/article DOI: 10.2174/1389450118666170130145514. PMID 28137209 PMCID PMC5543564 Google Académico Microsoft Académico
Long Y, Wang G, Li K, Zhang Z, Zhang P, Zhang J, et al. Oxidative stress and NF-κB signaling are involved in LPS induced pulmonary dysplasia in chick embryos. Cell Cycle [Internet]. 2018;17(14):1757-71. Disponible en: https://doi.org/10.1080/15384101.2018.1496743 DOI: 10.1080/15384101.2018.1496743 PMID 30010471 PMCID PMC6133310 Google Académico Microsoft Académico
. Verma N, Ahuja V, Paul J. Profiling of ABC Transporters During Active Ulcerative Colitis and In Vitro Effect of Inflammatory Modulators. Dig Dis Sci [Internet]. 2013;58(8):2282-92. Disponible en: https://doi.org/10.1007/s10620-013-2636-7 DOI: 10.1007/s10620-013-2636-7 PMID 23512405 Google Académico Microsoft Académico
Hernandez JC, Sirois CM, Latz E. Activation and Regulation of the NLRP3 Inflammasome. En: Couillin I, Pétrilli V, Martinon F, editores. The Inflammasomes [Internet]. Basel: Springer Basel; 2011. p. 197-208. Disponible en: https://doi.org/10.1007/978-3-0348-0148-5_13 DOI: 10.1007/978-3-0348-0148-5_13 Google Académico Microsoft Académico
López JCH, Inchima SU. Activación y regulación del inflamasoma NLRP3 en las enfermedades infecciosasIatreia [Internet]. 2012;25(4):380-9. Disponible en: https://revistas.udea.edu.co/index.php/iatreia/article/vie w/13134 Lilacs Redalyc Biblat Google Académico Microsoft Académico
Levring TB, Kongsbak-Wismann M, Rode AKO, Al-Jaberi FAH, Lopez D V, Met Ö, et al. Tumor necrosis factor induces rapid down-regulation of TXNIP in human T cells. Sci Rep [Internet]. 2019;9(1):16725. Disponible en: https://doi.org/10.1038/s41598-019-53234-x DOI: 10.1038/s41598-019-53234-x PMID 31723203 PMCID PMC6853882 Google Académico Microsoft Académico
Kang S, Tang H. HIV-1 Infection and Glucose Metabolism Reprogramming of T Cells: Another Approach Toward Functional Cure and Reservoir Eradication. Front Immunol [Internet]. 2020;11:2621. Disponible en: https://www.frontiersin.org/article/10.3389/fimmu.2020.572 677 DOI: 10.3389/fimmu.2020.572677 PMID 33117366 PMCID PMC7575757 Google Académico Microsoft Académico
Bourgi K, Wanjalla C, Koethe JR. Inflammation and Metabolic Complications in HIV. Curr HIV/AIDS Rep [Internet]. 2018;15(5):371-81. Disponible en: https://doi.org/10.1007/s11904-018-0411-2 DOI: 10.1007/s11904-018-0411-2 PMID 30058057 Google Académico
Palmer CS, Cherry CL, Sada-Ovalle I, Singh A, Crowe SM. Glucose Metabolism in T Cells and Monocytes: New Perspectives in HIV Pathogenesis. EBioMedicine [Internet]. 2016;6:31-41. Disponible en: https://doi.org/10.1016/j.ebiom.2016.02.012 DOI: 10.1016/j.ebiom.2016.02.012 PMID 27211546 PMCID PMC4856752 Google Académico Microsoft Académico
Beg M, Zhang W, McCourt AC, Enerbäck S. ATGL activity regulates GLUT1-mediated glucose uptake and lactate production via TXNIP stability in adipocytes. J Biol Chem [Internet]. 2021;296:100332. Disponible en: https://doi.org/10.1016/j.jbc.2021.100332 DOI: 10.1016/j.jbc.2021.100332 PMID 33508319 PMCID PMC7949114 Google Académico Microsoft Académico
Latz E, Xiao TS, Stutz A. Activation and regulation of the inflammasomes. Nat Rev Immunol [Internet]. 2013;13(6):397-411. Disponible en: https://doi.org/10.1038/nri3452 DOI: 10.1038/nri3452 PMID 23702978 PMCID PMC3807999 Google Académico Microsoft Académico
Kuti MA, Adesina OA, Awolude OA, Ogunbosi BO, Fayemiwo SA, Akinyemi JO, et al. Dyslipidemia in ART-Naive HIV-Infected Persons in Nigeria—Implications for Care. J Int Assoc Provid AIDS Care [Internet]. 2014;14(4):355-9. Disponible en: https://doi.org/10.1177/2325957414555227 DOI: 10.1177/2325957414555227 PMID 25331224 Google Académico Microsoft Académico 73. Rose H, Woolley I, Hoy J, Dart A, Brya
Rose H, Woolley I, Hoy J, Dart A, Bryant B, Mijch A, et al. HIV infection and high-density lipoprotein: the effect of the disease vs the effect of treatment. Metab Clin Exp [Internet]. 2006;55(1):90-5. Disponible en: https://doi.org/10.1016/j.metabol.2005.07.012 DOI: 10.1016/j.metabol.2005.07.012 PMID 16324925 Google Académico Microsoft Académico
Riddler SA, Li X, Chu H, Kingsley LA, Dobs A, Evans R, et al. Longitudinal changes in serum lipids among HIV-infected men on highly active antiretroviral therapy. HIV Med [Internet]. 2007;8(5):280-7. Disponible en:https://doi.org/10.1111/j.1468-1293.2007.00470.x DOI: 10.1111/j.1468-1293.2007.00470.x PMID 17561873 Google Académico Microsoft Académico
