IOT-Based drinking water quality measurement: systematic literature review

El desarrollo sostenible en todo el mundo depende de varios factores como la economía, la educación de calidad, la agricultura, la industria, entre otros, pero el medio ambiente es uno de los más importantes. La industrialización y los nuevos planes de ordenamiento territorial han provocado la proli...

Full description

Autores:
Carriazo Regino, Yulieth
Baena Navarro, Rubén Enrique
Torres Hoyos, Francisco José
Vergara Villadiego, Juan Raúl
Roa Prada, Sebastián
Tipo de recurso:
Article of investigation
Fecha de publicación:
2022
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/46707
Acceso en línea:
http://doi.org/10.11591/ijeecs.v28.i1.pp405-418
https://hdl.handle.net/20.500.12494/46707
Palabra clave:
Análisis descriptivo
Medio ambiente
Internet de las cosas
Sistema de monitoreo
Calidad del agua
Descriptive analysis
Environment
Internet of things
Monitoring system
Water quality
Rights
closedAccess
License
Atribución – Compartir igual
id COOPER2_a88c62036da009ccad40bf69362d572f
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/46707
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.spa.fl_str_mv IOT-Based drinking water quality measurement: systematic literature review
title IOT-Based drinking water quality measurement: systematic literature review
spellingShingle IOT-Based drinking water quality measurement: systematic literature review
Análisis descriptivo
Medio ambiente
Internet de las cosas
Sistema de monitoreo
Calidad del agua
Descriptive analysis
Environment
Internet of things
Monitoring system
Water quality
title_short IOT-Based drinking water quality measurement: systematic literature review
title_full IOT-Based drinking water quality measurement: systematic literature review
title_fullStr IOT-Based drinking water quality measurement: systematic literature review
title_full_unstemmed IOT-Based drinking water quality measurement: systematic literature review
title_sort IOT-Based drinking water quality measurement: systematic literature review
dc.creator.fl_str_mv Carriazo Regino, Yulieth
Baena Navarro, Rubén Enrique
Torres Hoyos, Francisco José
Vergara Villadiego, Juan Raúl
Roa Prada, Sebastián
dc.contributor.author.none.fl_str_mv Carriazo Regino, Yulieth
Baena Navarro, Rubén Enrique
Torres Hoyos, Francisco José
Vergara Villadiego, Juan Raúl
Roa Prada, Sebastián
dc.subject.spa.fl_str_mv Análisis descriptivo
Medio ambiente
Internet de las cosas
Sistema de monitoreo
Calidad del agua
topic Análisis descriptivo
Medio ambiente
Internet de las cosas
Sistema de monitoreo
Calidad del agua
Descriptive analysis
Environment
Internet of things
Monitoring system
Water quality
dc.subject.other.spa.fl_str_mv Descriptive analysis
Environment
Internet of things
Monitoring system
Water quality
description El desarrollo sostenible en todo el mundo depende de varios factores como la economía, la educación de calidad, la agricultura, la industria, entre otros, pero el medio ambiente es uno de los más importantes. La industrialización y los nuevos planes de ordenamiento territorial han provocado la proliferación de contaminantes en los recursos hídricos, lo que plantea un serio desafío público. Como se describe en los Objetivos de Desarrollo Sostenible (ODS), se necesitan métodos innovadores de monitoreo de la calidad del agua para garantizar el acceso al agua, la gestión sostenible y el saneamiento. En este sentido, se buscan tecnologías que contribuyan al desarrollo e implementación de sistemas de monitoreo de calidad de aguas subterráneas y superficiales en tiempo real, para que sus parámetros puedan ser evaluados mediante análisis descriptivos, en poblaciones rurales y zonas de difícil acceso. Hoy en día, el Internet de las cosas (IoT) y el desarrollo de sensores modernos son más utilizados, por lo que esta investigación revisa las últimas tecnologías para monitorear y evaluar la calidad del agua utilizando el potencial y las posibilidades del IoT. La principal contribución de este artículo es presentar una descripción general del estado del arte de las aplicaciones e instrumentación de IoT para el monitoreo de la calidad del agua, centrándose en las últimas innovaciones, con el fin de identificar áreas interesantes y desafiantes que pueden explorarse en futuras investigaciones.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-10-12T21:37:10Z
dc.date.available.none.fl_str_mv 2022-10-12T21:37:10Z
dc.date.issued.none.fl_str_mv 2022-10
