Gamma and ultraviolet radiation radiation analysis: an internet of things-based dosimetric study
This study presents the implementation of an internet of things (IoT)-based device for the accurate and continuous measurement of gamma and ultraviolet (UV) radiation in a rural area of Sincelejo, Colombia. The device, calibrated with an error margin below 5%, allowed for the reliable collection of...
- Autores:
-
Rubén Baena-Navarro
Luis Alcala-Varilla
Francisco Torres-Hoyos
Yulieth Carriazo-Regino
Tobías Parodi-Camaño
- Tipo de recurso:
- Investigation report
- Fecha de publicación:
- 2024
- Institución:
- Universidad Cooperativa de Colombia
- Repositorio:
- Repositorio UCC
- Idioma:
- OAI Identifier:
- oai:repository.ucc.edu.co:20.500.12494/56755
- Palabra clave:
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
COOPER2_a9b3458021882023b41b57c9200b7bb2 |
---|---|
oai_identifier_str |
oai:repository.ucc.edu.co:20.500.12494/56755 |
network_acronym_str |
COOPER2 |
network_name_str |
Repositorio UCC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Gamma and ultraviolet radiation radiation analysis: an internet of things-based dosimetric study |
title |
Gamma and ultraviolet radiation radiation analysis: an internet of things-based dosimetric study |
spellingShingle |
Gamma and ultraviolet radiation radiation analysis: an internet of things-based dosimetric study |
title_short |
Gamma and ultraviolet radiation radiation analysis: an internet of things-based dosimetric study |
title_full |
Gamma and ultraviolet radiation radiation analysis: an internet of things-based dosimetric study |
title_fullStr |
Gamma and ultraviolet radiation radiation analysis: an internet of things-based dosimetric study |
title_full_unstemmed |
Gamma and ultraviolet radiation radiation analysis: an internet of things-based dosimetric study |
title_sort |
Gamma and ultraviolet radiation radiation analysis: an internet of things-based dosimetric study |
dc.creator.fl_str_mv |
Rubén Baena-Navarro Luis Alcala-Varilla Francisco Torres-Hoyos Yulieth Carriazo-Regino Tobías Parodi-Camaño |
dc.contributor.author.none.fl_str_mv |
Rubén Baena-Navarro Luis Alcala-Varilla Francisco Torres-Hoyos Yulieth Carriazo-Regino Tobías Parodi-Camaño |
description |
This study presents the implementation of an internet of things (IoT)-based device for the accurate and continuous measurement of gamma and ultraviolet (UV) radiation in a rural area of Sincelejo, Colombia. The device, calibrated with an error margin below 5%, allowed for the reliable collection of data during the year 2022. An average effective dose rate of gamma radiation of (0.998±0.037) mSv/year was recorded, a value that approaches the recommended limit. Additionally, the inverse square law of radiation was confirmed, observing a decrease in radiation with an increase in altitude. Concurrently, a constant risk of high to extremely high UV radiation exposure was detected throughout the year. These findings emphasize the need for constant monitoring and the implementation of UV protection measures in the region. The integration of IoT in environmental dosimetry has proven to be an invaluable tool for detailed tracking of radiation levels, significantly contributing to the understanding of radiation in rural areas. The exploration of more advanced sensors and data analysis tools in future research is recommended to further improve the accuracy and utility of these devices. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-08-04T16:40:43Z |
dc.date.available.none.fl_str_mv |
2024-08-04T16:40:43Z |
dc.date.issued.none.fl_str_mv |
2024-10-01 |
dc.type.none.fl_str_mv |
Avance de investigación financiada |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 http://purl.org/coar/resource_type/c_93fc |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_18ws |
dc.type.content.none.fl_str_mv |
Text |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/report |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_18ws |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12494/56755 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.11591/eei.v13i5.7344 |
url |
https://hdl.handle.net/20.500.12494/56755 https://doi.org/10.11591/eei.v13i5.7344 |