Zangerle R, Widner B, Quirchmair G, Neurauter G, Sarcletti M, Fuchs D. Effective Antiretroviral Therapy Reduces Degradation of Tryptophan in Patients with HIV-1 Infection. Clin Immunol [Internet]. 2002;104(3):242-7. Disponible en: https://www.sciencedirect.com/science/article/pii/S1521661 602952319 DOI: 10.1006/clim.2002.5231 PMID 12217334 Google Académico
dc.rights.license.none.fl_str_mv Atribución
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 1-13
dc.coverage.temporal.spa.fl_str_mv 49
dc.publisher.spa.fl_str_mv Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Medicina, Medellín y Envigado
dc.publisher.program.spa.fl_str_mv Medicina
dc.publisher.place.spa.fl_str_mv Medellín
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/92a68109-6296-4da8-bc73-4bb20b79f509/download
https://repository.ucc.edu.co/bitstreams/c9948f07-9d8b-41db-91af-5ef9f3e36b01/download
https://repository.ucc.edu.co/bitstreams/7d67877f-84c1-4fd5-ba12-fc6aeda64d0f/download
https://repository.ucc.edu.co/bitstreams/8c5992ae-a504-4bd0-9694-cbac1f3044ac/download
bitstream.checksum.fl_str_mv 3bce4f7ab09dfc588f126e1e36e98a45
f097dc22ff66dff965b53409f4169fda
d58c7c8f028849e4879ead626ea588df
27805879ae692242d98cc9d37c854c2e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1811565238672162816
spelling Arboleda Álvarez, NatalySánchez Gómez, CatalinaArias Pérez, Rubén DaríoFlórez Álvarez, LizdanyMarín Palma, DamarizTaborda, Natalia AndreaHernández López, Juan Carlos 492022-04-01T20:46:18Z2022-04-01T20:46:18Z2021-0110.5281/zenodo.4780969https://hdl.handle.net/20.500.12494/44468Arias Pérez RD, Arboleda Álvarez N, Sánchez Gómez C, FlorezAlvarez L, Marín Palma D, Taborda NA, Hernández JC. (2021). Alteración en la expresión de proteínas transportadoras de colesterol y moléculas inmunomoduladoras en pacientes con VIH-1. Kasmera. 2021;49(1):e49133736. doi: 10.5281/zenodo.4780969Debido a que la terapia antirretroviral no logra controlar la activación inmune asociada a la infección por VIH-1, el estudio de moléculas inmunomoduladoras puede proporcionar alternativas para su control. En este sentido, el propósito de este estudio fue evaluar la expresión transcripcional de moléculas asociadas con el metabolismo del colesterol-HDL (C-HDL) y con la respuesta inflamatoria mediada por el inflamasoma NLRP3 en pacientes infectados con VIH-1. En este estudio transversal, se incluyeron 23 pacientes VIH-1 sin tratamiento antirretroviral, con diferentes estadios de progresión, 7 de los cuales son controladores (Carga viral <2000 copias/mL) y 16 progresores (Carga viral >2000 copias/mL), además de 7 controles sanos. En células mononucleares de sangre periférica, se cuantificaron los niveles de la expresión transcripcional de ABCA-1, ABCA-3, Caspasa-5 y TXNIP mediante RT-PCR. Se evaluó la asociación de estos parámetros con variables demográficas y de laboratorio, y se encontró que los individuos VIH-1 progresores mostraron niveles significativamente menores de TXNIP y ABCA-3, sugiriendo que durante la infección por VIH-1 se produce una alteración en la expresión de estas moléculas. Dada la complejidad de las interacciones inmuno-metabólicas durante la infección por VIH-1, se necesitan estudios adicionales para establecer los mecanismos precisos involucrados en estas alteraciones.https://scienti.colciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000283088http://orcid.org/0000-0002-9200-5698https://scienti.colciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000011355juanc.hernandezl@campusucc.edu.co1-13Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Medicina, Medellín y EnvigadoMedicinaMedellínhttps://zenodo.org/record/4780969#.YkSa3CjMLfsKasmeraONUSIDA [Internet]. [citado 15 de febrero de 2021]. Disponible en: https://www.unaids.org/esPerdomo-Celis F, Taborda NA, Rugeles MT. Circulating CXCR5-Expressing CD8+ T-Cells Are Major Producers of IL21 and Associate With Limited HIV Replication. J Acquir Immune Defic Syndr [Internet]. 2018;78(4):476-82. Disponible en: https://journals.lww.com/jaids/Fulltext/2018/08010/Circula ting_CXCR5_Expressing_CD8__T_Cells_Are.16.aspx DOI: 10.1097/QAI.0000000000001700 PMID 29649077 Google Académico Microsoft AcadémicoTaborda NA, Gonzalez SM, Correa LA, Montoya CJ, Rugeles MT. Spontaneous HIV Controllers Exhibit Preserved Immune Parameters in Peripheral Blood and Gastrointestinal Mucosa. J Acquir Immune Defic Syndr [Internet]. 