dc.type.none.fl_str_mv Artículos Científicos
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 2502-4760
dc.identifier.uri.spa.fl_str_mv http://doi.org/10.11591/ijeecs.v28.i1.pp405-418
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12494/46707
dc.identifier.bibliographicCitation.spa.fl_str_mv Carriazo Regino, Y., Baena Navarro, R., Torres Hoyos, F., Vergara Villadiego, J., & Roa Prada, S. (2022). IOT-based drinking water quality measurement: systematic literature review. Indonesian Journal of Electrical Engineering and Computer Science, 28(1), 405. https://doi.org/10.11591/ijeecs.v28.i1.pp405-418
identifier_str_mv 2502-4760
Carriazo Regino, Y., Baena Navarro, R., Torres Hoyos, F., Vergara Villadiego, J., & Roa Prada, S. (2022). IOT-based drinking water quality measurement: systematic literature review. Indonesian Journal of Electrical Engineering and Computer Science, 28(1), 405. https://doi.org/10.11591/ijeecs.v28.i1.pp405-418
url http://doi.org/10.11591/ijeecs.v28.i1.pp405-418
https://hdl.handle.net/20.500.12494/46707
dc.relation.isversionof.spa.fl_str_mv https://ijeecs.iaescore.com/index.php/IJEECS/article/view/27929
dc.relation.ispartofjournal.spa.fl_str_mv Indonesian Journal of Electrical Engineering and Computer Science
dc.relation.references.spa.fl_str_mv Global Risks Report 2019 14th Edition, World Economic Forum, 2019. [Online]. Available: https://www3.weforum.org/ docs/WEF_Global_Risks_Report_2019.pdf
N. B. Harmancioglu, “Overview of water policy developments: pre- and post-2015 development agenda,” Water Resources Management, vol. 31, no. 10, pp. 3001–3021, Aug. 2017, doi: 10.1007/s11269-017-1725-3
C. P. Y. Rossio and Y. Seo, “Participatory approaches in the planning of drinking water supply and basic sanitation projects in the rural areas of Colombia,” KSCE Journal of Civil Engineering, vol. 24, no. 4, pp. 1374–1382, Apr. 2020, doi: 10.1007/s12205- 020-1091-1
UN, “COVID-19 will not be stopped without providing safe water to people living in vulnerability – UN experts,” Office of the High Commissioner for Human Rights (UN Human Rights), 2020. https://www.ohchr.org/EN/NewsEvents/Pages/ DisplayNews.aspx?NewsID=25738&LangID=E (accessed Jun. 16, 2021)
World Health Organiztion, “1 in 3 people globally do not have access to safe drinking water – UNICEF, WHO,” 2019. https://www.who.int/news/item/18-06-2019-1-in-3-people-globally-do-not-have-access-to-safe-drinking-water-unicef-who (accessed Jun. 17, 2021)
M. Zelenakova, P. Hlavínek, and A. M. Negm, Management of water quality and quantity. Cham: Springer International Publishing, 2020
P. V. Torres-Carrion, C. S. Gonzalez-Gonzalez, S. Aciar, and G. Rodriguez-Morales, “Methodology for systematic literature review applied to engineering and education,” in 2018 IEEE Global Engineering Education Conference (EDUCON), Apr. 2018, pp. 1364–1373, doi: 10.1109/EDUCON.2018.8363388
M. F. Ali, D. N. K. Jayakody, Y. A. Chursin, S. Affes, and S. Dmitry, “Recent advances and future directions on underwater wireless communications,” Archives of Computational Methods in Engineering, vol. 27, no. 5, pp. 1379–1412, Nov. 2020, doi: 10.1007/s11831-019-09354-8
S. Geetha and S. Gouthami, “Internet of things enabled real time water quality monitoring system,” Smart Water, vol. 2, no. 1, p. 1, Dec. 2016, doi: 10.1186/s40713-017-0005-y
B. P. Wong and B. Kerkez, “Real-time environmental sensor data: an application to water quality using web services,” Environmental Modelling & Software, vol. 84, pp. 505–517, Oct. 2016, doi: 10.1016/j.envsoft.2016.07.020
P. J. Vikesland, “Nanosensors for water quality monitoring,” Nature Nanotechnology, vol. 13, no. 8, pp. 651–660, Aug. 2018, doi: 10.1038/s41565-018-0209-9
K. Saravanan, E. Anusuya, R. Kumar, and L. H. Son, “Real-time water quality monitoring using internet of things in SCADA,” Environmental Monitoring and Assessment, vol. 190, no. 9, p. 556, Sep. 2018, doi: 10.1007/s10661-018-6914-x
M. E. E. Alahi, S. C. Mukhopadhyay, and L. Burkitt, “Imprinted polymer coated impedimetric nitrate sensor for real- time water quality monitoring,” Sensors and Actuators B: Chemical, vol. 259, pp. 753–761, Apr. 2018, doi: 10.1016/j.snb.2017.12.104
M. Islam, F. Ashraf, T. Alam, N. Misran, and K. Mat, “A compact ultrawideband antenna based on hexagonal split-ring resonator for ph sensor application,” Sensors, vol. 18, no. 9, p. 2959, Sep. 2018, doi: 10.3390/s18092959