dc.relation.references.none.fl_str_mv |
Al-Dweik, A., Muresan, R., Mayhew, M., & Lieberman, M. (2017, April). IoT-based multifunctional scalable real-time enhanced road side unit for intelligent transportation systems. In Canadian Conference on Electrical and Computer Engineering (pp. 1–6). https://doi.org/10.1109/CCECE.2017.7946618 Andersen, P. A., Bruun, M. M., Janda, M., Vries, E. d., & Andersen, L. B. (2010). Environmental cues to UV radiation and personal sun protection in outdoor winter recreation. Archives of Dermatology, 146(11), 1241–1247. https://doi.org/10.1001/archdermatol.2010.327 Andreadis, A., Giambene, G., & Zambon, R. (2022, June). Low-power IoT environmental monitoring and smart agriculture for unconnected rural areas. In 2022 20th Mediterranean Communication and Computer Networking Conference (pp. 31–38). https://doi.org/10.1109/MedComNet55087.2022.9810376 Andrady, A. L., Pandey, K. K., & Heikkilä, A. M. (2019). Interactive effects of solar UV radiation and climate change on material damage. Photochemical and Photobiological Sciences, 18(3), 804–825. https://doi.org/10.1039/C8PP90065E Antoni, R., & Bourgois, L. (2017). Source evaluation of the external exposure. In Applied Physics of External Radiation Exposure: Dosimetry and Radiation Protection (pp. 237–308). https://doi.org/10.1007/978-3-319-48660-4_4 Baena-Navarro, R. (2019). Optimización de un dron para dosimetría ambiental (Doctoral dissertation, Universidad Internacional Iberoamericana México). Baena-Navarro, R., Vergara-Villadiego, J., Carriazo-Regino, Y., Crawford-Vidal, R., & Barreiro-Pinto, F. (2024). Challenges in implementing free software in small and medium-sized enterprises in the city of Montería: A case study. Bulletin of Electrical Engineering and Informatics, 13(1), 586–597. https://doi.org/10.11591/eei.v13i1.6710 Bailey, E., Fuhrmann, C., Runkle, J., Stevens, S., Brown, M., & Sugg, M. (2020). Wearable sensors for personal temperature exposure assessments: A comparative study. Environmental Research, 180, 108858. https://doi.org/10.1016/j.envres.2019.108858 Bhuiyan, M. N. M., Islam, M. H., & Dewan, M. E. (2022, November). An IoT-based smart microgrid system for rural areas. In 2022 14th Seminar on Power Electronics and Control (pp. 1–6). https://doi.org/10.1109/SEPOC54972.2022.9976436 Carriazo-Regino, Y., Baena-Navarro, R., Torres-Hoyos, F., Vergara-Villadiego, J., & Roa-Prada, S. (2022). IoT-based drinking water quality measurement: Systematic literature review. Indonesian Journal of Electrical Engineering and Computer Science, 28(1), 405–418. https://doi.org/10.11591/ijeecs.v28.i1.pp405-418 Components101. (2023). DHT11 Temperature Sensor. Retrieved December 12, 2023, from https://components101.com/sensors/dht11-temperature-sensor de A. Mota, G., Martins, A. R., da Silva, A. R., Lima, R. V., Rêgo, L. S., & Freire, R. S. (2023). Smart sensors and Internet of Things (IoT) for sustainable environmental and agricultural management. Caderno Pedagógico, 20(7), 2692–2714. https://doi.org/10.54033/cadpedv20n7-014 Hernández-Gutiérrez, C. A., Delgado-del-Carpio, M., Zebadúa-Chavarría, L. A., Hernández-de-León, H. R., Escobar-Gómez, E. N., & Quevedo-López, M. (2023). IoT-enabled system for detection, monitoring, and tracking of nuclear materials. Electronics (Switzerland), 12(14), 3042. https://doi.org/10.3390/electronics12143042 Katharina-Sindt, C., & Noehr-Jensen, L. (2021). Glycaemic control at risk?-Impact of temperature, humidity and other physical factors on the analytical quality of point of care testing of blood glucose, a systematic review protocol. Research Square. https://doi.org/10.21203/rs.3.rs-678622/v1 Kim, K. T., Kim, J. H., Han, M. J., Heo, Y. J., & Park, S. K. (2018). Characterization of a new dosimeter for the development of a position-sensitive detector of radioactive sources in industrial NDT equipment. Journal of Instrumentation, 13(2), C02003–C02003. https://doi.org/10.1088/1748-0221/13/02/C02003 Kržanović, N., Stanković, K., Živanović, M., Đaletić, M., & Ciraj-Bjelac, O. (2019). Development and testing of a low cost radiation protection instrument based on an energy compensated Geiger-Müller tube. Radiation Physics and Chemistry, 164, 108358. https://doi.org/10.1016/j.radphyschem.2019.108358 