Introducción a la tecnología de membranas para la purificación de biogas y algunos desarrollos recientes

La remoción de CO2 en mezclas de CO2/CH4 para aumentar el contenido de energía en gas natural o biogás y prevenir problemas de corrosión, ha impulsado el desarrollo del proceso de separación de CO2 utilizando membranas. Las características más relevantes que ofrece la tecnología basada en membranas...

Full description

Autores:
Cardona González, Cristian
Molina Cardona, Diego Andrés
González Chevejoni, Roger Junior
Arbeláez Pérez, Oscar Felipe
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/46845
Acceso en línea:
https://doi.org/10.33571/rpolitec.v17n33a6
https://hdl.handle.net/20.500.12494/46845
Palabra clave:
Biogás
Membranas poliméricas
Membranas inorgánicas
Membranas de matriz mixta
Separación de dióxido de carbono
Biogas
Polymeric membranes
Inorganic membranes
Mixed-matrix membrane
CO2 separation
Rights
openAccess
License
Atribución – No comercial – Compartir igual
id COOPER2_aafb40ed5701cd95aa1eb7683f3d12ef
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/46845
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.spa.fl_str_mv Introducción a la tecnología de membranas para la purificación de biogas y algunos desarrollos recientes
title Introducción a la tecnología de membranas para la purificación de biogas y algunos desarrollos recientes
spellingShingle Introducción a la tecnología de membranas para la purificación de biogas y algunos desarrollos recientes
Biogás
Membranas poliméricas
Membranas inorgánicas
Membranas de matriz mixta
Separación de dióxido de carbono
Biogas
Polymeric membranes
Inorganic membranes
Mixed-matrix membrane
CO2 separation
title_short Introducción a la tecnología de membranas para la purificación de biogas y algunos desarrollos recientes
title_full Introducción a la tecnología de membranas para la purificación de biogas y algunos desarrollos recientes
title_fullStr Introducción a la tecnología de membranas para la purificación de biogas y algunos desarrollos recientes
title_full_unstemmed Introducción a la tecnología de membranas para la purificación de biogas y algunos desarrollos recientes
title_sort Introducción a la tecnología de membranas para la purificación de biogas y algunos desarrollos recientes
dc.creator.fl_str_mv Cardona González, Cristian
Molina Cardona, Diego Andrés
González Chevejoni, Roger Junior
Arbeláez Pérez, Oscar Felipe
dc.contributor.author.none.fl_str_mv Cardona González, Cristian
Molina Cardona, Diego Andrés
González Chevejoni, Roger Junior
Arbeláez Pérez, Oscar Felipe
dc.subject.spa.fl_str_mv Biogás
Membranas poliméricas
Membranas inorgánicas
Membranas de matriz mixta
Separación de dióxido de carbono
topic Biogás
Membranas poliméricas
Membranas inorgánicas
Membranas de matriz mixta
Separación de dióxido de carbono
Biogas
Polymeric membranes
Inorganic membranes
Mixed-matrix membrane
CO2 separation
dc.subject.other.spa.fl_str_mv Biogas
Polymeric membranes
Inorganic membranes
Mixed-matrix membrane
CO2 separation
description La remoción de CO2 en mezclas de CO2/CH4 para aumentar el contenido de energía en gas natural o biogás y prevenir problemas de corrosión, ha impulsado el desarrollo del proceso de separación de CO2 utilizando membranas. Las características más relevantes que ofrece la tecnología basada en membranas incluyen la alta eficiencia energética, el costo reducido y el rendimiento altamente flexible. Esta revisión proporciona una descripción de los trabajos reportados desde 2010 hasta 2020 sobre los diferentes tipos de membranas disponibles: poliméricas, inorgánicas y de matriz mixta para el proceso de separación de CO2/CH4; se reportan las condiciones experimentales y los determinantes primarios del rendimiento y la eficiencia de la separación (permeabilidad de CO2 y selectividad CO2/CH4). Este trabajo ofrece una nueva perspectiva de cada membrana para facilitar una mejor apreciación de su papel en la mejora del rendimiento general del proceso
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-01-01
dc.date.accessioned.none.fl_str_mv 2022-10-24T14:19:55Z
dc.date.available.none.fl_str_mv 2022-10-24T14:19:55Z
dc.type.none.fl_str_mv Artículo
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 22565353
dc.identifier.uri.spa.fl_str_mv https://doi.org/10.33571/rpolitec.v17n33a6
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12494/46845
dc.identifier.bibliographicCitation.spa.fl_str_mv Arbelaez-Perez, O. F., Cardona-Gonzalez, C., Molina-Cardona, D. A., & González-Chevejoni, R. J. (2021). Introducción a la tecnología de membranas para la purificación de biogas y algunos desarrollos recientes. Revista Politécnica, 17(33), 76-89. https://doi.org/10.33571/rpolitec.v17n33a6
identifier_str_mv 22565353
Arbelaez-Perez, O. F., Cardona-Gonzalez, C., Molina-Cardona, D. A., & González-Chevejoni, R. J. (2021). Introducción a la tecnología de membranas para la purificación de biogas y algunos desarrollos recientes. Revista Politécnica, 17(33), 76-89. https://doi.org/10.33571/rpolitec.v17n33a6
url https://doi.org/10.33571/rpolitec.v17n33a6
https://hdl.handle.net/20.500.12494/46845
dc.relation.isversionof.spa.fl_str_mv https://revistas.elpoli.edu.co/index.php/pol/article/view/1811
dc.relation.ispartofjournal.spa.fl_str_mv Revista politecnica
dc.relation.references.spa.fl_str_mv Yang, F. Chou, J. Dong, W. Sun,M. Zhao, W. (2020). Adaption to climate change risk in eastern China: Carbon emission characteristics and analysis of reduction path, Physics and. Chemistry of the Earth. 115 102829. http://doi.org/10.1016/j.pce.2019.102829.
Li, M. Luo, N. Lu, Y. (2017). Biomass energy technological paradigm (BETP): Trends in this sector, Sustainability. 9 (4) 1–28. http://doi.org/10.3390/su9040567.
Banco mundial (13 de enero de 2021) Emisones de dioxido de carbono banco mundial. https://datos.bancomundial.org/indicator/EN.ATM.CO2E.KT.
International energy agency (13 de enero) total energy supply by source, world 1990-2018. https://www.iea.org/data-and-statistics?country=world&fuel=energy%20supply&indicatorbysource.
Ullah, K. Sharma, V. Ahmad, M. Lv, P. Krahl, J. Wang,Z. et al. (2018) The insight views of advanced technologies and its application in bio-origin fuel synthesis from lignocellulose biomasses waste, a review, Renewable Sustainable Energy Review. 82 (2018) 3992–4008. http://doi.org/10.1016/j.rser.2017.10.074.
Singh, D. Sharma, D. Soni, S. Sharma, S. Kumar. P. Sharma, P. halani, A. A review on feedstocks, production processes, and yield for different generations of biodiesel, (2020) Fuel. 262 116553. http://doi.org/10.1016/j.fuel.2019.116553.