M. Carminati et al., “A self-powered wireless water quality sensing network enabling smart monitoring of biological and chemical stability in supply systems,” Sensors, vol. 20, no. 4, p. 1125, Feb. 2020, doi: 10.3390/s20041125
S. Pasika and S. T. Gandla, “Smart water quality monitoring system with cost-effective using IoT,” Heliyon, vol. 6, no. 7, p. e04096, Jul. 2020, doi: 10.1016/j.heliyon.2020.e04096
R. Mirzavand, M. Honari, B. Laribi, B. Khorshidi, M. Sadrzadeh, and P. Mousavi, “an unpowered sensor node for real-time water quality assessment (humic acid detection),” Electronics, vol. 7, no. 10, p. 231, Oct. 2018, doi: 10.3390/electronics7100231
M. Parameswari and M. B. Moses, “Retracted Article: Online measurement of water quality and reporting system using prominent rule controller based on aqua care-IOT,” Design Automation for Embedded Systems, vol. 22, no. 1–2, pp. 25–44, Jun. 2018, doi: 10.1007/s10617-017-9187-7
Q. Zou, Q. Xiong, Q. Li, H. Yi, Y. Yu, and C. Wu, “A water quality prediction method based on the multi-time scale bidirectional long short-term memory network,” Environmental Science and Pollution Research, vol. 27, no. 14, pp. 16853–16864, May 2020, doi: 10.1007/s11356-020-08087-7
E. Climent, J. Pelegri-Sebastia, T. Sogorb, J. Talens, and J. Chilo, “Development of the MOOSY4 eNose IoT for sulphur-based VOC water pollution detection,” Sensors, vol. 17, no. 8, p. 1917, Aug. 2017, doi: 10.3390/s17081917
K. Spandana and V. R. Seshagiri Rao, “Internet of things (IoT) based smart water quality monitoring system,” International Journal of Engineering & Technology, vol. 7, no. 3.6, p. 259, Jul. 2018, doi: 10.14419/ijet.v7i3.6.14985
M. A. A. Aziz, M. F. Abas, M. K. A. A. Bashri, N. M. Saad, and M. H. Ariff, “Evaluating IoT based passive water catchment monitoring system data acquisition and analysis,” Bulletin of Electrical Engineering and Informatics, vol. 8, no. 4, pp. 1373– 1382, Dec. 2019, doi: 10.11591/eei.v8i4.1583
H. Cao, Z. Guo, S. Wang, H. Cheng, and C. Zhan, “Intelligent wide-area water quality monitoring and analysis system exploiting unmanned surface vehicles and ensemble learning,” Water, vol. 12, no. 3, p. 681, Mar. 2020, doi: 10.3390/w12030681
P. Lea, IoT and Edge computing for architects, Second. PACKT Publishing, 2020
K. J. Singh y D. S. Kapoor, “Create Your Own Internet of Things: A survey of IoT platforms.”, IEEE Consum. Electron. Mag., vol. 6, núm. 2, pp. 57–68, abr. 2017, doi: 10.1109/MCE.2016.2640718
R. Baena-Navarro, F. Torres-Hoyos, C. Uc–Rios, y R. F. Colmenares-Quintero, “Design and assembly of an IoT-based device to determine the absorbed dose of gamma and UV radiation”, Appl. Radiat. Isot., vol. 166, p. 109359, dic. 2020, doi: 10.1016/j.apradiso.2020.109359
M. Ahmad, A. Ishtiaq, M. A. Habib, and S. H. Ahmed, “A review of internet of things (IoT) connectivity techniques,” in Recent Trends and Advances in Wireless and IoT-enabled Networks, Cham: Springer, 2019, pp. 25–36
R. Cheour, S. Khriji, M. Abid, and O. Kanoun, “Microcontrollers for IoT: optimizations, computing paradigms, and future directions,” in 2020 IEEE 6th World Forum on Internet of Things (WF-IoT), Jun. 2020, pp. 1–7, doi: 10.1109/WFIoT48130.2020.9221219
N. Adimalla, “Controlling factors and mechanism of groundwater quality variation in semiarid region of South India: an approach of water quality index (WQI) and health risk assessment (HRA),” Environmental Geochemistry and Health, vol. 42, no. 6, pp. 1725–1752, Jun. 2020, doi: 10.1007/s10653-019-00374-8
N. Singh and M. Sharma, “Assessment of the quality of drinking water sources and human health in a rural area of Solan, North India,” MAPAN, vol. 35, no. 2, pp. 301–308, Jun. 2020, doi: 10.1007/s12647-019-00354-4
K. S. Carvalho and S. Wang, “Characterizing the Indian Ocean sea level changes and potential coastal flooding impacts under global warming,” Journal of Hydrology, vol. 569, pp. 373–386, Feb. 2019, doi: 10.1016/j.jhydrol.2018.11.072
B. Jain, A. K. Singh, and M. A. B. H. Susan, “The world around bottled water,” in Bottled and Packaged Water, Elsevier, 2019, pp. 39–61
J. L. Wescoat, S. Fletcher, and M. Novellino, “National rural drinking water monitoring: progress and challenges with India’s IMIS database,” Water Policy, vol. 18, no. 4, pp. 1015–1032, Aug. 2016, doi: 10.2166/wp.2016.158
S. V. Mishra, A. Gayen, and S. M. Haque, “COVID-19 and urban vulnerability in India,” Habitat International, vol. 103, p. 102230, Sep. 2020, doi: 10.1016/j.habitatint.2020.102230
J. Wang, Y. Li, J. Huang, T. Yan, and T. Sun, “Growing water scarcity, food security and government responses in China,” Global Food Security, vol. 14, pp. 9–17, Sep. 2017, doi: 10.1016/j.gfs.2017.01.003
J. Cai, O. Varis, and H. Yin, “China’s water resources vulnerability: A spatio-temporal analysis during 2003–2013,” Journal of Cleaner Production, vol. 142, pp. 2901–2910, Jan. 2017, doi: 10.1016/j.jclepro.2016.10.180
E. Wang, Q. Li, H. Hu, F. Peng, P. Zhang, and J. Li, “Spatial characteristics and influencing factors of river pollution in China,” Water Environment Research, vol. 91, no. 4, pp. 351–363, Apr. 2019, doi: 10.1002/wer.1044
V. Puig, C. Ocampo-Martínez, R. Pérez, G. Cembrano, J. Quevedo, and T. Escobet, Eds., Real-time monitoring and operational control of drinking-water systems. Cham: Springer International Publishing, 2017
DANE, “National population census and national housing census,” DANE, publicacion para todos, 2018. https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/censo-nacional-de-poblacion-y-vivenda2018/cuantos-somos (accessed Jun. 17, 2021)
“The Millennium Development Goals Report 2015,” 2015. [Online]. Available: https://www.undp.org/publications/millenniumdevelopment-goals-report-2015
L. M. S. Lima-Rodrigues and D. A. Rodrigues, “Agenda 2030,” Quaestio - Revista de Estudos em Educação, vol. 22, no. 3, pp. 721–739, Dec. 2020, doi: 10.22483/2177-5796.2020v22n3p721-739
M. Boeker, W. Vach, and E. Motschall, “Google Scholar as replacement for systematic literature searches: good relative recall and precision are not enough,” BMC Medical Research Methodology, vol. 13, no. 1, p. 131, Dec. 2013, doi: 10.1186/1471-2288- 13-131
L. A. E. Roberto and N. G. Ramirez, “Implementation of an electronic water quality monitoring system for a fish pond,” Universidad Distrital Francisco José de Caldas, 2020
S. E. C. Bastidas and R. A. D. Plata, “IoT system with UAV and GPR to identify groundwater areas in the Department of La Guajira-Colombia (in Spanis),” Encuentro Internacional de Educación en Ingeniería, 2020
Y. Núñez-Blanco, E. Ramírez-Cerpa, and A. Sánchez-Comas, “Review of telemetry systems in rivers: proposal for the Magdalena River, Barranquilla, Colombia (in Spanis),” Tecnología y ciencias del agua, vol. 11, no. 5, pp. 298–343, Sep. 2020, doi: 10.24850/j-tyca-2020-05-08
J. Li and S. Cao, “A low-cost wireless water quality auto-monitoring system,” International Journal of Online and Biomedical Engineering (iJOE), vol. 11, no. 3, p. 37, May 2015, doi: 10.3991/ijoe.v11i3.4488
Y. Saragih, G. R. Hakim, A. Elisabet S., and H. A. Roostiani, “Monitoring design of methods and contents methods in semi real water tandon by using Arduino –based on internet of things,” in 2019 4th International Conference and Workshops on Recent Advances and Innovations in Engineering (ICRAIE), Nov. 2019, pp. 1–4, doi: 10.1109/ICRAIE47735.2019.9037783
S. Rafid, F. Redwan, A. H. Abrar, S. N. U. Ahmed, and B. B. Pathik, “Water quality monitoring system: a sustainable design,” in 2019 6th International Conference on Signal Processing and Integrated Networks (SPIN), Mar. 2019, pp. 414–419, doi: 10.1109/SPIN.2019.8711645
M. P. P. Sithole, N. I. Nwulu, and E. M. Dogo, “Dataset for a wireless sensor network based drinking-water quality monitoring and notification system,” Data in Brief, vol. 27, p. 104813, Dec. 2019, doi: 10.1016/j.dib.2019.104813
dc.rights.license.none.fl_str_mv Atribución – Compartir igual
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/closedAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_14cb
rights_invalid_str_mv Atribución – Compartir igual
http://purl.org/coar/access_right/c_14cb
eu_rights_str_mv closedAccess
dc.format.extent.spa.fl_str_mv 405 - 418
dc.coverage.temporal.spa.fl_str_mv 28 (1)
dc.publisher.spa.fl_str_mv Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería de Sistemas, Montería
dc.publisher.program.spa.fl_str_mv Ingeniería de Sistemas
dc.publisher.place.spa.fl_str_mv Montería
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/9ba2d294-c337-4341-84c7-39037e09b1ca/download
https://repository.ucc.edu.co/bitstreams/2e06f96c-a793-4ac5-8e81-d4f5a2332039/download
https://repository.ucc.edu.co/bitstreams/d06bc351-d27b-4f72-b89d-9e89a20bab4a/download
https://repository.ucc.edu.co/bitstreams/187800e9-14d3-4365-8cc8-cde732317b64/download
https://repository.ucc.edu.co/bitstreams/eed81b16-518d-4408-b31f-55d3d924f4c6/download
https://repository.ucc.edu.co/bitstreams/af9ceefb-224a-4a1e-8f12-8faa281bac96/download