Larason, T., & Ohno, Y. (2006). Calibration and characterization of UV sensors for water disinfection. Metrologia, 43(2), S151–S156. https://doi.org/10.1088/0026-1394/43/2/S30 Lassmann, M., & Eberlein, U. (2018). The relevance of dosimetry in precision medicine. Journal of Nuclear Medicine, 59(10), 1494–1499. https://doi.org/10.2967/jnumed.117.206649 Lim, Y. K. (2021). Recent trend of occupational exposure to ionizing radiation in Korea, 2015–2019. Journal of Radiation Protection and Research, 46(4), 213–217. https://doi.org/10.14407/jrpr.2021.00311 Little, M. P., Wakeford, R., Tawn, E. J., Bouffler, S. D., & Berrington de González, A. (2022). Review of the risk of cancer following low and moderate doses of sparsely ionising radiation received in early life in groups with individually estimated doses. Environment International, 159, 106983. https://doi.org/10.1016/j.envint.2021.106983 Lucas, R. M., Ponsonby, A. L., Dear, K., Valery, P. C., Pender, M. P., Taylor, B. V., ... & van der Mei, I. (2019). Human health in relation to exposure to solar ultraviolet radiation under changing stratospheric ozone and climate. Photochemical and Photobiological Sciences, 18(3), 641–680. https://doi.org/10.1039/C8PP90060D Lüley, J., Vrban, B., Čerba, Š., Osuský, F., & Nečas, V. (2020). Unmanned radiation monitoring system. EPJ Web of Conferences, 225, 08008. https://doi.org/10.1051/epjconf/202022508008 Mahatab, T. A., Muradi, M. H., Ahmed, S., & Kafi, A. (2018, October). Design and analysis of IoT based ionizing radiation monitoring system. In 2018 International Conference on Innovations in Science, Engineering and Technology (pp. 432–436). https://doi.org/10.1109/ICISET.2018.8745563 Malleswari, S. M. S. D., & Mohana, T. K. (2021). Air pollution monitoring system using IoT devices: Review. Materials Today: Proceedings, 51, 1147–1150. https://doi.org/10.1016/j.matpr.2021.07.114 Malche, T., Maheshwary, P., & Kumar, R. (2019). Environmental monitoring system for smart city based on secure Internet of Things (IoT) architecture. Wireless Personal Communications, 107(4), 2143–2172. https://doi.org/10.1007/s11277-019-06376-0 Miller, M., Kisiel, A., Cembrowska-Lech, D., Durlik, I., & Miller, T. (2023). IoT in water quality monitoring-Are we really here? Sensors, 23(2), 960. https://doi.org/10.3390/s23020960 Mothersill, C., & Seymour, C. (2014). Implications for human and environmental health of low doses of ionising radiation. Journal of Environmental Radioactivity, 133, 5–9. https://doi.org/10.1016/j.jenvrad.2013.04.002 Muniraj, M., Qureshi, A. R., Vijayakumar, D., Viswanathan, A. R., & Bharathi, N. (2017, September). Geo tagged internet of things (IoT) device for radiation monitoring. In 2017 International Conference on Advances in Computing, Communications and Informatics (pp. 431–436). https://doi.org/10.1109/ICACCI.2017.8125878 National Mining Agency of Colombia. (2019). Sucre file-National Mining Agency of Colombia. National Mining Agency of Colombia. Patera, V., & Sarti, A. (2020). Recent advances in detector technologies for particle therapy beam monitoring and dosimetry. IEEE Transactions on Radiation and Plasma Medical Sciences, 4(2), 133–146. https://doi.org/10.1109/TRPMS.2019.2951848 Prieto, A. V., García-Estévez, J., & Ariza, J. F. (2022). On the relationship between mining and rural poverty: Evidence for Colombia. Resources Policy, 75, 102443. https://doi.org/10.1016/j.resourpol.2021.102443 REES52. (2023). Assembled DIY Geiger counter kit module Miller tube GM tube nuclear radiation detector Geekcreit for Arduino - Products that work with official Arduino boards - RS2758. Retrieved December 12, 2023, from https://rees52.com/products/assembled-diy-geiger-counter-kit-module-miller-tube-gm-tube-nuclear-radiation-detector-geekcreit-for-arduino-products-that-work-with-official-arduino-boards-rs2758 Rizzo, A., Capra, G. G., Conti, A., Cuttone, G., Salamone, I. G., & Cosentino, L. (2022). Environmental gamma dose rate monitoring and radon correlations: Evidence and potential applications. Environments, 9(6), 66. https://doi.org/10.3390/environments9060066 Rodríguez-Zapata, M. A., & Ruiz-Agudelo, C. A. (2021). Environmental liabilities in Colombia: A critical