Adelt, M. Wolf, D.Vogel, A. (2011) LCA of biomethane, Journal of Natural Gas Science. Engineering . 3 (5) 646–650. http://doi.org/10.1016/j.jngse.2011.07.003.
Kapoor, R. Ghosh, P. Tyagi, B. Vijay, V. Vijay, V Thakur, I. et al., (2020) Advances in biogas valorization and utilization systems: A comprehensive review, Journal of Cleaner Production. 273 123052. http://doi.org/10.1016/j.jclepro.2020.123052.
Chowdhury, T. Chowdhury, H. Hossain, N. Ahmed, A. Hossen, M. Chowdhury, Pet al., (2020) Latest advancements on livestock waste management and biogas production: Bangladesh’s perspective, Journal of Cleaner Production. 272 122818. http://doi.org/10.1016/j.jclepro.2020.122818 Puricelli, S. Cardellini, G. Casadei, S. Faedo, D. V
Puricelli, S. Cardellini, G. Casadei, S. Faedo, D. Van den Oever, A. Grosso, (M. 2020) A review on biofuels for light-duty vehicles in Europe, Renewable. Sustainable. Energy Rev. 137. 110398. http://doi.org/10.1016/j.rser.2020.110398.
Li, S. Jiang, X. Sun, H. He, S. Zhang, L. Shao, L. (2019) Mesoporous dendritic fibrous nanosilica (DFNS) stimulating mix matrix membranes towards superior CO2 capture, Journal of Membrane Science. 586 185–191. http://doi.org/10.1016/j.memsci.2019.05.069.
Bragança, I. Sánchez-Soberón, F. Pantuzza, G. Alves, A. Ratola, N.(2020) Impurities in biogas: Analytical strategies, occurrence, effects and removal technologies, Biomass and Bioenergy. 143. http://doi.org/10.1016/j.biombioe.2020.105878.
Harasimowicz, M. Orluk, P. Zakrzewska-Trznadel, G. Chmielewski, A. (2007). Application of polyimide membranes for biogas purification and enrichment. Journal Hazard Materials. 144 (3) 698–702. http://doi.org/10.1016/j.jhazmat.2007.01.098.
Medrano, J. Llosa-Tanco, M. Cechetto, V. Pacheco-Tanaka, D. Gallucci, F.(2020) Upgrading biogas with novel composite carbon molecular sieve (CCMS) membranes: Experimental and techno-economic assessment, Chemical Engineering Journal 394 (2020) 124957. http://doi.org/10.1016/j.cej.2020.124957.
Al Mamun, M. Karim, M. Rahman, M. Asiri, A. Torii, S. (2016) Methane enrichment of biogas by carbon dioxide fixation with calcium hydroxide and activated carbon, Jounal of the Taiwan Institue of. Chemical Enginners . 58. 476–481. http://doi.org/10.1016/j.jtice.2015.06.029.
Rafiee, A. Khalilpour, K. Prest,J. Skryabin, I. (2020) Biogas as an energy vector, Biomass and Bioenergy. 144. 105935. http://doi.org/:10.1016/j.biombioe.2020.105935.
Hafeez, S. Safdar, T. Pallari, E. Manos,G. Aristodemou, E. Zhang, Z. et al., CO2 capture using membrane contactors: a systematic literature review, Frontiers of Chemical Science and engineering. 107. 1-35. http://doi.org/10.1007/s11705-020-1992-z.
Fang, M. Yi, N. Di, W. Wang, T. Wang, Q. (2020) Emission and control of flue gas pollutants in CO2 chemical absorption system – A review, International Journal of Greenhouse Gas Control. 93.10294. http://doi.org/10.1016/j.ijggc.2019.102904.
Xu, M. Wang, S. Xu, L. (2019) Screening of physical-chemical biphasic solvents for CO2 absorption, International Journal of Greenhouse Gas Control. 85. 199–205. http://doi.org/10.1016/j.ijggc.2019.03.015.
Petrovic, B. Gorbounov, M. Masoudi Soltani, S. (2021) Influence of surface modification on selective CO2 adsorption: A technical review on mechanisms and methods, Microporous and Mesoporous Materiasl. 312. 110751. http://doi.org/10.1016/j.micromeso.2020.110751.
Song, C. Liu, Q. Deng, S. Li, H. Kitamura, Y. (2019) Cryogenic-based CO2 capture technologies: State-of-the-art developments and current challenges, Renewable and. Sustainable Energy Review. 101. 265–278. http://doi.org/10.1016/j.rser.2018.11.018.
Khalilpour, R. Mumford, K. Zhai,H. Abbas, A. Stevens, G. Rubin, E. (2015) Membrane-based carbon capture from flue gas: A review, Journal of Cleaner Production 103. 286–300. http://doi.org/10.1016/j.jclepro.2014.10.050.
Favre, E. Bounaceur, R. Roizard, D. (2009) Biogas, membranes and carbon dioxide capture, Journal of Membrane Science 328 (1) 11–14. http://doi.org/10.1016/j.memsci.2008.12.017.
Chuah, C. Goh, K. Yang, Y. Gong, H. Li,W. H. Karahan, E. et al., (2018) Harnessing filler materials for enhancing biogas separation membranes, Chem. Rev. 118 (18) 8655–8769. http://doi.org/10.1021/acs.chemrev.8b00091.
Hidalgo, D. Sanz-Bedate, S. Martín-Marroquín, J. Castro, J. Antolín, G.(2020) Selective separation of CH4 and CO2 using membrane contactors, Renew. Energy. 150 935–942. http://doi.org/10.1016/j.renene.2019.12.073.
Powell, C. Qiao, G (2006) Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases, Journal of Membrane Science 279 (1-2) 1–49. http://doi.org/10.1016/j.memsci.2005.12.062.
Jamil, A. Ching, O. Shariff, P. (2014) Polymer-nanoclay mixed matrix membranes for CO2/CH4 separation: A review, Applied Mechanics and Materials. 625. 690–695. http://doi.org/10.4028/www.scientific.net/AMM.625.690.
Khaleque, A. Alam, M.M. Hoque, M. Mondal, S. Bin Haider, Xu, Bet al., (2020) Zeolite synthesis from low-cost materials and environmental applications: A review, Environmental Advances. 2. 100019. http://doi.org/10.1016/j.envadv.2020.100019.
Richter, H. Reger-Wagner, N. Kämnitz, S Voigt, I. Lubenau, U. Mothes, (2019) R. Carbon membranes for bio gas upgrading, Energy Procedia. 158 (2018) 861–866. http://doi.org/10.1016/j.egypro.2019.01.222.
Koros, W.J. Mahajan, R. (2001) Pushing the limits on possibilities for large scale gas separation: Which strategies?. Journal of Membrane Science 181 (1) 141. http://doi.org/10.1016/S0376-7388(00)00676-1.