2015;70(2):115-21. Disponible en: https://journals.lww.com/jaids/Fulltext/2015/10010/Sponta neous_HIV_Controllers_Exhibit_Preserved.2.aspx DOI: 10.1097/QAI.0000000000000729 PMID 26102449 Google Académico Microsoft AcadémicoTaborda NA, González SM, Alvarez CM, Correa LA, Montoya CJ, Rugeles MT. Higher Frequency of NK and CD4+ T-Cells in Mucosa and Potent Cytotoxic Response in HIV Controllers. PLoS One [Internet]. 2015;10(8):e0136292. Disponible en: https://doi.org/10.1371/journal.pone.0136292 DOI: 10.1371/journal.pone.0136292 PMID 26291824 PMCID PMC4546229 Google Académico Microsoft AcadémicoFeria MG, Taborda NA, Hernandez JC, Rugeles MT. HIV replication is associated to inflammasomes activation, IL1β, IL-18 and caspase-1 expression in GALT and peripheral blood. PLoS One [Internet]. 2018;13(4):e0192845. Disponible en: https://doi.org/10.1371/journal.pone.0192845 DOBorrow P. Innate immunity in acute HIV-1 infection. Curr Opin HIV AIDS [Internet]. 2011;6(5):353-63. Disponible en: https://journals.lww.com/cohivandaids/Fulltext/2011/09000/Innate_immunity_in_acute _HIV_1_infection.4.aspx DOI: 10.1097/COH.0b013e3283495996 PMID 21734567 PMCID PMC3266478 Google Académico Microsoft AcadémicoAbad-Fernández M, Vallejo A, Hernández-Novoa B, Díaz L, Gutiérrez C, Madrid N, et al. Correlation Between Different Methods to Measure Microbial Translocation and Its Association With Immune Activation in Long-Term Suppressed HIV-1–Infected Individuals. J Acquir Immune Defic Syndr [Internet]. 2013;64(2):149-53. Disponible en: https://journals.lww.com/jaids/Fulltext/2013/10010/Correla tion_Between_Different_Methods_to_Measure.6.aspx DOI: 10.1097/QAI.0b013e31829a2f12 PMID 24047967 Google Académico Microsoft AcadémicoBoasso A, Shearer GM. Chronic innate immune activation as a cause of HIV-1 immunopathogenesis. Clin Immunol [Internet]. 2008;126(3):235-42. Disponible en: https://www.sciencedirect.com/science/article/pii/S1521 661607013290 DOI: 10.1016/j.clim.2007.08.015 PMID 17916442 PMCID PMC2275778 Google Académico Microsoft AcadémicoMerlini E, Luzi K, Suardi E, Barassi A, Cerrone M, Martínez JS, et al. T-Cell Phenotypes, Apoptosis and Inflammation in HIV+ Patients on Virologically Effective cART with Early Atherosclerosis. PLoS One [Internet]. 2012;7(9):e46073. Disponible en: https://doi.org/10.1371/journal.pone.0046073 DOI: 10.1371/journal.pone.0046073 PMID 23029393 PMCID PMC3459872 Google Académico Microsoft AcadémicoMontoya Guarín CJ, Moreno Fernández ME, Rugelés López MT. Reacciones y alteraciones del sistema inmune durante la infección por el VIH-1. Infectio [Internet]. 2006;10(4):250- 65. Disponible en: http://revistainfectio.org/index.php/infectio/article/view/ 191 SciELO Google Académico Microsoft AcadémicoChong C-R, Chan WPA, Nguyen TH, Liu S, Procter NEK, Ngo DT, et al. Thioredoxin-Interacting Protein: Pathophysiology and Emerging Pharmacotherapeutics in Cardiovascular Disease and Diabetes. Cardiovasc Drugs Ther [Internet]. 2014;28(4):347-60. Disponible en: https://doi.org/10.1007/s10557-014-6538-5 DOI: 10.1007/s10557-014-6538-5 PMID 25088927 Google Académico Microsoft AcadémicoVišković K, Židovec Lepej S, Gorenec A, Grgić I, Lukas D, Zekan Š, et al. Cardiovascular markers of inflammation and serum lipid levels in HIV-infected patients with undetectable viremia. Sci Rep [Internet]. 2018;8(1):6113. Disponible en: https://doi.org/10.1038/s41598-018-24446-4 DOI: 10.1038/s41598-018-24446-4 PMID 29666424 PMCID PMC5904142 Google Académico Microsoft AcadémicoZhou R, Tardivel A, Thorens B, Choi I, Tschopp J. Thioredoxininteracting protein links oxidative stress to inflammasome activation. Nat Immunol [Internet]. 2010;11(2):136-40. Disponible en: https://doi.org/10.1038/ni.1831 DOI: 10.1038/ni.1831 PMID 20023662 Google Académico Microsoft AcadémicoKim DO, Byun J-E, Seong H-A, Yoon SR, Choi I, Jung H. Thioredoxin-interacting protein-derived peptide (TN13)inhibits LPS-induced inflammation by inhibiting p38 MAPK signaling. Biochem Biophys Res Commun [Internet]. 2018;507(1):489-95. Disponible en: https://www.sciencedirect.com/science/article/pii/S0006 291X18324847 DOI: 10.1016/j.bbrc.2018.11.069 PMID 30448175 Google Académico Microsoft AcadémicoHe K, Zhu X, Liu Y, Miao C, Wang T, Li P, et al. Inhibition of NLRP3 inflammasome by thioredoxin-interacting protein in mouse Kupffer cells as a regulatory mechanism for nonalcoholic fatty liver disease development. Oncotarget [Internet]. 