review of current status and challenges for a megadiverse country. Environmental Challenges, 5, 100377. https://doi.org/10.1016/j.envc.2021.100377 Rühm, W., Dörschel, B., Eidemüller, M., Eiskjaer, J., Fournier, P., Gomolka, M., ... & Verhaegen, F. (2020). The European radiation dosimetry group – Review of recent scientific achievements. Radiation Physics and Chemistry, 168, 108514. https://doi.org/10.1016/j.radphyschem.2019.108514 Russell-Pavier, F. S., Gill, R. M., Mitchell, R. L., Pawar, A., Gosselin, A., & Zsolt, A. (2023). A highly scalable and autonomous spectroscopic radiation mapping system with resilient IoT detector units for dosimetry, safety and security. Journal of Radiological Protection, 43(1), 011503. https://doi.org/10.1088/1361-6498/acab0b Saifullah, M., Bajwa, I. S., Ibrahim, M., & Asghar, M. (2022). IoT-enabled intelligent system for the radiation monitoring and warning approach. Mobile Information Systems, 2022, 1–12. https://doi.org/10.1155/2022/2769958 Samih, H. (2019). Smart cities and internet of things. Journal of Information Technology Case and Application Research, 21(1), 3–12. https://doi.org/10.1080/15228053.2019.1587572 Serrano, A., Abril-Gago, J., & García-Orellana, C. J. (2022). Development of a low-cost device for measuring ultraviolet solar radiation. Frontiers in Environmental Science, 9. https://doi.org/10.3389/fenvs.2021.737875 Shah, S. A., Seker, D. Z., Rathore, M. M., Hameed, S., Ben Yahia, S., & Draheim, D. (2019). Towards disaster resilient smart cities: Can Internet of Things and big data analytics be the game changers? IEEE Access, 7, 91885–91903. https://doi.org/10.1109/ACCESS.2019.2928233 Shibata, K., Hanada, K., & Seki, H. (2017). Microcomputer-based acquisition of atmospheric pressure data via a sensor-equipped remote monitoring system and related application to education in electrical engineering. The Bulletin of Hachinohe Institute of Technology, 36, 137–145. Silicio.mx. (2023). Grove - Sensor UV. Retrieved December 12, 2023, from https://silicio.mx/electronica/grove/grove-sensor-uv Stark, K., Avila-Rodriguez, M. A., Capone, M., Chumak, V., Cosculluela-Monaco, E., Dawson, D., ... & Wilkins, R. C. (2017). Dose assessment in environmental radiological protection: State of the art and perspectives. Journal of Environmental Radioactivity, 175–176, 105–114. https://doi.org/10.1016/j.jenvrad.2017.05.001 Taskin, D., & Yazar, S. (2020). A long-range context-aware platform design for rural monitoring with IoT in precision agriculture. International Journal of Computers, Communications and Control, 15(2), 1–11. https://doi.org/10.15837/IJCCC.2020.2.3821 Terokhin, V. L., Stervoyedov, M. G., & Ridozub, O. V. (2021). Application of the IoT technology and cloud services for radiation monitoring. Control Systems and Computers, 2-3 (292-293), 60–68. https://doi.org/10.15407/csc.2021.02.060 Vignola, F., Michalsky, J., & Stoffel, T. (2019). Solar and infrared radiation measurements (2nd ed.). CRC Press, Taylor and Francis Group. https://doi.org/10.1201/b22306 Voudoukis, N., & Oikonomidis, S. (2017). Inverse square law for light and radiation: A unifying educational approach. European Journal of Engineering and Technology Research, 2(11), 23–27. https://doi.org/10.24018/ejeng.2017.2.11.517 Wang, P., Gao, H., Wang, Q., Wu, Z., Shao, Q., & Li, Z. (2018). Design of a portable dose rate detector based on a double Geiger–Mueller counter. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 879, 147–152. https://doi.org/10.1016/j.nima.2017.07.061 Wu, D., Bogdan, A. S., & Liebeherr, J. (2023). Large-scale environmental sensing of remote areas on a budget. IEEE Internet of Things Magazine, 6(2), 130–136. https://doi.org/10.1109/iotm.001.2200185 Xiong, W., Gao, Q., Zhang, C., Yu, K., Fu, X., & Liu, P. (2022, September). A convenient efficiency calibration method for volume radioactive sources of HPGe gamma detectors. In Proceedings-2022 International Conference on Applied Physics and Computing (pp. 306–309). https://doi.org/10.1109/ICAPC57304.2022.00064 Yeboah, E., Yakovlev, G. A., Smirnov, S. V., & Yakovleva, V. S. (2022). Radioactive source strength effect on gamma radiation monitoring with a NaI (Tl) scintillation detector. Journal of Instrumentation, 17(5), P05041. https://doi.org/10.1088/1748-0221/17/05/P05041 |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.none.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Attribution-NonCommercial-NoDerivatives 4.0 International http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Institute of Advanced Engineering and Science (IAES) |