Burggraaf, A.J.(1999) Single gas permeation of thin zeolite (MFI) membranes: theory and analysis of experimental observations, Journal of Membrane Science 155 (1) 45–65. http://doi.org/10.1016/S0376-7388(98)00295-6.
Kujawa, J. Cerneaux, S Kujawski, W. (2015) Removal of hazardous volatile organic compounds from water by vacuum pervaporation with hydrophobic ceramic membranes, Journal of Membrane Science 474 (2015) 11–19. http://doi.org/10.1016/j.memsci.2014.08.054.
Wang, K. Lin, X. Jiang, G. Liu, L. Jiang, L. Doherty, C. et al., (2014). Slow hydrophobic hydration induced polymer ultrafiltration membranes with high water flux, Journal of Membrane Science 471 (2014) 27–34. http://doi.org/10.1016/j.memsci.2014.07.073.
Lay, W. Zhang, J. Tang, C. Wang, R. Liu, Y. Fane, A. (2012). Factors affecting flux performance of forward osmosis systems, Journal of Membrane Science 394–395. 151–168. http://doi.org/10.1016/j.memsci.2011.12.035.
Caro, J. Noack, M. (2008). Zeolite membranes ± state of their development and perspective, Microporous and Mesoporous Materials. 115 (3) 215-233. http://doi.org/ 10.1016/j.micromeso.2008.03.008
Vanherck, K. Koeckelberghs, G. Vankelecom, I. (2013). Crosslinking polyimides for membrane applications: A review, Progress in Polymer Sciences 38 (6) 874–896. http://doi.org/ 10.1016/j.progpolymsci.2012.11.001.
Deng, L. Xue, Y. Yan, J. Lau, C. Cao, B. Li, P. (2019). Oxidative crosslinking of copolyimides at sub-Tg temperatures to enhance resistance against CO2-induced plasticization, Journal of Membrane Science 583. 40–48. http://doi.org/10.1016/j.memsci.2019.04.002.
Shah, M. McCarthy, M. Sachdeva, S. Lee, A. Jeong, H. (2012). Current status of metal-organic framework membranes for gas separations: Promises and challenges, Industrial and Engi-neering Chemistry Research. 51 (5) 2179–2199. http://doi.org/10.1021/ie202038m.
Rangnekar,N. Mittal, N. Elyassi, B. Caro, J. Tsapatsis, M. (2015) Zeolite membranes - a review and comparison with MOFs, Chem. Soc. Rev. 44 (20) 7128–7154. http://doi.org/10.1039/c5cs00292c.
Chung, S. Park, J. Li, D. Ida, J. Kumakiri, I. Lin, J. (2005). Dual-phase metal-carbonate membrane for high-temperature carbon dioxide separation, Industrial and Engineering Chemistry Research. 44 (21) 7999–8006. http://doi.org/10.1021/ie0503141.
Wang, B. Sheng, M. Xu, J. Zhao, S.Wang, J. Wang, Z. (2020) Recent Advances of Gas Transport Channels Constructed with Different Dimensional Nanomaterials in Mixed-Matrix Membranes for CO2 Separation, Small Methods. 4 (3) 1–16. http://doi.org/10.1002/smtd.201900749.
Sun, H. Wang,T. Xu, Y.Gao, W. Li, P. Niu, Q. (2017) Fabrication of polyimide and functionalized multi-walled carbon nanotubes mixed matrix membranes by in-situ polymerization for CO2 separation, Separation and Purification Technology 177. 327–336. http://doi.org/10.1016/j.seppur.2017.01.015.
Qiao, Z. Zhao, S.Wang, J. Wang, S.Wang, Z. Guiver, M. (2016) A Highly Permeable Aligned Montmorillonite Mixed-Matrix Membrane for CO2 Separation, Angewandte Chemie - International Edition 55 (32) 9321–9325. http://doi.org/10.1002/anie.201603211.
Wang, B. Xie, L.Wang, X. Liu, X. Li, J. J (2018). Applications of metal–organic frameworks for green energy and environment: New advances in adsorptive gas separation, storage and removal, Green Energy Environmental. 3 (3) 191–228. http://doi.org/10.1016/j.gee.2018.03.001.
Scholes, C. Stevens, G. Kentish, S. (2012). Membrane gas separation applications in natural gas processing, Fuel. 96 (2012) 15–28. http://doi.org/10.1016/j.fuel.2011.12.074.
Caro, J. (2020). Diffusion coeficcients in nanoporous solids derived from membrane permeation measurements. The Journal of Membrane Biology. 583. 1-2. https://doi.org/10.1007/s10450-020-00262-z.
Wijmans, J. Baker, R. (1995) The solution-diffusion model: a review, Journal of Membrane Science 107 (1-2) 1–21. https://doi.org/10.1016/0376-7388(95)00102-I.
Benito, J. Conesa, A. Rodriguez, M. ((2004). Membranas cerámicas: Tipos, metodos de obtención t caracterización. Cerámica y Vidrio, 43 (5) 829–842.
Ruthven, D. DeSisto, W. Higgins, S. (2009). Diffusion in a mesoporous silica membrane: Validity of the Knudsen diffusion model, Chemical Engineering Science 64 (13) 3201–3203. https://doi.org/10.1016/j.ces.2009.03.049.
Hernandez, A. Calvo, J. Prfidanos, P. Tejerina, F. (1996). Pore size distributions in microporous membranes . A critical analysis of the bubble point extended method, Journal of Membrane Science. 7388. 1-12. https://doi.org/10.1016/0376-7388(95)00025-9
Izquierdo, M. (2008). Temperature influence on transport parameters characteristic of Knudsen and Poiseuille flows, Chemical Engineerin Scence. 63 (22) 5531–5539. https://doi.org/10.1016/j.ces.2008.07.034.
Scholes, C. (2018). Water resistant composite membranes for carbon dioxide separation from methane, Applied Science 8 (5). 2-12. https://doi.org/10.3390/app8050829.
Lei, L. Lindbråthen, A. Zhang, X Favvas, E. Sandru, Hillestad M., et al., (2020). Preparation of carbon molecular sieve membranes with remarkable CO2/CH4 selectivity for high-pressure natural gas sweetening, Journal of Membrane Science 614 (7491) 118529. https://doi.org/10.1016/j.memsci.2020.118529.
Jomekian, A. Bazooyar,B. Behbahani,R. (2020). Experimental and modeling study of CO2 separation by modified Pebax 1657 TFC membranes, Korean Journal Chemical Engineering . 37 (11) 2020–2040. https://doi.org/10.1007/s11814-020-0598-y.
Chen, X. Rodriguez, D. Kaliaguine, S. (2012). Diamino-organosilicone APTMDS: A new cross-linking agent for polyimides membranes. Separation and Purification Technology. 86 (2012) 221–233. doi:10.1016/j.seppur.2011.11.008.
Vaughn, J. Koros, W. (2012). Effect of the amide bond diamine structure on the CO2, H2S, and CH 4 transport properties of a series of novel 6FDA-based polyamide-imides for natural gas purification, Macromolecules. 45 (17) 7036–7049. https://doi.org/10.1021/ma301249x.