2017;8(23):37657-72. Disponible en: https://www.oncotarget.com/article/17489/text/ DOI: 10.18632/oncotarget.17489 PMID 28499273 PMCID PMC5514938 Google Académico Microsoft AcadémicoViganò E, Diamond CE, Spreafico R, Balachander A, Sobota RM, Mortellaro A. Human caspase-4 and caspase5 regulate the one-step non-canonical inflammasome activation in monocytes. Nat Commun [Internet]. 2015;6(1):8761. Disponible en: https://doi.org/10.1038/ncomms9761 DOI: 10.1038/ncomms9761 PMID 26508369 PMCID PMC4640152 Google Académico Microsoft AcadémicoMan SM, Karki R, Kanneganti T-D. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol Rev [Internet]. 2017;277(1):61-75. Disponible en: https://doi.org/10.1111/imr.12534 DOI: 10.1111/imr.12534 PMID 28462526 PMCID PMC5416822 Google Académico Microsoft Académico. Pillon NJ, Chan KL, Zhang S, Mejdani M, Jacobson MR, Ducos A, et al. Saturated fatty acids activate caspase-4/5 in human monocytes, triggering IL-1β and IL-18 release. Am J Physiol Metab [Internet]. 2016;311(5):E825-35. Disponible en: https://doi.org/10.1152/ajpendo.00296.2016 DOI: 10.1152/ajpendo.00296.2016 PMID 27624102 Google Académico Microsoft AcadémicoMarín-Palma D, Castro GA, Cardona-Arias JA, UrcuquiInchima S, Hernandez JC. Lower High-Density Lipoproteins Levels During Human Immunodeficiency Virus Type 1 Infection Are Associated With Increased Inflammatory Markers and Disease Progression. Front Immunol [Internet]. 2018;9:1350. Disponible en: https://www.frontiersin.org/article/10.3389/fimmu.2018.013 50 DOI: 10.3389/fimmu.2018.01350 PMID 29963050 PMCID PMC6010517 Google Académico Microsoft AcadémicoTaborda NA, Blanquiceth Y, Urcuqui-Inchima S, Latz E, Hernandez JC. High-Density Lipoproteins Decrease Proinflammatory Activity and Modulate the Innate Immune Response. J Interf Cytokine Res [Internet]. 2019;39(12):760- 70. Disponible en: https://doi.org/10.1089/jir.2019.0029 DOI: 10.1089/jir.2019.0029 PMID 31335262 Google Académico Microsoft AcadémicoThacker SG, Zarzour A, Chen Y, Alcicek MS, Freeman LA, Sviridov DO, et al. High-density lipoprotein reduces inflammation from cholesterol crystals by inhibiting inflammasome activation. Immunology [Internet]. 2016;149(3):306-19. Disponible en: https://doi.org/10.1111/imm.12638 DOI: 10.1111/imm.12638 PMID 27329564 PMCID PMC5046053 Google Académico Microsoft AcadémicoMarín-Palma D, Cardona-Arias JA, Hernández JC. Immunological factors related to HIV-1 in colombian patients. Rev Ciencias la Salud [Internet]. 2019;17(2):245- 58. Disponible en:Varshney P, Yadav V, Saini N. Lipid rafts in immune signalling: current progress and future perspective. Immunology [Internet]. 2016;149(1):13-24. Disponible en: https://doi.org/10.1111/imm.12617 DOI: 10.1111/imm.12617 PMID 27153983 PMCID PMC4981613 Google Académico Microsoft AcadémicoCatapano AL, Pirillo A, Bonacina F, Norata GD. HDL in innate and adaptive immunity. Cardiovasc Res [Internet]. 2014;103(3):372-83. Disponible en: https://doi.org/10.1093/cvr/cvu150 DOI: 10.1093/cvr/cvu150 PMID 24935428 Google Académico Microsoft AcadémicoGupta N, DeFranco AL. Lipid rafts and B cell signaling. Semin Cell Dev Biol [Internet]. 2007;18(5):616-26. Disponible en: https://www.sciencedirect.com/science/article/pii/S1084 952107000997 DOI: 10.1016/j.semcdb.2007.07.009 PMID 17719248 PMCID PMC2169358 Google Académico Microsoft AcadémicoJury EC, Flores-Borja F, Kabouridis PS. Lipid rafts in T cell signalling and disease. Semin Cell Dev Biol [Internet]. 2007;18(5):608-15. Disponible en: https://www.sciencedirect.com/science/article/pii/S1084 952107001176 DOI: 10.1016/j.semcdb.2007.08.002 PMID 17890113 PMCID PMC2596300 Google Académico Microsoft AcadémicoDe Nardo D, Labzin LI, Kono H, Seki R, Schmidt S V, Beyer M, et al. High-density lipoprotein mediates anti-inflammatory reprogramming of macrophages via the transcriptional regulator ATF3. Nat Immunol [Internet]. 2014;15(2):152-60. Disponible en: https://doi.org/10.1038/ni.2784 DOI: 10.1038/ni.2784 PMID 24317040 PMCID PMC4009731 Google Académico Microsoft AcadémicoMarín-Palma D, Taborda NA, Urcuqui-Inchima S, Hernandez JC. Inflamación y respuesta inmune innata: participación de las lipoproteínas de alta densidad. Iatreia [Internet]. 2017;30(4):426-35. Disponible en: https://revistas.udea.edu.co/index.php/iatreia/article/vie w/325591 DOI: 10.17533/udea.iatreia.v30n4a06 SciELO Lilacs Redalyc Google Académico Microsoft AcadémicoVaisar T, Pennathur S, Green PS, Gharib SA, Hoofnagle AN, Cheung MC, et al. Shotgun proteomics implicates protease inhibition and complement activation in the antiinflammatory properties of HDL. J Clin Invest [Internet]. 