publisher.none.fl_str_mv |
Institute of Advanced Engineering and Science (IAES) |
institution |
Universidad Cooperativa de Colombia |
bitstream.url.fl_str_mv |
https://repository.ucc.edu.co/bitstreams/2f8478b8-dcec-4e40-9d9d-580fa8a5ef43/download https://repository.ucc.edu.co/bitstreams/8d66e26f-cd71-4c0b-96ab-f4e79fc8d503/download https://repository.ucc.edu.co/bitstreams/5456651f-605e-4e71-84e7-5760955c7c85/download https://repository.ucc.edu.co/bitstreams/7894535a-39a7-4454-8287-d8dfbb91ce10/download https://repository.ucc.edu.co/bitstreams/cd57a42d-750c-4be6-86db-3a826c18172b/download |
bitstream.checksum.fl_str_mv |
fbd58ce93f28378997e1541df39617dd 4460e5956bc1d1639be9ae6146a50347 3bce4f7ab09dfc588f126e1e36e98a45 e78f99042ae43927f6f50c076d2b9202 423b6213aab676e9d5117abc29038f31 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Cooperativa de Colombia |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1814247146626482176 |
spelling |
Rubén Baena-NavarroLuis Alcala-VarillaFrancisco Torres-HoyosYulieth Carriazo-ReginoTobías Parodi-Camaño2024-08-04T16:40:43Z2024-08-04T16:40:43Z2024-10-01https://hdl.handle.net/20.500.12494/56755https://doi.org/10.11591/eei.v13i5.7344This study presents the implementation of an internet of things (IoT)-based device for the accurate and continuous measurement of gamma and ultraviolet (UV) radiation in a rural area of Sincelejo, Colombia. The device, calibrated with an error margin below 5%, allowed for the reliable collection of data during the year 2022. An average effective dose rate of gamma radiation of (0.998±0.037) mSv/year was recorded, a value that approaches the recommended limit. Additionally, the inverse square law of radiation was confirmed, observing a decrease in radiation with an increase in altitude. Concurrently, a constant risk of high to extremely high UV radiation exposure was detected throughout the year. These findings emphasize the need for constant monitoring and the implementation of UV protection measures in the region. The integration of IoT in environmental dosimetry has proven to be an invaluable tool for detailed tracking of radiation levels, significantly contributing to the understanding of radiation in rural areas. The exploration of more advanced sensors and data analysis tools in future research is recommended to further improve the accuracy and utility of these devices.Institute of Advanced Engineering and Science (IAES)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://purl.org/coar/access_right/c_abf2Gamma and ultraviolet radiation radiation analysis: an internet of things-based dosimetric studyAvance de investigación financiadahttp://purl.org/coar/resource_type/c_18wshttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/resource_type/c_93fcTextinfo:eu-repo/semantics/reporthttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionAl-Dweik, A., Muresan, R., Mayhew, M., & Lieberman, M. (2017, April). IoT-based multifunctional scalable real-time enhanced road side unit for intelligent transportation systems. In Canadian Conference on Electrical and Computer Engineering (pp. 1–6). https://doi.org/10.1109/CCECE.2017.7946618Andersen, P. A., Bruun, M. M., Janda, M., Vries, E. d., & Andersen, L. B. (2010). Environmental cues to UV radiation and personal sun protection in outdoor winter recreation. Archives of Dermatology, 146(11), 1241–1247. https://doi.org/10.1001/archdermatol.2010.327Andreadis, A., Giambene, G., & Zambon, R. (2022, June). Low-power IoT environmental monitoring and smart agriculture for unconnected rural areas. In 2022 20th Mediterranean Communication and Computer Networking Conference (pp. 31–38). https://doi.org/10.1109/MedComNet55087.2022.9810376Andrady, A. L., Pandey, K. K., & Heikkilä, A. M. (2019). Interactive effects of solar UV radiation and climate change on material damage. Photochemical and Photobiological Sciences, 18(3), 804–825. https://doi.org/10.1039/C8PP90065EAntoni, R., & Bourgois, L. (2017). Source evaluation of the external exposure. In Applied Physics of External Radiation Exposure: Dosimetry and Radiation Protection (pp. 237–308). https://doi.org/10.1007/978-3-319-48660-4_4Baena-Navarro, R. (2019). Optimización de un dron para dosimetría ambiental (Doctoral dissertation, Universidad Internacional Iberoamericana México).Baena-Navarro, R., Vergara-Villadiego, J., Carriazo-Regino, Y., Crawford-Vidal, R., & Barreiro-Pinto, F. (2024). Challenges in implementing free software in small and medium-sized enterprises in the city of Montería: A case study. Bulletin of Electrical Engineering and Informatics, 13(1), 586–597. https://doi.org/10.11591/eei.v13i1.6710Bailey, E., Fuhrmann, C., Runkle, J., Stevens, S., Brown, M., & Sugg, M. (2020). Wearable sensors for personal temperature exposure assessments: A comparative study. Environmental Research, 180, 108858. https://doi.org/10.1016/j.envres.2019.108858Bhuiyan, M. N. M., Islam, M. H., & Dewan, M. E. (2022, November). An IoT-based smart microgrid system for rural areas. In 2022 14th Seminar on Power Electronics and Control (pp. 1–6). https://doi.org/10.1109/SEPOC54972.2022.9976436Carriazo-Regino, Y., Baena-Navarro, R., Torres-Hoyos, F., Vergara-Villadiego, J., & Roa-Prada, S. (2022). IoT-based drinking water quality measurement: Systematic literature review. Indonesian Journal of Electrical Engineering and Computer Science, 28(1), 405–418. https://doi.org/10.11591/ijeecs.v28.i1.pp405-418Components101. (2023). DHT11 Temperature Sensor. Retrieved December 12, 2023, from https://components101.com/sensors/dht11-temperature-sensorde A. Mota, G., Martins, A. R., da Silva, A. R., Lima, R. V., Rêgo, L. S., & Freire, R. S. (2023). Smart sensors and Internet of Things (IoT) for sustainable environmental and agricultural management. Caderno Pedagógico, 20(7), 2692–2714. https://doi.org/10.54033/cadpedv20n7-014Hernández-Gutiérrez, C. A., Delgado-del-Carpio, M., Zebadúa-Chavarría, L. A., Hernández-de-León, H. R., Escobar-Gómez, E. N., & Quevedo-López, M. (2023). IoT-enabled system for detection, monitoring, and tracking of nuclear materials. Electronics (Switzerland), 12(14), 3042. https://doi.org/10.3390/electronics12143042Katharina-Sindt, C., & Noehr-Jensen, L. (2021). Glycaemic control at risk?-Impact of temperature, humidity and other physical factors on the analytical quality of point of care testing of blood glucose, a systematic review protocol. Research Square. https://doi.org/10.21203/rs.3.rs-678622/v1Kim, K. T., Kim, J. H., Han, M. J., Heo, Y. J., & Park, S. K. (2018). Characterization of a new dosimeter for the development of a position-sensitive detector of radioactive sources in industrial NDT equipment. Journal of Instrumentation, 13(2), C02003–C02003. https://doi.org/10.1088/1748-0221/13/02/C02003Kržanović, N., Stanković, K., Živanović, M., Đaletić, M., & Ciraj-Bjelac, O. (2019). Development and testing of a low cost radiation protection instrument based on an energy compensated Geiger-Müller tube. Radiation Physics and Chemistry, 164, 108358. https://doi.org/10.1016/j.radphyschem.2019.108358Larason, T., & Ohno, Y. (2006). Calibration and characterization of UV sensors for water disinfection. Metrologia, 43(2), S151–S156. https://doi.org/10.1088/0026-1394/43/2/S30Lassmann, M., & Eberlein, U. (2018). The relevance of dosimetry in precision medicine. Journal of Nuclear Medicine, 59(10), 1494–1499. https://doi.org/10.2967/jnumed.117.206649Lim, Y. K. (2021). Recent trend of occupational exposure to ionizing radiation in Korea, 2015–2019. Journal of Radiation Protection and Research, 46(4), 213–217. https://doi.org/10.14407/jrpr.2021.00311Little, M. P., Wakeford, R., Tawn, E. J., Bouffler, S. D., & Berrington de González, A. (2022). Review of the risk of cancer following low and moderate doses of sparsely ionising radiation received in early life in groups with individually estimated doses. Environment International, 159, 106983. https://doi.org/10.1016/j.envint.2021.106983Lucas, R. M., Ponsonby, A. L., Dear, K., Valery, P. C., Pender, M. P., Taylor, B. V., ... & van der Mei, I. (2019). Human health in relation to exposure to solar ultraviolet radiation under changing stratospheric ozone and climate. Photochemical and Photobiological Sciences, 18(3), 641–680. https://doi.org/10.1039/C8PP90060DLüley, J., Vrban, B., Čerba, Š., Osuský, F., & Nečas, V. (2020). Unmanned radiation monitoring system. EPJ Web of Conferences, 225, 08008. https://doi.org/10.1051/epjconf/202022508008Mahatab, T. A., Muradi, M. H., Ahmed, S., & Kafi, A. (2018, October). Design and analysis of IoT based ionizing radiation monitoring system. In 2018 International Conference on Innovations in Science, Engineering and Technology (pp. 432–436). https://doi.org/10.1109/ICISET.2018.8745563Malleswari, S. M. S. D., & Mohana, T. K. (2021). Air pollution monitoring system using IoT devices: Review. Materials Today: Proceedings, 51, 1147–1150. https://doi.org/10.1016/j.matpr.2021.07.114Malche, T., Maheshwary, P., & Kumar, R. (2019). Environmental monitoring system for smart city based on secure Internet of Things (IoT) architecture. Wireless Personal Communications, 107(4), 2143–2172. https://doi.org/10.1007/s11277-019-06376-0Miller, M., Kisiel, A., Cembrowska-Lech, D., Durlik, I., & Miller, T. (2023). IoT in water quality monitoring-Are we really here? Sensors, 23(2), 960. https://doi.org/10.3390/s23020960Mothersill, C., & Seymour, C. (2014). Implications for human and environmental health of low doses of ionising radiation. Journal of Environmental Radioactivity, 133, 5–9. https://doi.org/10.1016/j.jenvrad.2013.04.002Muniraj, M., Qureshi, A. R., Vijayakumar, D., Viswanathan, A. R., & Bharathi, N. (2017, September). Geo tagged internet of things (IoT) device for radiation monitoring. In 2017 International Conference on Advances in Computing, Communications and Informatics (pp. 431–436). https://doi.org/10.1109/ICACCI.2017.8125878National Mining Agency of Colombia. (2019). Sucre file-National Mining Agency of Colombia. National Mining Agency of Colombia.Patera, V., & Sarti, A. (2020). Recent advances in detector technologies for particle therapy beam monitoring and dosimetry. IEEE Transactions on Radiation and Plasma Medical Sciences, 4(2), 133–146. https://doi.org/10.1109/TRPMS.2019.2951848Prieto, A. V., García-Estévez, J., & Ariza, J. F. (2022). On the relationship between mining and rural poverty: Evidence for Colombia. Resources Policy, 75, 102443. https://doi.org/10.1016/j.resourpol.2021.102443REES52. (2023). Assembled DIY Geiger counter kit module Miller tube GM tube nuclear radiation detector Geekcreit for Arduino - Products that work with official Arduino boards - RS2758. Retrieved December 12, 2023, from https://rees52.com/products/assembled-diy-geiger-counter-kit-module-miller-tube-gm-tube-nuclear-radiation-detector-geekcreit-for-arduino-products-that-work-with-official-arduino-boards-rs2758Rizzo, A., Capra, G. G., Conti, A., Cuttone, G., Salamone, I. G., & Cosentino, L. (2022). Environmental gamma dose rate monitoring and radon correlations: Evidence and potential applications. Environments, 9(6), 66. https://doi.org/10.3390/environments9060066Rodríguez-Zapata, M. A., & Ruiz-Agudelo, C. A. (2021). Environmental liabilities in Colombia: A critical review of current status and challenges for a megadiverse country. Environmental Challenges, 5, 100377. https://doi.org/10.1016/j.envc.2021.100377Rühm, W., Dörschel, B., Eidemüller, M., Eiskjaer, J., Fournier, P., Gomolka, M., ... & Verhaegen, F. (2020). The European radiation dosimetry group – Review of recent scientific achievements. Radiation Physics and Chemistry, 168, 108514. https://doi.org/10.1016/j.radphyschem.2019.108514Russell-Pavier, F. S., Gill, R. M., Mitchell, R. L., Pawar, A., Gosselin, A., & Zsolt, A. (2023). A highly scalable and autonomous spectroscopic radiation mapping system with resilient IoT detector units for dosimetry, safety and security. Journal of Radiological Protection, 43(1), 011503. https://doi.org/10.1088/1361-6498/acab0bSaifullah, M., Bajwa, I. S., Ibrahim, M., & Asghar, M. (2022). IoT-enabled intelligent system for the radiation monitoring and warning approach. Mobile Information Systems, 2022, 1–12. https://doi.org/10.1155/2022/2769958Samih, H. (2019). Smart cities and internet of things. Journal of Information Technology Case and Application Research, 21(1), 3–12. https://doi.org/10.1080/15228053.2019.1587572Serrano, A., Abril-Gago, J., & García-Orellana, C. J. (2022). Development of a low-cost device for measuring ultraviolet solar radiation. Frontiers in Environmental Science, 9. https://doi.org/10.3389/fenvs.2021.737875Shah, S. A., Seker, D. Z., Rathore, M. M., Hameed, S., Ben Yahia, S., & Draheim, D. (2019). Towards disaster resilient smart cities: Can Internet of Things and big data analytics be the game changers? IEEE Access, 7, 91885–91903. https://doi.org/10.1109/ACCESS.2019.2928233Shibata, K., Hanada, K., & Seki, H. (2017). Microcomputer-based acquisition of atmospheric pressure data via a sensor-equipped remote monitoring system and related application to education in electrical engineering. The Bulletin of Hachinohe Institute of Technology, 36, 137–145.Silicio.mx. (2023). Grove - Sensor UV. Retrieved December 12, 2023, from https://silicio.mx/electronica/grove/grove-sensor-uvStark, K., Avila-Rodriguez, M. A., Capone, M., Chumak, V., Cosculluela-Monaco, E., Dawson, D., ... & Wilkins, R. C. (2017). Dose assessment in environmental radiological protection: State of the art and perspectives. Journal of Environmental Radioactivity, 175–176, 105–114. https://doi.org/10.1016/j.jenvrad.2017.05.001Taskin, D., & Yazar, S. (2020). A long-range context-aware platform design for rural monitoring with IoT in precision agriculture. International Journal of Computers, Communications and Control, 15(2), 1–11. https://doi.org/10.15837/IJCCC.2020.2.3821Terokhin, V. L., Stervoyedov, M. G., & Ridozub, O. V. (2021). Application of the IoT technology and cloud services for radiation monitoring. Control Systems and Computers, 2-3 (292-293), 60–68. https://doi.org/10.15407/csc.2021.02.060Vignola, F., Michalsky, J., & Stoffel, T. (2019). Solar and infrared radiation measurements (2nd ed.). CRC Press, Taylor and Francis Group. https://doi.org/10.1201/b22306Voudoukis, N., & Oikonomidis, S. (2017). Inverse square law for light and radiation: A unifying educational approach. European Journal of Engineering and Technology Research, 2(11), 23–27. https://doi.org/10.24018/ejeng.2017.2.11.517Wang, P., Gao, H., Wang, Q., Wu, Z., Shao, Q., & Li, Z. (2018). Design of a portable dose rate detector based on a double Geiger–Mueller counter. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 879, 147–152. https://doi.org/10.1016/j.nima.2017.07.061Wu, D., Bogdan, A. S., & Liebeherr, J. (2023). Large-scale environmental sensing of remote areas on a budget. IEEE Internet of Things Magazine, 6(2), 130–136. https://doi.org/10.1109/iotm.001.2200185Xiong, W., Gao, Q., Zhang, C., Yu, K., Fu, X., & Liu, P. (2022, September). A convenient efficiency calibration method for volume radioactive sources of HPGe gamma detectors. In Proceedings-2022 International Conference on Applied Physics and Computing (pp. 306–309). https://doi.org/10.1109/ICAPC57304.2022.00064Yeboah, E., Yakovlev, G. A., Smirnov, S. V., & Yakovleva, V. S. (2022). Radioactive source strength effect on gamma radiation monitoring with a NaI (Tl) scintillation detector. Journal of Instrumentation, 17(5), P05041. https://doi.org/10.1088/1748-0221/17/05/P05041PublicationORIGINAL7344-21625-1-PB.pdf7344-21625-1-PB.pdfapplication/pdf1005594https://repository.ucc.edu.co/bitstreams/2f8478b8-dcec-4e40-9d9d-580fa8a5ef43/downloadfbd58ce93f28378997e1541df39617ddMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repository.ucc.edu.co/bitstreams/8d66e26f-cd71-4c0b-96ab-f4e79fc8d503/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/5456651f-605e-4e71-84e7-5760955c7c85/download3bce4f7ab09dfc588f126e1e36e98a45MD53TEXT7344-21625-1-PB.pdf.txt7344-21625-1-PB.pdf.txtExtracted texttext/plain74701https://repository.ucc.edu.co/bitstreams/7894535a-39a7-4454-8287-d8dfbb91ce10/downloade78f99042ae43927f6f50c076d2b9202MD54THUMBNAIL7344-21625-1-PB.pdf.jpg7344-21625-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg13243https://repository.ucc.edu.co/bitstreams/cd57a42d-750c-4be6-86db-3a826c18172b/download423b6213aab676e9d5117abc29038f31MD5520.500.12494/56755oai:repository.ucc.edu.co:20.500.12494/567552024-08-10 20:57:45.539http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo= |