Ahmad, A. Adewole, J. Leo, C. Sultan, A. S. Ismail, S. (2014) Preparation and gas transport properties of dual-layer polysulfone membranes for high pressure CO2 removal from natural gas, J. Appl. Polym. Sci. 131 (20) 1–10. https://doi.org/10.1002/app.40924.
Hossain, I. Nam, C.Rizzuto, S. Barbieri, G. Tocci, E. Kim, T. (2019). PIM-polyimide multiblock copolymer-based membranes with enhanced CO2 separation performances, Journal of Membrane Science 574. 270–281. https://doi.org/:10.1016/j.memsci.2018.12.084.
Li, X. Wang, Y Wu, Y. Song, S. Wang, B. Zhong, S. et al., High-performance SSZ-13 membranes prepared using ball-milled nanosized seeds for carbon dioxide and nitrogen separations from methane, Chinese Journal Chemical Engineering. 28 (5) 1285–1292. https://doi.org/10.1016/j.cjche.2020.02.004.
Wang, B. Gao, F. Zhang, F. Xing, W. Zhou, W. (2019). Highly permeable and oriented AlPO-18 membranes prepared using directly synthesized nanosheets for CO2/CH4 separation, Journal of Material Chemistry A. 7 (21) 13164–13172. https://doi.org/10.1039/c9ta01233h.
Liu, B. Zhou, R. Yogo, K Kita, H. (2019). Preparation of CHA zeolite (chabazite) crystals and membranes without organic structural directing agents for CO2 separation, Journal of Membrane Science 573. 333–343. https://doi.org/10.1016/j.memsci.2018.11.059.
Yu, L.Fouladvand, S. Grahn, M. Hedlund, J. (2019) Ultra-thin MFI membranes with different Si/Al ratios for CO2/CH4 separation, Microporous Mesoporous Materials. 284 (2019) 258–264. https://doi.org/10.1016/j.micromeso.2019.04.042.
Hayakawa, E. Himeno S. , Synthesis of all-silica (2020). ZSM-58 zeolite membranes for separation of CO2/CH4 and CO2/N2 gas mixtures, Microporous and Mesoporous Materials. 291. 109695. https://doi.org/:10.1016/j.micromeso.2019.109695.
Sen, M. Dana, K. Das, N. (2018). Development of LTA zeolite membrane from clay by sonication assisted method at room temperature for H2-CO2 and CO2-CH4 separation, Ultrason. Sonochem. 48 (2018) 299–310. https://doi.org/10.1016/j.ultsonch.2018.06.007.
Rad, M. Fatemi, S. Mirfendereski, S. (2012). Development of T type zeolite for separation of CO2 from CH4 in adsorption processes, Chemical Eng. Res. Des. 90. 1687–1695. https://doi.org/10.1016/j.cherd.2012.01.010.
Mofarahi, M. Gholipour, F.(2014) Gas adsorption separation of CO2/CH4 system using zeolite 5A, Microporous and Mesoporous Materials. 200 (2014) 1–10. https://doi.org/10.1016/j.micromeso.2014.08.022.
Ahmad, M. Martin-Gil,V. Supinkova, T. Lambert, R. Castro-Muñoz, R. Hrabanek, P. et al., (2021) Novel MMM using CO2 selective SSZ-16 and high-performance 6FDA-polyimide for CO2/CH4 separation, Separation and Purification Technology. 254. 117582. https://doi.org/10.1016/j.seppur.2020.117582.
Park, S. Bang, J. Choi, J. Lee, S. Lee, J. Lee, J. (2014) 3-Dimensionally disordered mesoporous silica (DMS)-containing mixed matrix membranes for CO2and non-CO2 greenhouse gas separations, Separation and Purification Technology 136. 286–295. https://doi.org/10.1016/j.seppur.2014.09.016.
Zhao, J Xie,K. Liu, L Liu, M. Qiu, W. Webley, P. (2019). Enhancing plasticization-resistance of mixed-matrix membranes with exceptionally high CO2/CH4 selectivity through incorporating ZSM-25 zeolite, Journal of Membrane Science. 583. 23–30. https://doi.org/10.1016/j.memsci.2019.03.073.
Li, W. Chuah, C. Nie, L. Bae, T. (2019). Enhanced CO2/CH4 selectivity and mechanical strength of mixed-matrix membrane incorporated with NiDOBDC/GO composite, Journal of Industrial and Engineering Chemistry. 74. 118–125. https://doi.org/10.1016/j.jiec.2019.02.016.
Farashi, Z. Azizi, S. Rezaei-Dasht Arzhandi, M. Noroozi, Z. Azizi, N. (2019). Improving CO2/CH4 separation efficiency of Pebax-1657 membrane by adding Al2O3 nanoparticles in its matrix, Journal of Natural Gas Science and Engineering. 72. 103019. https://doi.org/10.1016/j.jngse.2019.103019.
Shin, H. Chi, W. Bae, S. Kim, J. J. Kim,(2017). High-performance thin PVC-POEM/ZIF-8 mixe Journal of Industrial and Engineering Chemistry. 53 (2017) 127–133. https://doi.org/10.1016/j.jiec.2017.04.013.
Guo, A. Ban, Y. Yang, K. Yang, W.(2018). Metal-organic framework-based mixed matrix membranes: Synergetic effect of adsorption and diffusion for CO2/CH4 separation, Journal of Membrane Science 562. 76–84. doi:10.1016/j.memsci.2018.05.032.
Ebadi Amooghin, A. Omidkhah, M. Kargari, A. (2015). The effects of aminosilane grafting on NaY zeolite-Matrimid®5218 mixed matrix membranes for CO2/CH4 separation, Journal of Membrane Scence. 490. 364–379. https://doi.org/10.1016/j.memsci.2015.04.070.
Gong, H. Lee, S. Bae, T. (2017). Mixed-matrix membranes containing inorganically surface-modified 5A zeolite for enhanced CO2/CH4 separation, Microporous an Mesoporous Materials 237. 82–89. https://doi.org/10.1016/j.micromeso.2016.09.017.
dc.rights.license.none.fl_str_mv Atribución – No comercial – Compartir igual
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución – No comercial – Compartir igual
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 76-89 p.