2007;117(3):746-56. Disponible en: https://doi.org/10.1172/JCI26206 DOI: 10.1172/JCI26206 PMID 17332893 PMCID PMC1804352 Google Académico Microsoft AcadémicoKoseki M, Hirano K, Masuda D, Ikegami C, Tanaka M, Ota A, et al. Increased lipid rafts and accelerated lipopolysaccharide-induced tumor necrosis factor-α secretion in Abca1-deficient macrophagess. J Lipid Res [Internet]. 2007;48(2):299-306. Disponible en: https://www.sciencedirect.com/science/article/pii/S0022 22752043665X DOI: 10.1194/jlr.M600428-JLR200 PMID 17079792 Google Académico Microsoft AcadémicoSong GJ, Kim S-M, Park K-H, Kim J, Choi I, Cho K-H. SR-BI mediates high density lipoprotein (HDL)-induced antiinflammatory effect in macrophages. Biochem Biophys ResCommun [Internet]. 2015;457(1):112-8. Disponible en: https://www.sciencedirect.com/science/article/pii/S0006 291X14021937 DOI: 10.1016/j.bbrc.2014.12.028 PMID 25528585 Google Académico Microsoft AcadémicoMarin-Palma D, Sirois CM, Urcuqui-Inchima S, Hernandez JC. Inflammatory status and severity of disease in dengue patients are associated with lipoprotein alterations. PLoS One [Internet]. 2019;14(3):e0214245. Disponible en: https://doi.org/10.1371/journal.pone.0214245 DOI: 10.1371/journal.pone.0214245 PMID 30901375 PMCID PMC6430398 Google Académico Microsoft AcadémicoBarrientos-Arenas E, Henao-García V, Giraldo DM, Cardona MM, Urcuqui-Inchima S, Castaño JC, et al. Modulación de los niveles de lipoproteínas de alta densidad y las citoquinas IL-1β e IL-6 en pacientes con dengue. Rev Peru Med Exp y Salud Pública [Internet]. 2018;35(1):15-24. Disponible en: https://rpmesp.ins.gob.pe/index.php/rpmesp/article/view /3568 DOI: 10.17843/rpmesp.2018.351.3568 SciELO Lilacs Google Académico Microsoft AcadémicoMontecucco F, Favari E, Norata GD, Ronda N, Nofer J-R, Vuilleumier N. Impact of Systemic Inflammation and Autoimmune Diseases on apoA-I and HDL Plasma Levels and Functions. En: von Eckardstein A, Kardassis D, editores. High Density Lipoproteins: From Biological Understanding to Clinical Exploitation [Internet]. Cham: Springer International Publishing; 2015. p. 455-82. Disponible en: https://doi.org/10.1007/978-3-319-09665-0_14 DOI: 10.1007/978-3-319-09665-0_14 PMID 25522998 Google Académico Microsoft AcadémicoYe D, Lammers B, Zhao Y, Meurs I, Eck TJCVB and M Van. ATP-Binding Cassette Transporters A1 and G1, HDL Metabolism, Cholesterol Efflux, and Inflammation: Important Targets for the Treatment of Atherosclerosis. Curr Drug Targets [Internet]. 2011;12(5):647-60. Disponible en: http://www.eurekaselect.com/node/73655/article DOI: 10.2174/138945011795378522 PMID 21039336 Google Académico Microsoft AcadémicoLaurent Y-C, Nan W, Alan RT. Role of HDL, ABCA1, and ABCG1 Transporters in Cholesterol Efflux and Immune Responses. Arterioscler Thromb Vasc Biol [Internet]. 2010;30(2):139-43. Disponible en: https://doi.org/10.1161/ATVBAHA.108.179283 DOI: 10.1161/ATVBAHA.108.179283 PMID 19797709 PMCID PMC2812788 Google Académico Microsoft AcadémicoZarubica A, Trompier D, Chimini G. ABCA1, from pathology to membrane function. Pflügers Arch - Eur J Physiol [Internet]. 2007;453(5):569-79. Disponible en: https://doi.org/10.1007/s00424-006-0108-z DOI: 10.1007/s00424-006-0108-z PMID 16858612 Google Académico Microsoft AcadémicoTarling EJ, Vallim TQ de A, Edwards PA. Role of ABC transporters in lipid transport and human disease. Trends Endocrinol Metab [Internet]. 2013;24(7):342-50. Disponible en: https://doi.org/10.1016/j.tem.2013.01.006 DOI: 10.1016/j.tem.2013.01.006 PMID 23415156 PMCID PMC3659191 Google Académico Microsoft AcadémicoEstrada V, Martínez-Larrad MT, González-Sánchez JL, de Villar NGP, Zabena C, Fernández C, et al. Lipodystrophy and metabolic syndrome in HIV-infected patients treated with antiretroviral therapy. Metab Clin Exp [Internet]. 2006;55(7):940-5. Disponible en: https://doi.org/10.1016/j.metabol.2006.02.024 DOI: PMID 16784968 Google Académico Microsoft AcadémicoAnastos K, Lu D, Shi Q, Tien PC, Kaplan RC, Hessol NA, et al. Association of Serum Lipid Levels With HIV Serostatus, Specific Antiretroviral Agents, and Treatment Regimens. J Acquir Immune Defic Syndr [Internet]. 2007;45(1):34-42. Disponible en: https://journals.lww.com/jaids/Fulltext/2007/05010/Associa tion_of_Serum_Lipid_Levels_With_HIV.6.aspx DOI: 10.1097/QAI.0b013e318042d5fe PMID 17460470 Google Académico Microsoft AcadémicoBernal E, Masiá M, Padilla S, Gutiérrez F. High-Density Lipoprotein Cholesterol in HIV-Infected Patients: Evidence for an Association with HIV-1 Viral Load, Antiretroviral Therapy Status, and Regimen Composition. AIDS Patient Care STDS [Internet]. 