https://repository.ucc.edu.co/bitstreams/29df2836-f1ed-4a95-9fb5-7b939ef7e07e/download
bitstream.checksum.fl_str_mv 7c2786d69988e6fc5aa95700feacb579
f0b04ed5feb7ec612aee8d7231445ab2
8a4605be74aa9ea9d79846c1fba20a33
42fb6a3664ad767247febf46f948fd3f
5379963bdeb62b49f754f920c6c8d2ae
0908e5e3b5d4e64bcc8618dead1e8c42
cc81f9056e4192f9734e2f9d0653417f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808789393651007488
spelling Carriazo Regino, YuliethBaena Navarro, Rubén EnriqueTorres Hoyos, Francisco JoséVergara Villadiego, Juan Raúl Roa Prada, Sebastián28 (1)2022-10-12T21:37:10Z2022-10-12T21:37:10Z2022-102502-4760http://doi.org/10.11591/ijeecs.v28.i1.pp405-418https://hdl.handle.net/20.500.12494/46707Carriazo Regino, Y., Baena Navarro, R., Torres Hoyos, F., Vergara Villadiego, J., & Roa Prada, S. (2022). IOT-based drinking water quality measurement: systematic literature review. Indonesian Journal of Electrical Engineering and Computer Science, 28(1), 405. https://doi.org/10.11591/ijeecs.v28.i1.pp405-418El desarrollo sostenible en todo el mundo depende de varios factores como la economía, la educación de calidad, la agricultura, la industria, entre otros, pero el medio ambiente es uno de los más importantes. La industrialización y los nuevos planes de ordenamiento territorial han provocado la proliferación de contaminantes en los recursos hídricos, lo que plantea un serio desafío público. Como se describe en los Objetivos de Desarrollo Sostenible (ODS), se necesitan métodos innovadores de monitoreo de la calidad del agua para garantizar el acceso al agua, la gestión sostenible y el saneamiento. En este sentido, se buscan tecnologías que contribuyan al desarrollo e implementación de sistemas de monitoreo de calidad de aguas subterráneas y superficiales en tiempo real, para que sus parámetros puedan ser evaluados mediante análisis descriptivos, en poblaciones rurales y zonas de difícil acceso. Hoy en día, el Internet de las cosas (IoT) y el desarrollo de sensores modernos son más utilizados, por lo que esta investigación revisa las últimas tecnologías para monitorear y evaluar la calidad del agua utilizando el potencial y las posibilidades del IoT. La principal contribución de este artículo es presentar una descripción general del estado del arte de las aplicaciones e instrumentación de IoT para el monitoreo de la calidad del agua, centrándose en las últimas innovaciones, con el fin de identificar áreas interesantes y desafiantes que pueden explorarse en futuras investigaciones.Sustainable development throughout the world depends on several factors such as the economy, quality education, agriculture, industry, among others, but the environment is one of the most important. Industrialization and new land use plans have caused the proliferation of pollutants in water resources, which poses a serious public challenge. As outlined in the Sustainable Development Goals (SDGs), innovative water quality monitoring methods are needed to ensure access to water, sustainable management and sanitation. In this sense, technologies are sought that contribute to the development and implementation of groundwater and surface water quality monitoring systems in real time, so that their parameters can be evaluated through descriptive analysis, in rural populations and areas of difficult access. Nowadays, the Internet of Things (IoT) and the development of modern sensors are more used, so this research reviews the latest technologies to monitor and evaluate water quality using the potential and possibilities of the IoT. The main contribution of this article is to present an overview of the state of the art of IoT applications and instrumentation for water quality monitoring, focusing on the latest innovations, in order to identify interesting and challenging areas that can be explored in future research.https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000026150https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001350799https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000199141https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000306983https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000295523http://orcid.org/0000-0002-2163-9263http://orcid.org/0000-0001-5055-6515http://orcid.org/0000-0002-4526-4240http://orcid.org/0000-0003-2651-4694http://orcid.org/0000-0002-1079-9798https://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000009491yulieth.carriazor@campusucc.edu.corbaena@correo.unicordoba.edu.cofrancisco.torresh@campusucc.edu.cojuan.vergara@campusucc.edu.cosroa@unab.edu.co405 - 418Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería de Sistemas, MonteríaIngeniería de SistemasMonteríahttps://ijeecs.iaescore.com/index.php/IJEECS/article/view/27929Indonesian Journal of Electrical Engineering and Computer ScienceGlobal Risks Report 2019 14th Edition, World Economic Forum, 2019. [Online]. Available: https://www3.weforum.org/ docs/WEF_Global_Risks_Report_2019.pdfN. B. Harmancioglu, “Overview of water policy developments: pre- and post-2015 development agenda,” Water Resources Management, vol. 31, no. 10, pp. 3001–3021, Aug. 2017, doi: 10.1007/s11269-017-1725-3C. P. Y. Rossio and Y. Seo, “Participatory approaches in the planning of drinking water supply and basic sanitation projects in the rural areas of Colombia,” KSCE Journal of Civil Engineering, vol. 24, no. 4, pp. 1374–1382, Apr. 2020, doi: 10.1007/s12205- 020-1091-1UN, “COVID-19 will not be stopped without providing safe water to people living in vulnerability – UN experts,” Office of the High Commissioner for Human Rights (UN Human Rights), 2020. https://www.ohchr.org/EN/NewsEvents/Pages/ DisplayNews.aspx?NewsID=25738&LangID=E (accessed Jun. 16, 2021)World Health Organiztion, “1 in 3 people globally do not have access to safe drinking water – UNICEF, WHO,” 2019. https://www.who.int/news/item/18-06-2019-1-in-3-people-globally-do-not-have-access-to-safe-drinking-water-unicef-who (accessed Jun. 17, 2021)M. Zelenakova, P. Hlavínek, and A. M. Negm, Management of water quality and quantity. Cham: Springer International Publishing, 2020P. V. Torres-Carrion, C. S. Gonzalez-Gonzalez, S. Aciar, and G. Rodriguez-Morales, “Methodology for systematic literature review applied to engineering and education,” in 2018 IEEE Global Engineering Education Conference (EDUCON), Apr. 2018, pp. 1364–1373, doi: 10.1109/EDUCON.2018.8363388M. F. Ali, D. N. K. Jayakody, Y. A. Chursin, S. Affes, and S. Dmitry, “Recent advances and future directions on underwater wireless communications,” Archives of Computational Methods in Engineering, vol. 27, no. 5, pp. 1379–1412, Nov. 2020, doi: 10.1007/s11831-019-09354-8S. Geetha and S. Gouthami, “Internet of things enabled real time water quality monitoring system,” Smart Water, vol. 2, no. 1, p. 1, Dec. 2016, doi: 10.1186/s40713-017-0005-yB. P. Wong and B. Kerkez, “Real-time environmental sensor data: an application to water quality using web services,” Environmental Modelling & Software, vol. 84, pp. 505–517, Oct. 2016, doi: 10.1016/j.envsoft.2016.07.020P. J. Vikesland, “Nanosensors for water quality monitoring,” Nature Nanotechnology, vol. 13, no. 8, pp. 651–660, Aug. 2018, doi: 10.1038/s41565-018-0209-9K. Saravanan, E. Anusuya, R. Kumar, and L. H. Son, “Real-time water quality monitoring using internet of things in SCADA,” Environmental Monitoring and Assessment, vol. 190, no. 9, p. 556, Sep. 2018, doi: 10.1007/s10661-018-6914-xM. E. E. Alahi, S. C. Mukhopadhyay, and L. Burkitt, “Imprinted polymer coated impedimetric nitrate sensor for real- time water quality monitoring,” Sensors and Actuators B: Chemical, vol. 259, pp. 753–761, Apr. 2018, doi: 10.1016/j.snb.2017.12.104M. Islam, F. Ashraf, T. Alam, N. Misran, and K. Mat, “A compact ultrawideband antenna based on hexagonal split-ring resonator for ph sensor application,” Sensors, vol. 18, no. 9, p. 2959, Sep. 2018, doi: 10.3390/s18092959M. Carminati et al., “A self-powered wireless water quality sensing network enabling smart monitoring of biological and chemical stability in supply systems,” Sensors, vol. 20, no. 4, p. 1125, Feb. 2020, doi: 10.3390/s20041125S. Pasika and S. T. Gandla, “Smart water quality monitoring system with cost-effective using IoT,” Heliyon, vol. 6, no. 7, p. e04096, Jul. 2020, doi: 10.1016/j.heliyon.2020.e04096R. Mirzavand, M. Honari, B. Laribi, B. Khorshidi, M. Sadrzadeh, and P. Mousavi, “an unpowered sensor node for real-time water quality assessment (humic acid detection),” Electronics, vol. 7, no. 10, p. 231, Oct. 2018, doi: 10.3390/electronics7100231M. Parameswari and M. B. Moses, “Retracted Article: Online measurement of water quality and reporting system using prominent rule controller based on aqua care-IOT,” Design Automation for Embedded Systems, vol. 22, no. 1–2, pp. 25–44, Jun. 2018, doi: 10.1007/s10617-017-9187-7Q. Zou, Q. Xiong, Q. Li, H. Yi, Y. Yu, and C. Wu, “A water quality prediction method based on the multi-time scale bidirectional long short-term memory network,” Environmental Science and Pollution Research, vol. 27, no. 14, pp. 16853–16864, May 2020, doi: 10.1007/s11356-020-08087-7E. Climent, J. Pelegri-Sebastia, T. Sogorb, J. Talens, and J. Chilo, “Development of the MOOSY4 eNose IoT for sulphur-based VOC water pollution detection,” Sensors, vol. 17, no. 8, p. 1917, Aug. 2017, doi: 10.3390/s17081917K. Spandana and V. R. Seshagiri Rao, “Internet of things (IoT) based smart water quality monitoring system,” International Journal of Engineering & Technology, vol. 7, no. 3.6, p. 259, Jul. 2018, doi: 10.14419/ijet.v7i3.6.14985M. A. A. Aziz, M. F. Abas, M. K. A. A. Bashri, N. M. Saad, and M. H. Ariff, “Evaluating IoT based passive water catchment monitoring system data acquisition and analysis,” Bulletin of Electrical Engineering and Informatics, vol. 8, no. 4, pp. 1373– 1382, Dec. 2019, doi: 10.11591/eei.v8i4.1583H. Cao, Z. Guo, S. Wang, H. Cheng, and C. Zhan, “Intelligent wide-area water quality monitoring and analysis system exploiting unmanned surface vehicles and ensemble learning,” Water, vol. 12, no. 3, p. 681, Mar. 2020, doi: 10.3390/w12030681P. Lea, IoT and Edge computing for architects, Second. PACKT Publishing, 2020K. J. Singh y D. S. Kapoor, “Create Your Own Internet of Things: A survey of IoT platforms.”, IEEE Consum. Electron. Mag., vol. 6, núm. 2, pp. 57–68, abr. 2017, doi: 10.1109/MCE.2016.2640718R. Baena-Navarro, F. Torres-Hoyos, C. Uc–Rios, y R. F. Colmenares-Quintero, “Design and assembly of an IoT-based device to determine the absorbed dose of gamma and UV radiation”, Appl. Radiat. Isot., vol. 166, p. 109359, dic. 2020, doi: 10.1016/j.apradiso.2020.109359M. Ahmad, A. Ishtiaq, M. A. Habib, and S. H. Ahmed, “A review of internet of things (IoT) connectivity techniques,” in Recent Trends and Advances in Wireless and IoT-enabled Networks, Cham: Springer, 2019, pp. 25–36R. Cheour, S. Khriji, M. Abid, and O. Kanoun, “Microcontrollers for IoT: optimizations, computing paradigms, and future directions,” in 2020 IEEE 6th World Forum on Internet of Things (WF-IoT), Jun. 2020, pp. 1–7, doi: 10.1109/WFIoT48130.2020.9221219N. Adimalla, “Controlling factors and mechanism of groundwater quality variation in semiarid region of South India: an approach of water quality index (WQI) and health risk assessment (HRA),” Environmental Geochemistry and Health, vol. 42, no. 6, pp. 1725–1752, Jun. 2020, doi: 10.1007/s10653-019-00374-8N. Singh and M. Sharma, “Assessment of the quality of drinking water sources and human health in a rural area of Solan, North India,” MAPAN, vol. 35, no. 2, pp. 301–308, Jun. 2020, doi: 10.1007/s12647-019-00354-4K. S. Carvalho and S. Wang, “Characterizing the Indian Ocean sea level changes and potential coastal flooding impacts under global warming,” Journal of Hydrology, vol. 569, pp. 373–386, Feb. 2019, doi: 10.1016/j.jhydrol.2018.11.072B. Jain, A. K. Singh, and M. A. B. H. Susan, “The world around bottled water,” in Bottled and Packaged Water, Elsevier, 2019, pp. 39–61J. L. Wescoat, S. Fletcher, and M. Novellino, “National rural drinking water monitoring: progress and challenges with India’s IMIS database,” Water Policy, vol. 18, no. 4, pp. 1015–1032, Aug. 2016, doi: 10.2166/wp.2016.158S. V. Mishra, A. Gayen, and S. M. Haque, “COVID-19 and urban vulnerability in India,” Habitat International, vol. 103, p. 102230, Sep. 2020, doi: 10.1016/j.habitatint.2020.102230J. Wang, Y. Li, J. Huang, T. Yan, and T. Sun, “Growing water scarcity, food security and government responses in China,” Global Food Security, vol. 14, pp. 9–17, Sep. 2017, doi: 10.1016/j.gfs.2017.01.003J. Cai, O. Varis, and H. Yin, “China’s water resources vulnerability: A spatio-temporal analysis during 2003–2013,” Journal of Cleaner Production, vol. 142, pp. 2901–2910, Jan. 2017, doi: 10.1016/j.jclepro.2016.10.180E. Wang, Q. Li, H. Hu, F. Peng, P. Zhang, and J. Li, “Spatial characteristics and influencing factors of river pollution in China,” Water Environment Research, vol. 91, no. 4, pp. 351–363, Apr. 2019, doi: 10.1002/wer.1044V. Puig, C. Ocampo-Martínez, R. Pérez, G. Cembrano, J. Quevedo, and T. Escobet, Eds., Real-time monitoring and operational control of drinking-water systems. Cham: Springer International Publishing, 2017DANE, “National population census and national housing census,” DANE, publicacion para todos, 2018. https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/censo-nacional-de-poblacion-y-vivenda2018/cuantos-somos (accessed Jun. 17, 2021)“The Millennium Development Goals Report 2015,” 2015. [Online]. Available: https://www.undp.org/publications/millenniumdevelopment-goals-report-2015L. M. S. Lima-Rodrigues and D. A. Rodrigues, “Agenda 2030,” Quaestio - Revista de Estudos em Educação, vol. 22, no. 3, pp. 721–739, Dec. 2020, doi: 10.22483/2177-5796.2020v22n3p721-739M. Boeker, W. Vach, and E. Motschall, “Google Scholar as replacement for systematic literature searches: good relative recall and precision are not enough,” BMC Medical Research Methodology, vol. 13, no. 1, p. 131, Dec. 2013, doi: 10.1186/1471-2288- 13-131L. A. E. Roberto and N. G. Ramirez, “Implementation of an electronic water quality monitoring system for a fish pond,” Universidad Distrital Francisco José de Caldas, 2020S. E. C. Bastidas and R. A. D. Plata, “IoT system with UAV and GPR to identify groundwater areas in the Department of La Guajira-Colombia (in Spanis),” Encuentro Internacional de Educación en Ingeniería, 2020Y. Núñez-Blanco, E. Ramírez-Cerpa, and A. Sánchez-Comas, “Review of telemetry systems in rivers: proposal for the Magdalena River, Barranquilla, Colombia (in Spanis),” Tecnología y ciencias del agua, vol. 11, no. 5, pp. 298–343, Sep. 2020, doi: 10.24850/j-tyca-2020-05-08J. Li and S. Cao, “A low-cost wireless water quality auto-monitoring system,” International Journal of Online and Biomedical Engineering (iJOE), vol. 11, no. 3, p. 37, May 2015, doi: 10.3991/ijoe.v11i3.4488Y. Saragih, G. R. Hakim, A. Elisabet S., and H. A. Roostiani, “Monitoring design of methods and contents methods in semi real water tandon by using Arduino –based on internet of things,” in 2019 4th International Conference and Workshops on Recent Advances and Innovations in Engineering (ICRAIE), Nov. 2019, pp. 1–4, doi: 10.1109/ICRAIE47735.2019.9037783S. Rafid, F. Redwan, A. H. Abrar, S. N. U. Ahmed, and B. B. Pathik, “Water quality monitoring system: a sustainable design,” in 2019 6th International Conference on Signal Processing and Integrated Networks (SPIN), Mar. 2019, pp. 414–419, doi: 10.1109/SPIN.2019.8711645M. P. P. Sithole, N. I. Nwulu, and E. M. Dogo, “Dataset for a wireless sensor network based drinking-water quality monitoring and notification system,” Data in Brief, vol. 27, p. 104813, Dec. 2019, doi: 10.1016/j.dib.2019.104813Análisis descriptivoMedio ambienteInternet de las cosasSistema de monitoreoCalidad del aguaDescriptive analysisEnvironmentInternet of thingsMonitoring systemWater qualityIOT-Based drinking water quality measurement: systematic literature reviewArtículos Científicoshttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribución – Compartir igualinfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbPublicationORIGINAL2022_Iot-based_drinking_water.pdf2022_Iot-based_drinking_water.pdfArtículoapplication/pdf1149937https://repository.ucc.edu.co/bitstreams/9ba2d294-c337-4341-84c7-39037e09b1ca/download7c2786d69988e6fc5aa95700feacb579MD512022_Iot-based_drinking_water-licencia.pdf2022_Iot-based_drinking_water-licencia.pdfLicencia de usoapplication/pdf261572https://repository.ucc.edu.co/bitstreams/2e06f96c-a793-4ac5-8e81-d4f5a2332039/downloadf0b04ed5feb7ec612aee8d7231445ab2MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repository.ucc.edu.co/bitstreams/d06bc351-d27b-4f72-b89d-9e89a20bab4a/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAIL2022_Iot-based_drinking_water.pdf.jpg2022_Iot-based_drinking_water.pdf.jpgGenerated Thumbnailimage/jpeg5624https://repository.ucc.edu.co/bitstreams/187800e9-14d3-4365-8cc8-cde732317b64/download42fb6a3664ad767247febf46f948fd3fMD552022_Iot-based_drinking_water-licencia.pdf.jpg2022_Iot-based_drinking_water-licencia.pdf.jpgGenerated Thumbnailimage/jpeg4887https://repository.ucc.edu.co/bitstreams/eed81b16-518d-4408-b31f-55d3d924f4c6/download5379963bdeb62b49f754f920c6c8d2aeMD56TEXT2022_Iot-based_drinking_water.pdf.txt2022_Iot-based_drinking_water.pdf.txtExtracted texttext/plain48089https://repository.ucc.edu.co/bitstreams/af9ceefb-224a-4a1e-8f12-8faa281bac96/download0908e5e3b5d4e64bcc8618dead1e8c42MD572022_Iot-based_drinking_water-licencia.pdf.txt2022_Iot-based_drinking_water-licencia.pdf.txtExtracted texttext/plain5959https://repository.ucc.edu.co/bitstreams/29df2836-f1ed-4a95-9fb5-7b939ef7e07e/downloadcc81f9056e4192f9734e2f9d0653417fMD5820.500.12494/46707oai:repository.ucc.edu.co:20.500.12494/467072024-08-10 21:02:37.476restrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=