dc.coverage.temporal.spa.fl_str_mv 17
dc.publisher.spa.fl_str_mv Politécnica Colombiano Jaime Isaza Cadavid
Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Mecánica, Medellín y Envigado
dc.publisher.program.spa.fl_str_mv Ingeniería mecanica
dc.publisher.place.spa.fl_str_mv Medellín
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/5d243814-223a-4127-83f9-e3820bd17479/download
https://repository.ucc.edu.co/bitstreams/3f31bae1-6035-4ca6-abef-46bd287f57d3/download
https://repository.ucc.edu.co/bitstreams/475a2f9b-6292-420e-973f-63b9ad4b2f30/download
https://repository.ucc.edu.co/bitstreams/d2716f56-0a22-4483-84af-c66ad306b45a/download
https://repository.ucc.edu.co/bitstreams/81298977-ebd4-4195-b9df-c581308a3279/download
https://repository.ucc.edu.co/bitstreams/5c8e31c9-8bc6-4aef-8f07-53cf6a077cdd/download
https://repository.ucc.edu.co/bitstreams/51fbb73d-1393-4701-8a78-2f715fda1e63/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
776e1731d656146ababc055bae19cc9a
7c51c108cb1e77a75f598f42303fc1c3
3441c6e8c7f4dbf9c63fb9ca27dcfe95
5045d72e83f9bd5c1c2becf4acabde23
2ec1b91d4a878dc7bb0305db453cbd7c
d89336c9270054b21d17d44442f6bd9c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1814246818132787200
spelling Cardona González, CristianMolina Cardona, Diego AndrésGonzález Chevejoni, Roger JuniorArbeláez Pérez, Oscar Felipe172022-10-24T14:19:55Z2022-10-24T14:19:55Z2021-01-0122565353https://doi.org/10.33571/rpolitec.v17n33a6https://hdl.handle.net/20.500.12494/46845Arbelaez-Perez, O. F., Cardona-Gonzalez, C., Molina-Cardona, D. A., & González-Chevejoni, R. J. (2021). Introducción a la tecnología de membranas para la purificación de biogas y algunos desarrollos recientes. Revista Politécnica, 17(33), 76-89. https://doi.org/10.33571/rpolitec.v17n33a6La remoción de CO2 en mezclas de CO2/CH4 para aumentar el contenido de energía en gas natural o biogás y prevenir problemas de corrosión, ha impulsado el desarrollo del proceso de separación de CO2 utilizando membranas. Las características más relevantes que ofrece la tecnología basada en membranas incluyen la alta eficiencia energética, el costo reducido y el rendimiento altamente flexible. Esta revisión proporciona una descripción de los trabajos reportados desde 2010 hasta 2020 sobre los diferentes tipos de membranas disponibles: poliméricas, inorgánicas y de matriz mixta para el proceso de separación de CO2/CH4; se reportan las condiciones experimentales y los determinantes primarios del rendimiento y la eficiencia de la separación (permeabilidad de CO2 y selectividad CO2/CH4). Este trabajo ofrece una nueva perspectiva de cada membrana para facilitar una mejor apreciación de su papel en la mejora del rendimiento general del procesoThe remotion of CO2 from CO2/CH4 mixes to increasing energy content in natural gas or biogas and to prevent corrosion problems, has driven the development of CO2 separation process through membranes. The attractive features offered by this technology include high energy efficiency, reduced cost and highly flexible performance. This review provides an overview of the reported paper from 2010 to 2020 different types of membranes available: polymeric, inorganic and mixed matrix for CO2/CH4 separation process, experimental conditions and primary de terminants of separation performance and efficiency (permeability of CO2 and CO2/CH4 selectivity). This work would open up a new perspective of each membrane to facilitate a better appreciation of their role in the improvement of overall process performancehttps://scienti.minciencias.gov.co/cvlac/EnProdArticulo/all.do?maxRows=15&articulos_all_tr_=true&articulos_all_p_=2&articulos_all_mr_=150000-0001-8592-5333oscar.arbelaez@campusucc.edu.cocristian.cardonag@campusucc.edu.codiego.molinac@campusucc.edu.coroger.gonzalezc@campusucc.edu.cohttps://scholar.google.com/citations?user=TmMf33gAAAAJ&hl=es76-89 p.Politécnica Colombiano Jaime Isaza CadavidUniversidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Mecánica, Medellín y EnvigadoIngeniería mecanicaMedellínhttps://revistas.elpoli.edu.co/index.php/pol/article/view/1811Revista politecnicaYang, F. Chou, J. Dong, W. Sun,M. Zhao, W. (2020). Adaption to climate change risk in eastern China: Carbon emission characteristics and analysis of reduction path, Physics and. Chemistry of the Earth. 115 102829. http://doi.org/10.1016/j.pce.2019.102829.Li, M. Luo, N. Lu, Y. (2017). Biomass energy technological paradigm (BETP): Trends in this sector, Sustainability. 9 (4) 1–28. http://doi.org/10.3390/su9040567.Banco mundial (13 de enero de 2021) Emisones de dioxido de carbono banco mundial. https://datos.bancomundial.org/indicator/EN.ATM.CO2E.KT.International energy agency (13 de enero) total energy supply by source, world 1990-2018. https://www.iea.org/data-and-statistics?country=world&fuel=energy%20supply&indicatorbysource.Ullah, K. Sharma, V. Ahmad, M. Lv, P. Krahl, J. Wang,Z. et al. (2018) The insight views of advanced technologies and its application in bio-origin fuel synthesis from lignocellulose biomasses waste, a review, Renewable Sustainable Energy Review. 82 (2018) 3992–4008. http://doi.org/10.1016/j.rser.2017.10.074.Singh, D. Sharma, D. Soni, S. Sharma, S. Kumar. P. Sharma, P. halani, A. A review on feedstocks, production processes, and yield for different generations of biodiesel, (2020) Fuel. 262 116553. http://doi.org/10.1016/j.fuel.2019.116553.Adelt, M. Wolf, D.Vogel, A. (2011) LCA of biomethane, Journal of Natural Gas Science. Engineering . 3 (5) 646–650. http://doi.org/10.1016/j.jngse.2011.07.003.Kapoor, R. Ghosh, P. Tyagi, B. Vijay, V. Vijay, V Thakur, I. et al., (2020) Advances in biogas valorization and utilization systems: A comprehensive review, Journal of Cleaner Production. 273 123052. http://doi.org/10.1016/j.jclepro.2020.123052.Chowdhury, T. Chowdhury, H. Hossain, N. Ahmed, A. Hossen, M. Chowdhury, Pet al., (2020) Latest advancements on livestock waste management and biogas production: Bangladesh’s perspective, Journal of Cleaner Production. 