2008;22(7):569-75. Disponible en: https://doi.org/10.1089/apc.2007.0186 DOI: 10.1089/apc.2007.0186 PMID 18479224 Google Académico Microsoft AcadémicoZhang N, Lei J, Lei H, Ruan X, Liu Q, Chen Y, et al. MicroRNA101 overexpression by IL-6 and TNF-α inhibits cholesterol efflux by suppressing ATP-binding cassette transporter A1 expression. Exp Cell Res [Internet]. 2015;336(1):33-42. Disponible en: https://www.sciencedirect.com/science/article/pii/S0014 482715300070 DOI: 10.1016/j.yexcr.2015.05.023 PMID 26033364 Google Académico Microsoft AcadémicoYin K, Liao D, Tang C. ATP-Binding Membrane Cassette Transporter A1 (ABCA1): A Possible Link between Inflammation and Reverse Cholesterol Transport. Mol Med [Internet]. 2010;16(9):438-49. Disponible en: https://doi.org/10.2119/molmed.2010.00004 DOI: 10.2119/molmed.2010.00004 PMID 20485864 PMCID PMC2935947 Google Académico Microsoft AcadémicoChen M, Li W, Wang N, Zhu Y, Wang X. ROS and NF-κB but not LXR mediate IL-1β signaling for the downregulation of ATP-binding cassette transporter A1. Am J Physiol Cell Physiol [Internet]. 2007;292(4):C1493-501. Disponible en: https://doi.org/10.1152/ajpcell.00016.2006 DOI: 10.1152/ajpcell.00016.2006 PMID 17135302 Google Académico Microsoft AcadémicoAlfaro Leon ML, Evans GF, Farmen MW, Zuckerman SH. Post-transcriptional regulation of macrophage ABCA1, an early response gene to IFN-γ. Biochem Biophys Res Commun [Internet]. 2005;333(2):596-602. Disponible en: https://www.sciencedirect.com/science/article/pii/S0006 291X0501106X DOI: 10.1016/j.bbrc.2005.05.112 PMID 15946645 Google Académico Microsoft AcadémicoXinwen W, Dan L, Uddalak B, Min L, Qizhi Y, Changyi C. CReactive Protein Inhibits Cholesterol Efflux From Human Macrophage-Derived Foam Cells. Arterioscler Thromb Vasc Biol [Internet]. 2008;28(3):519-26. Disponible en: https://doi.org/10.1161/ATVBAHA.107.159467 DOI: 10.1161/ATVBAHA.107.159467 PMID: 18096828 PMCID PMC2927966 Google Académico Microsoft AcadémicoMcGillicuddy FC, de la Llera Moya M, Hinkle C, Joshi MR, Chiquoine EH, Billheimern JT, et al. Inflammation Impairs Reverse Cholesterol Transport In Vivo. Circulation [Internet]. 2009;119(8):1135-45. Disponible en: https://doi.org/10.1161/CIRCULATIONAHA.108.810721 DOI: 10.1161/CIRCULATIONAHA.108.810721 PMID 19221221 PMCID PMC4937877 Google Académico Microsoft AcadémicoBaranova I, Vishnyakova T, Bocharov A, Chen Z, Remaley AT, Stonik J, et al. Lipopolysaccharide Down Regulates Both Scavenger Receptor B1 and ATP Binding Cassette Transporter A1 in RAW Cells. Infect Immun [Internet]. 2002;70(6):2995-3003. Disponible en: http://iai.asm.org/content/70/6/2995.abstract DOI: 10.1128/IAI.70.6.2995-3003.2002 PMID 12010990 PMCID PMC127996 Google Académico Microsoft AcadémicoMorrow MP, Grant A, Mujawar Z, Dubrovsky L, Pushkarsky T, Kiselyeva Y, et al. Stimulation of the Liver X Receptor Pathway Inhibits HIV-1 Replication via Induction of ATPBinding Cassette Transporter A1. Mol Pharmacol [Internet]. 2010;78(2):215-225. Disponible en: http://molpharm.aspetjournals.org/content/78/2/215.abst ract DOI: 10.1124/mol.110.065029 PMID 20479131 PMCID PMC2917859 Google Académico Microsoft AcadémicoJennelle L, Hunegnaw R, Dubrovsky L, Pushkarsky T, Fitzgerald ML, Sviridov D, et al. HIV-1 Protein Nef Inhibits Activity of ATP-binding Cassette Transporter A1 by Targeting Endoplasmic Reticulum Chaperone Calnexin. J Biol Chem [Internet]. 2014;289(42):28870-84. Disponible en: https://doi.org/10.1074/jbc.M114.583591 DOI: 10.1074/jbc.M114.583591 PMID 25170080 PMCID PMC4200247 Google Académico Microsoft AcadémicoAiello RJ, Brees D, Francone OL. ABCA1-deficient mice: insights into the role of monocyte lipid efflux in HDL formation and inflammation. Arterioscler Thromb Vasc Biol [Internet]. 2003;23(6):972-80. Disponible en: https://doi.org/10.1161/01.ATV.0000054661.21499.FB DOI: 10.1161/01.ATV.0000054661.21499.FB PMID 12615679 Google Académico Microsoft AcadémicoLin S, Nadeau PE, Mergia A. HIV inhibits endothelial reverse cholesterol transport through impacting subcellular Caveolin-1 trafficking. Retrovirology [Internet]. 2015;12(1):62. Disponible en: https://doi.org/10.1186/s12977-015-0188-y DOI: 10.1186/s12977-015-0188-y PMID 26169283 PMCID PMC4501058 Google Académico Microsoft AcadémicoVan Eck M, Singaraja RR, Ye D, Hildebrand RB, James ER, Hayden MR, et al. Macrophage ATP-Binding Cassette Transporter A1 Overexpression Inhibits Atherosclerotic Lesion Progression in Low-Density Lipoprotein Receptor Knockout Mice. Arterioscler Thromb Vasc Biol [Internet]. 2006;26(4):929-34. Disponible en: https://doi.org/10.1161/01.ATV.0000208364.22732.16 DOI: 10.1161/01.ATV.0000208364.22732.16 PMID 16456089 Google Académico Microsoft AcadémicoAmberbir A, Banda V, Singano V, Matengeni A, Pfaff C, Ismail Z, et al. Effect of cardio-metabolic risk factors on allcause mortality among HIV patients on antiretroviral therapy in Malawi: A prospective cohort study. PLoS One [Internet]. 2019;14(1):e0210629. Disponible en: https://doi.org/10.1371/journal.pone.0210629 DOI: 10.1371/journal.pone.0210629 PMID 30653539 PMCID PMC6336397 Google Académico Microsoft AcadémicoTang C, Oram JF. The cell cholesterol exporter ABCA1 as a protector from cardiovascular disease and diabetes. Biochim Biophys Acta Mol Cell Biol Lipids [Internet]. 2009;1791(7):563-72. Disponible en: https://www.sciencedirect.com/science/article/pii/S1388 198109000882 DOI: 10.1016/j.bbalip.2009.03.011 PMID 19344785 Google Académico Microsoft AcadémicoHofmann N, Galetskiy D, Rauch D, Wittmann T, Marquardt A, Griese M, et al. Analysis of the Proteolytic Processing ofABCA3: Identification of Cleavage Site and Involved Proteases. PLoS One [Internet]. 2016;11(3):e0152594. Disponible en: https://doi.org/10.1371/journal.pone.0152594 DOI: 10.1371/journal.pone.0152594 PMID 27031696 PMCID PMC4816274 Google Académico Microsoft AcadémicoZarbock R, Kaltenborn E, Frixel S, Wittmann T, Liebisch G, Schmitz G, et al. ABCA3 protects alveolar epithelial cells against free cholesterol induced cell death. Biochim Biophys Acta Mol Cell Biol Lipids [Internet]. 2015;1851(7):987-95. Disponible en: https://www.sciencedirect.com/science/article/pii/S1388 198115000761 DOI: 10.1016/j.bbalip.2015.03.004 PMID 25817392 Google Académico Microsoft AcadémicoChai AB, Ammit AJ, Gelissen IC. Examining the role of ABC lipid transporters in pulmonary lipid homeostasis and inflammation. Respir Res [Internet]. 2017;18(1):41. Disponible en: https://doi.org/10.1186/s12931-017-0526-9 DOI: 10.1186/s12931-017-0526-9 PMID 28241820 PMCID PMC5330150 Google Académico Microsoft AcadémicoBeers MF, Mulugeta S. The biology of the ABCA3 lipid transporter in lung health and disease. Cell Tissue Res [Internet]. 2017;367(3):481-93. Disponible en: https://doi.org/10.1007/s00441-016-2554-z DOI: 10.1007/s00441-016-2554-z PMID 28025703 PMCID PMC5321817 Google Académico Microsoft AcadémicoChutkow WA, Lee RT. Thioredoxin Regulates Adipogenesis through Thioredoxin-interacting Protein (Txnip) Protein Stability. J Biol Chem [Internet]. 2011;286(33):29139-45. Disponible en: https://doi.org/10.1074/jbc.M111.267666 DOI: 10.1074/jbc.M111.267666 PMID 21705327 PMCID PMC3190721 Google Académico Microsoft AcadémicoAlhawiti NM, Al Mahri S, Aziz MA, Malik SS, Mohammad S. TXNIP in Metabolic Regulation: Physiological Role and Therapeutic Outlook. Curr Drug Targets [Internet]. 2017;18(9). Disponible en: http://www.eurekaselect.com/149631/article DOI: 10.2174/1389450118666170130145514. PMID 28137209 PMCID PMC5543564 Google Académico Microsoft AcadémicoLong Y, Wang G, Li K, Zhang Z, Zhang P, Zhang J, et al. Oxidative stress and NF-κB signaling are involved in LPS induced pulmonary dysplasia in chick embryos. Cell Cycle [Internet]. 2018;17(14):1757-71. Disponible en: https://doi.org/10.1080/15384101.2018.1496743 DOI: 10.1080/15384101.2018.1496743 PMID 30010471 PMCID PMC6133310 Google Académico Microsoft Académico. Verma N, Ahuja V, Paul J. Profiling of ABC Transporters During Active Ulcerative Colitis and In Vitro Effect of Inflammatory Modulators. Dig Dis Sci [Internet]. 2013;58(8):2282-92. Disponible en: https://doi.org/10.1007/s10620-013-2636-7 DOI: 10.1007/s10620-013-2636-7 PMID 23512405 Google Académico Microsoft AcadémicoHernandez JC, Sirois CM, Latz E. Activation and Regulation of the NLRP3 Inflammasome. En: Couillin I, Pétrilli V, Martinon F, editores. The Inflammasomes [Internet]. Basel: Springer Basel; 2011. p. 197-208. Disponible en: https://doi.org/10.1007/978-3-0348-0148-5_13 DOI: 10.1007/978-3-0348-0148-5_13 Google Académico Microsoft AcadémicoLópez JCH, Inchima SU. Activación y regulación del inflamasoma NLRP3 en las enfermedades infecciosasIatreia [Internet]. 2012;25(4):380-9. Disponible en: https://revistas.udea.edu.co/index.php/iatreia/article/vie w/13134 Lilacs Redalyc Biblat Google Académico Microsoft AcadémicoLevring TB, Kongsbak-Wismann M, Rode AKO, Al-Jaberi FAH, Lopez D V, Met Ö, et al. Tumor necrosis factor induces rapid down-regulation of TXNIP in human T cells. Sci Rep [Internet]. 