272 122818. http://doi.org/10.1016/j.jclepro.2020.122818 Puricelli, S. Cardellini, G. Casadei, S. Faedo, D. VPuricelli, S. Cardellini, G. Casadei, S. Faedo, D. Van den Oever, A. Grosso, (M. 2020) A review on biofuels for light-duty vehicles in Europe, Renewable. Sustainable. Energy Rev. 137. 110398. http://doi.org/10.1016/j.rser.2020.110398.Li, S. Jiang, X. Sun, H. He, S. Zhang, L. Shao, L. (2019) Mesoporous dendritic fibrous nanosilica (DFNS) stimulating mix matrix membranes towards superior CO2 capture, Journal of Membrane Science. 586 185–191. http://doi.org/10.1016/j.memsci.2019.05.069.Bragança, I. Sánchez-Soberón, F. Pantuzza, G. Alves, A. Ratola, N.(2020) Impurities in biogas: Analytical strategies, occurrence, effects and removal technologies, Biomass and Bioenergy. 143. http://doi.org/10.1016/j.biombioe.2020.105878.Harasimowicz, M. Orluk, P. Zakrzewska-Trznadel, G. Chmielewski, A. (2007). Application of polyimide membranes for biogas purification and enrichment. Journal Hazard Materials. 144 (3) 698–702. http://doi.org/10.1016/j.jhazmat.2007.01.098.Medrano, J. Llosa-Tanco, M. Cechetto, V. Pacheco-Tanaka, D. Gallucci, F.(2020) Upgrading biogas with novel composite carbon molecular sieve (CCMS) membranes: Experimental and techno-economic assessment, Chemical Engineering Journal 394 (2020) 124957. http://doi.org/10.1016/j.cej.2020.124957.Al Mamun, M. Karim, M. Rahman, M. Asiri, A. Torii, S. (2016) Methane enrichment of biogas by carbon dioxide fixation with calcium hydroxide and activated carbon, Jounal of the Taiwan Institue of. Chemical Enginners . 58. 476–481. http://doi.org/10.1016/j.jtice.2015.06.029.Rafiee, A. Khalilpour, K. Prest,J. Skryabin, I. (2020) Biogas as an energy vector, Biomass and Bioenergy. 144. 105935. http://doi.org/:10.1016/j.biombioe.2020.105935.Hafeez, S. Safdar, T. Pallari, E. Manos,G. Aristodemou, E. Zhang, Z. et al., CO2 capture using membrane contactors: a systematic literature review, Frontiers of Chemical Science and engineering. 107. 1-35. http://doi.org/10.1007/s11705-020-1992-z.Fang, M. Yi, N. Di, W. Wang, T. Wang, Q. (2020) Emission and control of flue gas pollutants in CO2 chemical absorption system – A review, International Journal of Greenhouse Gas Control. 93.10294. http://doi.org/10.1016/j.ijggc.2019.102904.Xu, M. Wang, S. Xu, L. (2019) Screening of physical-chemical biphasic solvents for CO2 absorption, International Journal of Greenhouse Gas Control. 85. 199–205. http://doi.org/10.1016/j.ijggc.2019.03.015.Petrovic, B. Gorbounov, M. Masoudi Soltani, S. (2021) Influence of surface modification on selective CO2 adsorption: A technical review on mechanisms and methods, Microporous and Mesoporous Materiasl. 312. 110751. http://doi.org/10.1016/j.micromeso.2020.110751.Song, C. Liu, Q. Deng, S. Li, H. Kitamura, Y. (2019) Cryogenic-based CO2 capture technologies: State-of-the-art developments and current challenges, Renewable and. Sustainable Energy Review. 101. 265–278. http://doi.org/10.1016/j.rser.2018.11.018.Khalilpour, R. Mumford, K. Zhai,H. Abbas, A. Stevens, G. Rubin, E. (2015) Membrane-based carbon capture from flue gas: A review, Journal of Cleaner Production 103. 286–300. http://doi.org/10.1016/j.jclepro.2014.10.050.Favre, E. Bounaceur, R. Roizard, D. (2009) Biogas, membranes and carbon dioxide capture, Journal of Membrane Science 328 (1) 11–14. http://doi.org/10.1016/j.memsci.2008.12.017.Chuah, C. Goh, K. Yang, Y. Gong, H. Li,W. H. Karahan, E. et al., (2018) Harnessing filler materials for enhancing biogas separation membranes, Chem. Rev. 118 (18) 8655–8769. http://doi.org/10.1021/acs.chemrev.8b00091.Hidalgo, D. Sanz-Bedate, S. Martín-Marroquín, J. Castro, J. Antolín, G.(2020) Selective separation of CH4 and CO2 using membrane contactors, Renew. Energy. 150 935–942. http://doi.org/10.1016/j.renene.2019.12.073.Powell, C. Qiao, G (2006) Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases, Journal of Membrane Science 279 (1-2) 1–49. http://doi.org/10.1016/j.memsci.2005.12.062.Jamil, A. Ching, O. Shariff, P. (2014) Polymer-nanoclay mixed matrix membranes for CO2/CH4 separation: A review, Applied Mechanics and Materials. 625. 690–695. http://doi.org/10.4028/www.scientific.net/AMM.625.690.Khaleque, A. Alam, M.M. Hoque, M. Mondal, S. Bin Haider, Xu, Bet al., (2020) Zeolite synthesis from low-cost materials and environmental applications: A review, Environmental Advances. 2. 100019. http://doi.org/10.1016/j.envadv.2020.100019.Richter, H. Reger-Wagner, N. Kämnitz, S Voigt, I. Lubenau, U. Mothes, (2019) R. Carbon membranes for bio gas upgrading, Energy Procedia. 158 (2018) 861–866. http://doi.org/10.1016/j.egypro.2019.01.222.Koros, W.J. Mahajan, R. (2001) Pushing the limits on possibilities for large scale gas separation: Which strategies?. Journal of Membrane Science 181 (1) 141. http://doi.org/10.1016/S0376-7388(00)00676-1.Burggraaf, A.J.(1999) Single gas permeation of thin zeolite (MFI) membranes: theory and analysis of experimental observations, Journal of Membrane Science 155 (1) 45–65. http://doi.org/10.1016/S0376-7388(98)00295-6.Kujawa, J. Cerneaux, S Kujawski, W. (2015) Removal of hazardous volatile organic compounds from water by vacuum pervaporation with hydrophobic ceramic membranes, Journal of Membrane Science 474 (2015) 11–19. http://doi.org/10.1016/j.memsci.2014.08.054.Wang, K. Lin, X. Jiang, G. Liu, L. Jiang, L. Doherty, C. et al., (2014). Slow hydrophobic hydration induced polymer ultrafiltration membranes with high water flux, Journal of Membrane Science 471 (2014) 27–34. http://doi.org/10.1016/j.memsci.2014.07.073.Lay, W. Zhang, J. Tang, C. Wang, R. Liu, Y. Fane, A. (2012). Factors affecting flux performance of forward osmosis systems, Journal of Membrane Science 394–395. 151–168. http://doi.org/10.1016/j.memsci.2011.12.035.Caro, J. Noack, M. (2008). Zeolite membranes ± state of their development and perspective, Microporous and Mesoporous Materials. 115 (3) 215-233. http://doi.org/ 10.1016/j.micromeso.2008.03.008Vanherck, K. Koeckelberghs, G. Vankelecom, I. (2013). Crosslinking polyimides for membrane applications: A review, Progress in Polymer Sciences 38 (6) 874–896. http://doi.org/ 10.1016/j.progpolymsci.2012.11.001.Deng, L. Xue, Y. Yan, J. Lau, C. Cao, B. Li, P. (2019). Oxidative crosslinking of copolyimides at sub-Tg temperatures to enhance resistance against CO2-induced plasticization, Journal of Membrane Science 583. 40–48. http://doi.org/10.1016/j.memsci.2019.04.002.Shah, M. McCarthy, M. Sachdeva, S. Lee, A. Jeong, H. (2012). Current status of metal-organic framework membranes for gas separations: Promises and challenges, Industrial and Engi-neering Chemistry Research. 51 (5) 2179–2199. http://doi.org/10.1021/ie202038m.Rangnekar,N. Mittal, N. Elyassi, B. Caro, J. Tsapatsis, M. (2015) Zeolite membranes - a review and comparison with MOFs, Chem. Soc. Rev. 44 (20) 7128–7154. http://doi.org/10.1039/c5cs00292c.Chung, S. Park, J. Li, D. Ida, J. Kumakiri, I. Lin, J. (2005). Dual-phase metal-carbonate membrane for high-temperature carbon dioxide separation, Industrial and Engineering Chemistry Research. 44 (21) 7999–8006. http://doi.org/10.1021/ie0503141.Wang, B. Sheng, M. Xu, J. Zhao, S.Wang, J. Wang, Z. (2020) Recent Advances of Gas Transport Channels Constructed with Different Dimensional Nanomaterials in Mixed-Matrix Membranes for CO2 Separation, Small Methods. 4 (3) 1–16. http://doi.org/10.1002/smtd.201900749.Sun, H. Wang,T. Xu, Y.Gao, W. Li, P. Niu, Q. (2017) Fabrication of polyimide and functionalized multi-walled carbon nanotubes mixed matrix membranes by in-situ polymerization for CO2 separation, Separation and Purification Technology 177. 327–336. http://doi.org/10.1016/j.seppur.2017.01.015.Qiao, Z. Zhao, S.Wang, J. Wang, S.Wang, Z. Guiver, M. (2016) A Highly Permeable Aligned Montmorillonite Mixed-Matrix Membrane for CO2 Separation, Angewandte Chemie - International Edition 55 (32) 9321–9325. http://doi.org/10.1002/anie.201603211.Wang, B. Xie, L.Wang, X. Liu, X. Li, J. J (2018). Applications of metal–organic frameworks for green energy and environment: New advances in adsorptive gas separation, storage and removal, Green Energy Environmental. 3 (3) 191–228. http://doi.org/10.1016/j.gee.2018.03.001.Scholes, C. Stevens, G. Kentish, S. (2012). Membrane gas separation applications in natural gas processing, Fuel. 96 (2012) 15–28. http://doi.org/10.1016/j.fuel.2011.12.074.Caro, J. (2020). Diffusion coeficcients in nanoporous solids derived from membrane permeation measurements. The Journal of Membrane Biology. 583. 1-2. https://doi.org/10.1007/s10450-020-00262-z.Wijmans, J. Baker, R. (1995) The solution-diffusion model: a review, Journal of Membrane Science 107 (1-2) 1–21. https://doi.org/10.1016/0376-7388(95)00102-I.Benito, J. Conesa, A. Rodriguez, M. ((2004). Membranas cerámicas: Tipos, metodos de obtención t caracterización. Cerámica y Vidrio, 43 (5) 829–842.Ruthven, D. DeSisto, W. Higgins, S. (2009). Diffusion in a mesoporous silica membrane: Validity of the Knudsen diffusion model, Chemical Engineering Science 64 (13) 3201–3203. https://doi.org/10.1016/j.ces.2009.03.049.Hernandez, A. Calvo, J. Prfidanos, P. Tejerina, F. (1996). Pore size distributions in microporous membranes . A critical analysis of the bubble point extended method, Journal of Membrane Science. 7388. 1-12. https://doi.org/10.1016/0376-7388(95)00025-9Izquierdo, M. (2008). Temperature influence on transport parameters characteristic of Knudsen and Poiseuille flows, Chemical Engineerin Scence. 63 (22) 5531–5539. https://doi.org/10.1016/j.ces.2008.07.034.Scholes, C. (2018). Water resistant composite membranes for carbon dioxide separation from methane, Applied Science 8 (5). 2-12. https://doi.org/10.3390/app8050829.Lei, L. Lindbråthen, A. Zhang, X Favvas, E. Sandru, Hillestad M., et al., (2020). Preparation of carbon molecular sieve membranes with remarkable CO2/CH4 selectivity for high-pressure natural gas sweetening, Journal of Membrane Science 614 (7491) 118529. https://doi.org/10.1016/j.memsci.2020.118529.Jomekian, A. Bazooyar,B. Behbahani,R. (2020). Experimental and modeling study of CO2 separation by modified Pebax 1657 TFC membranes, Korean Journal Chemical Engineering . 37 (11) 2020–2040. https://doi.org/10.1007/s11814-020-0598-y.Chen, X. Rodriguez, D. Kaliaguine, S. (2012). Diamino-organosilicone APTMDS: A new cross-linking agent for polyimides membranes. Separation and Purification Technology. 86 (2012) 221–233. doi:10.1016/j.seppur.2011.11.008.Vaughn, J. Koros, W. (2012). Effect of the amide bond diamine structure on the CO2, H2S, and CH 4 transport properties of a series of novel 6FDA-based polyamide-imides for natural gas purification, Macromolecules. 45 (17) 7036–7049. https://doi.org/10.1021/ma301249x.Ahmad, A. Adewole, J. Leo, C. Sultan, A. S. Ismail, S. (2014) Preparation and gas transport properties of dual-layer polysulfone membranes for high pressure CO2 removal from natural gas, J. Appl. Polym. Sci. 131 (20) 1–10. https://doi.org/10.1002/app.40924.Hossain, I. Nam, C.Rizzuto, S. Barbieri, G. Tocci, E. Kim, T. (2019). PIM-polyimide multiblock copolymer-based membranes with enhanced CO2 separation performances, Journal of Membrane Science 574. 270–281. https://doi.org/:10.1016/j.memsci.2018.12.084.Li, X. Wang, Y Wu, Y. Song, S. Wang, B. Zhong, S. et al., High-performance SSZ-13 membranes prepared using ball-milled nanosized seeds for carbon dioxide and nitrogen separations from methane, Chinese Journal Chemical Engineering. 28 (5) 1285–1292. https://doi.org/10.1016/j.cjche.2020.02.004.Wang, B. Gao, F. Zhang, F. Xing, W. Zhou, W. (2019). Highly permeable and oriented AlPO-18 membranes prepared using directly synthesized nanosheets for CO2/CH4 separation, Journal of Material Chemistry A. 7 (21) 13164–13172. https://doi.org/10.1039/c9ta01233h.Liu, B. Zhou, R. Yogo, K Kita, H. (2019). Preparation of CHA zeolite (chabazite) crystals and membranes without organic structural directing agents for CO2 separation, Journal of Membrane Science 573. 333–343. https://doi.org/10.1016/j.memsci.2018.11.059.Yu, L.Fouladvand, S. Grahn, M. Hedlund, J. (2019) Ultra-thin MFI membranes with different Si/Al ratios for CO2/CH4 separation, Microporous Mesoporous Materials. 284 (2019) 258–264. https://doi.org/10.1016/j.micromeso.2019.04.042.Hayakawa, E. Himeno S. , Synthesis of all-silica (2020). ZSM-58 zeolite membranes for separation of CO2/CH4 and CO2/N2 gas mixtures, Microporous and Mesoporous Materials. 291. 109695. https://doi.org/:10.1016/j.micromeso.2019.109695.Sen, M. Dana, K. Das, N. (2018). Development of LTA zeolite membrane from clay by sonication assisted method at room temperature for H2-CO2 and CO2-CH4 separation, Ultrason. Sonochem. 48 (2018) 299–310. https://doi.org/10.1016/j.ultsonch.2018.06.007.Rad, M. Fatemi, S. Mirfendereski, S. (2012). Development of T type zeolite for separation of CO2 from CH4 in adsorption processes, Chemical Eng. Res. Des. 90. 1687–1695. https://doi.org/10.1016/j.cherd.2012.01.010.Mofarahi, M. Gholipour, F.(2014) Gas adsorption separation of CO2/CH4 system using zeolite 5A, Microporous and Mesoporous Materials. 200 (2014) 1–10. https://doi.org/10.1016/j.micromeso.2014.08.022.Ahmad, M. Martin-Gil,V. Supinkova, T. Lambert, R. Castro-Muñoz, R. Hrabanek, P. et al., (2021) Novel MMM using CO2 selective SSZ-16 and high-performance 6FDA-polyimide for CO2/CH4 separation, Separation and Purification Technology. 254. 117582. https://doi.org/10.1016/j.seppur.2020.117582.Park, S. Bang, J. Choi, J. Lee, S. Lee, J. Lee, J. (2014) 3-Dimensionally disordered mesoporous silica (DMS)-containing mixed matrix membranes for CO2and non-CO2 greenhouse gas separations, Separation and Purification Technology 136. 286–295. https://doi.org/10.1016/j.seppur.2014.09.016.Zhao, J Xie,K. Liu, L Liu, M. Qiu, W. Webley, P. (2019). Enhancing plasticization-resistance of mixed-matrix membranes with exceptionally high CO2/CH4 selectivity through incorporating ZSM-25 zeolite, Journal of Membrane Science. 583. 23–30. https://doi.org/10.1016/j.memsci.2019.03.073.Li, W. Chuah, C. Nie, L. Bae, T. (2019). Enhanced CO2/CH4 selectivity and mechanical strength of mixed-matrix membrane incorporated with NiDOBDC/GO composite, Journal of Industrial and Engineering Chemistry. 74. 118–125. https://doi.org/10.1016/j.jiec.2019.02.016.Farashi, Z. Azizi, S. Rezaei-Dasht Arzhandi, M. Noroozi, Z. Azizi, N. (2019). Improving CO2/CH4 separation efficiency of Pebax-1657 membrane by adding Al2O3 nanoparticles in its matrix, Journal of Natural Gas Science and Engineering. 72. 103019. https://doi.org/10.1016/j.jngse.2019.103019.Shin, H. Chi, W. Bae, S. Kim, J. J. Kim,(2017). High-performance thin PVC-POEM/ZIF-8 mixe Journal of Industrial and Engineering Chemistry. 53 (2017) 127–133. https://doi.org/10.1016/j.jiec.2017.04.013.Guo, A. Ban, Y. Yang, K. Yang, W.(2018). Metal-organic framework-based mixed matrix membranes: Synergetic effect of adsorption and diffusion for CO2/CH4 separation, Journal of Membrane Science 562. 76–84. doi:10.1016/j.memsci.2018.05.032.Ebadi Amooghin, A. Omidkhah, M. Kargari, A. (2015). The effects of aminosilane grafting on NaY zeolite-Matrimid®5218 mixed matrix membranes for CO2/CH4 separation, Journal of Membrane Scence. 490. 364–379. https://doi.org/10.1016/j.memsci.2015.04.070.Gong, H. Lee, S. Bae, T. (2017). Mixed-matrix membranes containing inorganically surface-modified 5A zeolite for enhanced CO2/CH4 separation, Microporous an Mesoporous Materials 237. 82–89. https://doi.org/10.1016/j.micromeso.2016.09.017.BiogásMembranas poliméricasMembranas inorgánicasMembranas de matriz mixtaSeparación de dióxido de carbonoBiogasPolymeric membranesInorganic membranesMixed-matrix membraneCO2 separationIntroducción a la tecnología de membranas para la purificación de biogas y algunos desarrollos recientesArtículohttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribución – No comercial – Compartir igualinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repository.ucc.edu.co/bitstreams/5d243814-223a-4127-83f9-e3820bd17479/download8a4605be74aa9ea9d79846c1fba20a33MD54ORIGINAL2021_membranas_purificación_biogas.pdf2021_membranas_purificación_biogas.pdfArtículoapplication/pdf421237https://repository.ucc.edu.co/bitstreams/3f31bae1-6035-4ca6-abef-46bd287f57d3/download776e1731d656146ababc055bae19cc9aMD512021_membranas_purificación_biogas_licenciadeuso.pdf2021_membranas_purificación_biogas_licenciadeuso.pdfLicencia de usoapplication/pdf217164https://repository.ucc.edu.co/bitstreams/475a2f9b-6292-420e-973f-63b9ad4b2f30/download7c51c108cb1e77a75f598f42303fc1c3MD55THUMBNAIL2021_membranas_purificación_biogas.pdf.jpg2021_membranas_purificación_biogas.pdf.jpgGenerated Thumbnailimage/jpeg6223https://repository.ucc.edu.co/bitstreams/d2716f56-0a22-4483-84af-c66ad306b45a/download3441c6e8c7f4dbf9c63fb9ca27dcfe95MD562021_membranas_purificación_biogas_licenciadeuso.pdf.jpg2021_membranas_purificación_biogas_licenciadeuso.pdf.jpgGenerated Thumbnailimage/jpeg5221https://repository.ucc.edu.co/bitstreams/81298977-ebd4-4195-b9df-c581308a3279/download5045d72e83f9bd5c1c2becf4acabde23MD57TEXT2021_membranas_purificación_biogas.pdf.txt2021_membranas_purificación_biogas.pdf.txtExtracted texttext/plain56788https://repository.ucc.edu.co/bitstreams/5c8e31c9-8bc6-4aef-8f07-53cf6a077cdd/download2ec1b91d4a878dc7bb0305db453cbd7cMD582021_membranas_purificación_biogas_licenciadeuso.pdf.txt2021_membranas_purificación_biogas_licenciadeuso.pdf.txtExtracted texttext/plain6063https://repository.ucc.edu.co/bitstreams/51fbb73d-1393-4701-8a78-2f715fda1e63/downloadd89336c9270054b21d17d44442f6bd9cMD5920.500.12494/46845oai:repository.ucc.edu.co:20.500.12494/468452024-08-10 21:00:11.811restrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=