2019;9(1):16725. Disponible en: https://doi.org/10.1038/s41598-019-53234-x DOI: 10.1038/s41598-019-53234-x PMID 31723203 PMCID PMC6853882 Google Académico Microsoft AcadémicoKang S, Tang H. HIV-1 Infection and Glucose Metabolism Reprogramming of T Cells: Another Approach Toward Functional Cure and Reservoir Eradication. Front Immunol [Internet]. 2020;11:2621. Disponible en: https://www.frontiersin.org/article/10.3389/fimmu.2020.572 677 DOI: 10.3389/fimmu.2020.572677 PMID 33117366 PMCID PMC7575757 Google Académico Microsoft AcadémicoBourgi K, Wanjalla C, Koethe JR. Inflammation and Metabolic Complications in HIV. Curr HIV/AIDS Rep [Internet]. 2018;15(5):371-81. Disponible en: https://doi.org/10.1007/s11904-018-0411-2 DOI: 10.1007/s11904-018-0411-2 PMID 30058057 Google AcadémicoPalmer CS, Cherry CL, Sada-Ovalle I, Singh A, Crowe SM. Glucose Metabolism in T Cells and Monocytes: New Perspectives in HIV Pathogenesis. EBioMedicine [Internet]. 2016;6:31-41. Disponible en: https://doi.org/10.1016/j.ebiom.2016.02.012 DOI: 10.1016/j.ebiom.2016.02.012 PMID 27211546 PMCID PMC4856752 Google Académico Microsoft AcadémicoBeg M, Zhang W, McCourt AC, Enerbäck S. ATGL activity regulates GLUT1-mediated glucose uptake and lactate production via TXNIP stability in adipocytes. J Biol Chem [Internet]. 2021;296:100332. Disponible en: https://doi.org/10.1016/j.jbc.2021.100332 DOI: 10.1016/j.jbc.2021.100332 PMID 33508319 PMCID PMC7949114 Google Académico Microsoft AcadémicoLatz E, Xiao TS, Stutz A. Activation and regulation of the inflammasomes. Nat Rev Immunol [Internet]. 2013;13(6):397-411. Disponible en: https://doi.org/10.1038/nri3452 DOI: 10.1038/nri3452 PMID 23702978 PMCID PMC3807999 Google Académico Microsoft AcadémicoKuti MA, Adesina OA, Awolude OA, Ogunbosi BO, Fayemiwo SA, Akinyemi JO, et al. Dyslipidemia in ART-Naive HIV-Infected Persons in Nigeria—Implications for Care. J Int Assoc Provid AIDS Care [Internet]. 2014;14(4):355-9. Disponible en: https://doi.org/10.1177/2325957414555227 DOI: 10.1177/2325957414555227 PMID 25331224 Google Académico Microsoft Académico 73. Rose H, Woolley I, Hoy J, Dart A, BryaRose H, Woolley I, Hoy J, Dart A, Bryant B, Mijch A, et al. HIV infection and high-density lipoprotein: the effect of the disease vs the effect of treatment. Metab Clin Exp [Internet]. 2006;55(1):90-5. Disponible en: https://doi.org/10.1016/j.metabol.2005.07.012 DOI: 10.1016/j.metabol.2005.07.012 PMID 16324925 Google Académico Microsoft AcadémicoRiddler SA, Li X, Chu H, Kingsley LA, Dobs A, Evans R, et al. Longitudinal changes in serum lipids among HIV-infected men on highly active antiretroviral therapy. HIV Med [Internet]. 2007;8(5):280-7. Disponible en:https://doi.org/10.1111/j.1468-1293.2007.00470.x DOI: 10.1111/j.1468-1293.2007.00470.x PMID 17561873 Google Académico Microsoft AcadémicoZangerle R, Widner B, Quirchmair G, Neurauter G, Sarcletti M, Fuchs D. Effective Antiretroviral Therapy Reduces Degradation of Tryptophan in Patients with HIV-1 Infection. Clin Immunol [Internet]. 2002;104(3):242-7. Disponible en: https://www.sciencedirect.com/science/article/pii/S1521661 602952319 DOI: 10.1006/clim.2002.5231 PMID 12217334 Google AcadémicoHIV-1high-density lipoproteinsABCA transportersinflammationAlteración en la expresión de proteínas transportadoras de colesterol y moléculas inmunomoduladoras en pacientes con VIH-1Artículos Científicoshttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribucióninfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/92a68109-6296-4da8-bc73-4bb20b79f509/download3bce4f7ab09dfc588f126e1e36e98a45MD52ORIGINALKasmera 2021.pdfKasmera 2021.pdfArtículoapplication/pdf580208https://repository.ucc.edu.co/bitstreams/c9948f07-9d8b-41db-91af-5ef9f3e36b01/downloadf097dc22ff66dff965b53409f4169fdaMD51THUMBNAILKasmera 2021.pdf.jpgKasmera 2021.pdf.jpgGenerated Thumbnailimage/jpeg6152https://repository.ucc.edu.co/bitstreams/7d67877f-84c1-4fd5-ba12-fc6aeda64d0f/downloadd58c7c8f028849e4879ead626ea588dfMD53TEXTKasmera 2021.pdf.txtKasmera 2021.pdf.txtExtracted texttext/plain100600https://repository.ucc.edu.co/bitstreams/8c5992ae-a504-4bd0-9694-cbac1f3044ac/download27805879ae692242d98cc9d37c854c2eMD5420.500.12494/44468oai:repository.ucc.edu.co:20.500.12494/444682024-08-10 22:48:03.771restrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo=