Evaluación del uso de la biomasa del departamento del Huila en la producción de biocombustible densificado (pellet) de alto poder calorífico
Los residuos agrícolas y forestales son las principales fuentes de energía para las actividades domésticas e industriales. Sin embargo, a menudo no se utilizan y son desechados generando impactos negativos. Una alternativa propuesta por un gran número de investigadores es el desarrollo de biocombust...
- Autores:
-
Polo Vanegas, Angie Julieth
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2019
- Institución:
- Universidad Cooperativa de Colombia
- Repositorio:
- Repositorio UCC
- Idioma:
- OAI Identifier:
- oai:repository.ucc.edu.co:20.500.12494/15612
- Acceso en línea:
- https://hdl.handle.net/20.500.12494/15612
- Palabra clave:
- Biomasa
Pirolisis
Pellets
Briquetas
Poder Calorífico
Densificación
TG 2019 IIN 15612
- Rights
- openAccess
- License
- Atribución – No comercial – Sin Derivar
id |
COOPER2_a5a908c6d7d40167c0c3c99933a9cb04 |
---|---|
oai_identifier_str |
oai:repository.ucc.edu.co:20.500.12494/15612 |
network_acronym_str |
COOPER2 |
network_name_str |
Repositorio UCC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Evaluación del uso de la biomasa del departamento del Huila en la producción de biocombustible densificado (pellet) de alto poder calorífico |
title |
Evaluación del uso de la biomasa del departamento del Huila en la producción de biocombustible densificado (pellet) de alto poder calorífico |
spellingShingle |
Evaluación del uso de la biomasa del departamento del Huila en la producción de biocombustible densificado (pellet) de alto poder calorífico Biomasa Pirolisis Pellets Briquetas Poder Calorífico Densificación TG 2019 IIN 15612 |
title_short |
Evaluación del uso de la biomasa del departamento del Huila en la producción de biocombustible densificado (pellet) de alto poder calorífico |
title_full |
Evaluación del uso de la biomasa del departamento del Huila en la producción de biocombustible densificado (pellet) de alto poder calorífico |
title_fullStr |
Evaluación del uso de la biomasa del departamento del Huila en la producción de biocombustible densificado (pellet) de alto poder calorífico |
title_full_unstemmed |
Evaluación del uso de la biomasa del departamento del Huila en la producción de biocombustible densificado (pellet) de alto poder calorífico |
title_sort |
Evaluación del uso de la biomasa del departamento del Huila en la producción de biocombustible densificado (pellet) de alto poder calorífico |
dc.creator.fl_str_mv |
Polo Vanegas, Angie Julieth |
dc.contributor.advisor.none.fl_str_mv |
Delgado, Daniel Ricardo |
dc.contributor.author.none.fl_str_mv |
Polo Vanegas, Angie Julieth |
dc.subject.spa.fl_str_mv |
Biomasa Pirolisis Pellets Briquetas Poder Calorífico Densificación |
topic |
Biomasa Pirolisis Pellets Briquetas Poder Calorífico Densificación TG 2019 IIN 15612 |
dc.subject.classification.spa.fl_str_mv |
TG 2019 IIN 15612 |
description |
Los residuos agrícolas y forestales son las principales fuentes de energía para las actividades domésticas e industriales. Sin embargo, a menudo no se utilizan y son desechados generando impactos negativos. Una alternativa propuesta por un gran número de investigadores es el desarrollo de biocombustibles sólidos a partir de los cuales se obtiene una buena eficacia energética. Es así como en este trabajo se pretende determinar la relación entre las propiedades de resistencia mecánica, humedad, friabilidad, capacidad de humectación, composición y los valores de poder calorífico de diferentes sistemas densificados para determinar si es pertinente el uso de biomasa como alternativa de biocombustible en el departamento del Huila. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2019-12-13T14:21:41Z |
dc.date.available.none.fl_str_mv |
2019-12-13T14:21:41Z |
dc.date.issued.none.fl_str_mv |
2019-11-22 |
dc.type.none.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12494/15612 |
dc.identifier.bibliographicCitation.spa.fl_str_mv |
Polo Vanegas, A. J. (2019). Evaluación del uso de la biomasa del departamento del Huila en la producción de biocombustible densificado (pellet) de alto poder calorífico. (Tesis de pregrado). Recuperado de: http://hdl.handle.net/20.500.12494/15612 |
url |
https://hdl.handle.net/20.500.12494/15612 |
identifier_str_mv |
Polo Vanegas, A. J. (2019). Evaluación del uso de la biomasa del departamento del Huila en la producción de biocombustible densificado (pellet) de alto poder calorífico. (Tesis de pregrado). Recuperado de: http://hdl.handle.net/20.500.12494/15612 |
dc.relation.references.spa.fl_str_mv |
Al Arni, S. (2018). Comparison of slow and fast pyrolysis for converting biomass into fuel. Renewable Energy, 124, 197–201. https://doi.org/10.1016/j.renene.2017.04.060 Alauddin, Z. A. B. Z., Lahijani, P., Mohammadi, M., & Mohamed, A. R. (2010). Gasification of lignocellulosic biomass in fluidized beds for renewable energy development: A review. Renewable and Sustainable Energy Reviews. Elsevier Ltd. https://doi.org/10.1016/j.rser.2010.07.026 liari, Y., & Haghani, A. (2016, June 1). Planning for integration of wind power capacity in power generation using stochastic optimization. Renewable and Sustainable Energy Reviews. Elsevier Ltd. https://doi.org/10.1016/j.rser.2016.01.018 Armaroli, N., & Balzani, V. (2011, September). Towards an electricity-powered world. Energy and Environmental Science. https://doi.org/10.1039/c1ee01249e Brethauer, S., & Studer, M. H. (2015). Biochemical conversion processes of lignocellulosic biomass to fuels and chemicals - A review. Chimia, 69(10), 572–581. https://doi.org/10.2533/chimia.2015.572 D’Adamo, I., & Rosa, P. (2016). Current state of renewable energies performances in the European Union: A new reference framework. Energy Conversion and Management, 121, 84–92. https://doi.org/10.1016/j.enconman.2016.05.027 Davies, A., Soheilian, R., Zhuo, C., & Levendis, Y. A. (2013). Pyrolytic Conversion of Biomass Residues to Gaseous Fuels for Electricity Generation. Journal of Energy Resources Technology, 136(2), 021101. https://doi.org/10.1115/1.4025286 Difs, K., Wetterlund, E., Trygg, L., & Söderström, M. (2010). Biomass gasification opportunities in a district heating system. Biomass and Bioenergy, 34(5), 637–651. https://doi.org/10.1016/j.biombioe.2010.01.007 Duić, N., Guzović, Z., Kafarov, V., Klemeš, J. J., Mathiessen, B. vad, & Yan, J. (2013). Sustainable development of energy, water and environment systems. Applied Energy, 101, 3–5. https://doi.org/10.1016/j.apenergy.2012.08.002 Fortov, V. E., & Popel’, O. S. (2014). The current status of the development of renewable energy sources worldwide and in Russia. Thermal Engineering, 61(6), 389–398. https://doi.org/10.1134/S0040601514060020 Huber, G. W., Iborra, S., & Corma, A. (2006, September). Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chemical Reviews. https://doi.org/10.1021/cr068360d Keshav, P. K., Shaik, N., Koti, S., & Linga, V. R. (2016). Bioconversion of alkali delignified cotton stalk using two-stage dilute acid hydrolysis and fermentation of detoxified hydrolysate into ethanol. Industrial Crops and Products, 91, 323–331. https://doi.org/10.1016/j.indcrop.2016.07.031 Liu, Z., & Han, G. (2015). Production of solid fuel biochar from waste biomass by low temperature pyrolysis. Fuel, 158, 159–165. https://doi.org/10.1016/j.fuel.2015.05.032 Mišljenović, N., Mosbye, J., Schüller, R. B., Lekang, O. I., & Salas-Bringas, C. (2015). Physical quality and surface hydration properties of wood based pellets blended with waste vegetable oil. Fuel Processing Technology, 134, 214–222. https://doi.org/10.1016/j.fuproc.2015.01.037 Mohan, D., Pittman, C. U., & Steele, P. H. (2006, May). Pyrolysis of wood/biomass for bio-oil: A critical review. Energy and Fuels. https://doi.org/10.1021/ef0502397 Muazu, R. I., & Stegemann, J. A. (2015). Effects of operating variables on durability of fuel briquettes from rice husks and corn cobs. Fuel Processing Technology, 133, 137–145. https://doi.org/10.1016/j.fuproc.2015.01.022 Nizetic, S. (2011). Technical utilisation of convective vortices for carbon-free electricity production: A review. Energy, 36(2), 1236–1242. https://doi.org/10.1016/j.energy.2010.11.021 Nižetić, S., Tolj, I., & Papadopoulos, A. M. (2015). Hybrid energy fuel cell based system for household applications in a Mediterranean climate. Energy Conversion and Management, 105, 1037–1045. https://doi.org/10.1016/j.enconman.2015.08.063 Promdee, K., & Vitidsant, T. (2013). Synthesis of char, bio-oil and gases using a screw feeder pyrolysis reactor. Coke and Chemistry, 56(12), 466–469. https://doi.org/10.3103/S1068364X13120107 Ragauskas, A. J., Williams, C. K., Davison, B. H., Britovsek, G., Cairney, J., Eckert, C. A., … Tschaplinski, T. (2006, January 27). The path forward for biofuels and biomaterials. Science. https://doi.org/10.1126/science.1114736 Schneider, J., Grube, C., Herrmann, A., & Rönsch, S. (2016). Atmospheric entrained-flow gasification of biomass and lignite for decentralized applications. Fuel Processing Technology, 152, 72–82. https://doi.org/10.1016/j.fuproc.2016.05.047 Schönnenbeck, C., Trouvé, G., Valente, M., Garra, P., & Brilhac, J. F. (2016). Combustion tests of grape marc in a multi-fuel domestic boiler. Fuel, 180, 324–331. https://doi.org/10.1016/j.fuel.2016.04.034 Serrano, C., Monedero, E., Lapuerta, M., & Portero, H. (2011). Effect of moisture content, particle size and pine addition on quality parameters of barley straw pellets. Fuel Processing Technology, 92(3), 699–706. https://doi.org/10.1016/j.fuproc.2010.11.031 Soto, G., & Núñez, M. (2008). Manufacturing pellets of charcoal, using saw dust of Pinus radiata (D. Don), as a binder material. Maderas: Ciencia y Tecnologia, 10(2), 129–137. https://doi.org/10.4067/S0718-221X2008000200005 Sutcu, H. (2008). The examination of liquid, solid, and gas products obtained by the pyrolysis of the three different peat and reed samples. Journal of Energy Resources Technology, Transactions of the ASME, 130(2), 0214011–0214014. https://doi.org/10.1115/1.2906118 Tabakaev, R., Shanenkov, I., Kazakov, A., & Zavorin, A. (2017). Thermal processing of biomass into high-calorific solid composite fuel. Journal of Analytical and Applied Pyrolysis, 124, 94–102. https://doi.org/10.1016/j.jaap.2017.02.016 Tugov, A. N., Ryabov, G. A., Shtegman, A. V., Ryzhii, I. A., & Litun, D. S. (2016). All-Russia Thermal Engineering Institute experience in using difficult to burn fuels in the power industry. Thermal Engineering, 63(7), 455–462. https://doi.org/10.1134/S0040601516070089 Tumuluru, J. S., Wright, C. T., Hess, J. R., & Kenney, K. L. (2011, November). A review of biomass densification systems to develop uniform feedstock commodities for bioenergy application. Biofuels, Bioproducts and Biorefining. https://doi.org/10.1002/bbb.324 Vassilev, S. V., Vassileva, C. G., & Vassilev, V. S. (2015, June 8). Advantages and disadvantages of composition and properties of biomass in comparison with coal: An overview. Fuel. Elsevier Ltd. https://doi.org/10.1016/j.fuel.2015.05.050 Venkata Mohan, S., Nikhil, G. N., Chiranjeevi, P., Nagendranatha Reddy, C., Rohit, M. V., Kumar, A. N., & Sarkar, O. (2016, September 1). Waste biorefinery models towards sustainable circular bioeconomy: Critical review and future perspectives. Bioresource Technology. Elsevier Ltd. https://doi.org/10.1016/j.biortech.2016.03.130 Xiu, S., & Shahbazi, A. (2012, September). Bio-oil production and upgrading research: A review. Renewable and Sustainable Energy Reviews. https://doi.org/10.1016/j.rser.2012.04.028 Al Arni, S. (2018). Comparison of slow and fast pyrolysis for converting biomass into fuel. Renewable Energy, 124, 197–201. https://doi.org/10.1016/j.renene.2017.04.060 Alauddin, Z. A. B. Z., Lahijani, P., Mohammadi, M., & Mohamed, A. R. (2010). Gasification of lignocellulosic biomass in fluidized beds for renewable energy development: A review. Renewable and Sustainable Energy Reviews. Elsevier Ltd. https://doi.org/10.1016/j.rser.2010.07.026 Aliari, Y., & Haghani, A. (2016, June 1). Planning for integration of wind power capacity in power generation using stochastic optimization. Renewable and Sustainable Energy Reviews. Elsevier Ltd. https://doi.org/10.1016/j.rser.2016.01.018 Armaroli, N., & Balzani, V. (2011, September). Towards an electricity-powered world. Energy and Environmental Science. https://doi.org/10.1039/c1ee01249e Brethauer, S., & Studer, M. H. (2015). Biochemical conversion processes of lignocellulosic biomass to fuels and chemicals - A review. Chimia, 69(10), 572–581. https://doi.org/10.2533/chimia.2015.572 D’Adamo, I., & Rosa, P. (2016). Current state of renewable energies performances in the European Union: A new reference framework. Energy Conversion and Management, 121, 84–92. https://doi.org/10.1016/j.enconman.2016.05.027 Davies, A., Soheilian, R., Zhuo, C., & Levendis, Y. A. (2013). Pyrolytic Conversion of Biomass Residues to Gaseous Fuels for Electricity Generation. Journal of Energy Resources Technology, 136(2), 021101. https://doi.org/10.1115/1.4025286 Difs, K., Wetterlund, E., Trygg, L., & Söderström, M. (2010). Biomass gasification opportunities in a district heating system. Biomass and Bioenergy, 34(5), 637–651. https://doi.org/10.1016/j.biombioe.2010.01.007 Duić, N., Guzović, Z., Kafarov, V., Klemeš, J. J., Mathiessen, B. vad, & Yan, J. (2013). Sustainable development of energy, water and environment systems. Applied Energy, 101, 3–5. https://doi.org/10.1016/j.apenergy.2012.08.002 Fortov, V. E., & Popel’, O. S. (2014). The current status of the development of renewable energy sources worldwide and in Russia. Thermal Engineering, 61(6), 389–398. https://doi.org/10.1134/S0040601514060020 Huber, G. W., Iborra, S., & Corma, A. (2006, September). Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chemical Reviews. https://doi.org/10.1021/cr068360d Keshav, P. K., Shaik, N., Koti, S., & Linga, V. R. (2016). Bioconversion of alkali delignified cotton stalk using two-stage dilute acid hydrolysis and fermentation of detoxified hydrolysate into ethanol. Industrial Crops and Products, 91, 323–331. https://doi.org/10.1016/j.indcrop.2016.07.031 Liu, Z., & Han, G. (2015). Production of solid fuel biochar from waste biomass by low temperature pyrolysis. Fuel, 158, 159–165. https://doi.org/10.1016/j.fuel.2015.05.032 Mišljenović, N., Mosbye, J., Schüller, R. B., Lekang, O. I., & Salas-Bringas, C. (2015). Physical quality and surface hydration properties of wood based pellets blended with waste vegetable oil. Fuel Processing Technology, 134, 214–222. https://doi.org/10.1016/j.fuproc.2015.01.037 Mohan, D., Pittman, C. U., & Steele, P. H. (2006, May). Pyrolysis of wood/biomass for bio-oil: A critical review. Energy and Fuels. https://doi.org/10.1021/ef0502397 Muazu, R. I., & Stegemann, J. A. (2015). Effects of operating variables on durability of fuel briquettes from rice husks and corn cobs. Fuel Processing Technology, 133, 137–145. https://doi.org/10.1016/j.fuproc.2015.01.022 Nizetic, S. (2011). Technical utilisation of convective vortices for carbon-free electricity production: A review. Energy, 36(2), 1236–1242. https://doi.org/10.1016/j.energy.2010.11.021 Nižetić, S., Tolj, I., & Papadopoulos, A. M. (2015). Hybrid energy fuel cell based system for household applications in a Mediterranean climate. Energy Conversion and Management, 105, 1037–1045. https://doi.org/10.1016/j.enconman.2015.08.063 Promdee, K., & Vitidsant, T. (2013). Synthesis of char, bio-oil and gases using a screw feeder pyrolysis reactor. Coke and Chemistry, 56(12), 466–469. https://doi.org/10.3103/S1068364X13120107 Ragauskas, A. J., Williams, C. K., Davison, B. H., Britovsek, G., Cairney, J., Eckert, C. A., … Tschaplinski, T. (2006, January 27). The path forward for biofuels and biomaterials. Science. https://doi.org/10.1126/science.1114736 Schneider, J., Grube, C., Herrmann, A., & Rönsch, S. (2016). Atmospheric entrained-flow gasification of biomass and lignite for decentralized applications. Fuel Processing Technology, 152, 72–82. https://doi.org/10.1016/j.fuproc.2016.05.047 Schönnenbeck, C., Trouvé, G., Valente, M., Garra, P., & Brilhac, J. F. (2016). Combustion tests of grape marc in a multi-fuel domestic boiler. Fuel, 180, 324–331. https://doi.org/10.1016/j.fuel.2016.04.034 Serrano, C., Monedero, E., Lapuerta, M., & Portero, H. (2011). Effect of moisture content, particle size and pine addition on quality parameters of barley straw pellets. Fuel Processing Technology, 92(3), 699–706. https://doi.org/10.1016/j.fuproc.2010.11.031 Soto, G., & Núñez, M. (2008). Manufacturing pellets of charcoal, using saw dust of Pinus radiata (D. Don), as a binder material. Maderas: Ciencia y Tecnologia, 10(2), 129–137. https://doi.org/10.4067/S0718-221X2008000200005 Sutcu, H. (2008). The examination of liquid, solid, and gas products obtained by the pyrolysis of the three different peat and reed samples. Journal of Energy Resources Technology, Transactions of the ASME, 130(2), 0214011–0214014. https://doi.org/10.1115/1.2906118 Tabakaev, R., Shanenkov, I., Kazakov, A., & Zavorin, A. (2017). Thermal processing of biomass into high-calorific solid composite fuel. Journal of Analytical and Applied Pyrolysis, 124, 94–102. https://doi.org/10.1016/j.jaap.2017.02.016 Tugov, A. N., Ryabov, G. A., Shtegman, A. V., Ryzhii, I. A., & Litun, D. S. (2016). All-Russia Thermal Engineering Institute experience in using difficult to burn fuels in the power industry. Thermal Engineering, 63(7), 455–462. https://doi.org/10.1134/S0040601516070089 Tumuluru, J. S., Wright, C. T., Hess, J. R., & Kenney, K. L. (2011, November). A review of biomass densification systems to develop uniform feedstock commodities for bioenergy application. Biofuels, Bioproducts and Biorefining. https://doi.org/10.1002/bbb.324 Vassilev, S. V., Vassileva, C. G., & Vassilev, V. S. (2015, June 8). Advantages and disadvantages of composition and properties of biomass in comparison with coal: An overview. Fuel. Elsevier Ltd. https://doi.org/10.1016/j.fuel.2015.05.050 Venkata Mohan, S., Nikhil, G. N., Chiranjeevi, P., Nagendranatha Reddy, C., Rohit, M. V., Kumar, A. N., & Sarkar, O. (2016, September 1). Waste biorefinery models towards sustainable circular bioeconomy: Critical review and future perspectives. Bioresource Technology. Elsevier Ltd. https://doi.org/10.1016/j.biortech.2016.03.130 Xiu, S., & Shahbazi, A. (2012, September). Bio-oil production and upgrading research: A review. Renewable and Sustainable Energy Reviews. https://doi.org/10.1016/j.rser.2012.04.028 Zhang, S., Asadullah, M., Dong, L., Tay, H. L., & Li, C. Z. (2013). An advanced biomass gasification technology with integrated catalytic hot gas cleaning. Part II: Tar reforming using char as a catalyst or as a catalyst support. Fuel, 112, 646–653. https://doi.org/10.1016/j.fuel.2013.03.015 |
dc.rights.license.none.fl_str_mv |
Atribución – No comercial – Sin Derivar |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución – No comercial – Sin Derivar http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
24 p. |
dc.publisher.spa.fl_str_mv |
Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Industrial, Neiva |
dc.publisher.program.spa.fl_str_mv |
Ingeniería Industrial |
dc.publisher.place.spa.fl_str_mv |
Neiva |
institution |
Universidad Cooperativa de Colombia |
bitstream.url.fl_str_mv |
https://repository.ucc.edu.co/bitstreams/205de78e-a7d1-450b-94f9-69439f1fc9cd/download https://repository.ucc.edu.co/bitstreams/789e1732-aa81-4da2-b68c-76aac9177520/download https://repository.ucc.edu.co/bitstreams/eca1c82a-cd86-42ed-9b27-2d2b7d69656d/download https://repository.ucc.edu.co/bitstreams/455cb5e0-f984-476e-8e76-994acd15f881/download https://repository.ucc.edu.co/bitstreams/cf4ce2bf-83d3-4401-8627-d888d21e5e63/download https://repository.ucc.edu.co/bitstreams/90946662-2ca4-4c58-8241-7918c441a0b7/download https://repository.ucc.edu.co/bitstreams/72643ede-a663-4de1-bda8-de4f2c6f305d/download |
bitstream.checksum.fl_str_mv |
9a5cf8a9317b832ca7f5ff551fccf2ce 68f5582e5675d7de5af1dff2b09f45fa 3bce4f7ab09dfc588f126e1e36e98a45 f0aea90149f9ee60dc5d8e043d3d3652 1a6866eebf295f4cdca0164ab6bad9e5 9d54ab57f28b577c9eae73a20be2aa3d bbf1eb25b801ea125662a4a5557ae5c8 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Cooperativa de Colombia |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1814247126102704128 |
spelling |
Delgado, Daniel RicardoPolo Vanegas, Angie Julieth2019-12-13T14:21:41Z2019-12-13T14:21:41Z2019-11-22https://hdl.handle.net/20.500.12494/15612Polo Vanegas, A. J. (2019). Evaluación del uso de la biomasa del departamento del Huila en la producción de biocombustible densificado (pellet) de alto poder calorífico. (Tesis de pregrado). Recuperado de: http://hdl.handle.net/20.500.12494/15612Los residuos agrícolas y forestales son las principales fuentes de energía para las actividades domésticas e industriales. Sin embargo, a menudo no se utilizan y son desechados generando impactos negativos. Una alternativa propuesta por un gran número de investigadores es el desarrollo de biocombustibles sólidos a partir de los cuales se obtiene una buena eficacia energética. Es así como en este trabajo se pretende determinar la relación entre las propiedades de resistencia mecánica, humedad, friabilidad, capacidad de humectación, composición y los valores de poder calorífico de diferentes sistemas densificados para determinar si es pertinente el uso de biomasa como alternativa de biocombustible en el departamento del Huila.Introducción -- 1. Resumen -- 2. Planteamiento del problema -- 3. Justificación -- 4. Objetivos -- 4.1 Objetivo General -- 4.2 Objetivos Específicos -- 5. Marco referencial -- 6. Metodología -- 7. Resultados y discusión -- 8. Conclusiones -- Bibliografíaangie.polov@campusucc.edu.co24 p.Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Industrial, NeivaIngeniería IndustrialNeivaBiomasaPirolisisPelletsBriquetasPoder CaloríficoDensificaciónTG 2019 IIN 15612Evaluación del uso de la biomasa del departamento del Huila en la producción de biocombustible densificado (pellet) de alto poder caloríficoTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionAtribución – No comercial – Sin Derivarinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Al Arni, S. (2018). Comparison of slow and fast pyrolysis for converting biomass into fuel. Renewable Energy, 124, 197–201. https://doi.org/10.1016/j.renene.2017.04.060Alauddin, Z. A. B. Z., Lahijani, P., Mohammadi, M., & Mohamed, A. R. (2010). Gasification of lignocellulosic biomass in fluidized beds for renewable energy development: A review. Renewable and Sustainable Energy Reviews. Elsevier Ltd. https://doi.org/10.1016/j.rser.2010.07.026liari, Y., & Haghani, A. (2016, June 1). Planning for integration of wind power capacity in power generation using stochastic optimization. Renewable and Sustainable Energy Reviews. Elsevier Ltd. https://doi.org/10.1016/j.rser.2016.01.018Armaroli, N., & Balzani, V. (2011, September). Towards an electricity-powered world. Energy and Environmental Science. https://doi.org/10.1039/c1ee01249eBrethauer, S., & Studer, M. H. (2015). Biochemical conversion processes of lignocellulosic biomass to fuels and chemicals - A review. Chimia, 69(10), 572–581. https://doi.org/10.2533/chimia.2015.572D’Adamo, I., & Rosa, P. (2016). Current state of renewable energies performances in the European Union: A new reference framework. Energy Conversion and Management, 121, 84–92. https://doi.org/10.1016/j.enconman.2016.05.027Davies, A., Soheilian, R., Zhuo, C., & Levendis, Y. A. (2013). Pyrolytic Conversion of Biomass Residues to Gaseous Fuels for Electricity Generation. Journal of Energy Resources Technology, 136(2), 021101. https://doi.org/10.1115/1.4025286Difs, K., Wetterlund, E., Trygg, L., & Söderström, M. (2010). Biomass gasification opportunities in a district heating system. Biomass and Bioenergy, 34(5), 637–651. https://doi.org/10.1016/j.biombioe.2010.01.007Duić, N., Guzović, Z., Kafarov, V., Klemeš, J. J., Mathiessen, B. vad, & Yan, J. (2013). Sustainable development of energy, water and environment systems. Applied Energy, 101, 3–5. https://doi.org/10.1016/j.apenergy.2012.08.002Fortov, V. E., & Popel’, O. S. (2014). The current status of the development of renewable energy sources worldwide and in Russia. Thermal Engineering, 61(6), 389–398. https://doi.org/10.1134/S0040601514060020Huber, G. W., Iborra, S., & Corma, A. (2006, September). Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chemical Reviews. https://doi.org/10.1021/cr068360dKeshav, P. K., Shaik, N., Koti, S., & Linga, V. R. (2016). Bioconversion of alkali delignified cotton stalk using two-stage dilute acid hydrolysis and fermentation of detoxified hydrolysate into ethanol. Industrial Crops and Products, 91, 323–331. https://doi.org/10.1016/j.indcrop.2016.07.031Liu, Z., & Han, G. (2015). Production of solid fuel biochar from waste biomass by low temperature pyrolysis. Fuel, 158, 159–165. https://doi.org/10.1016/j.fuel.2015.05.032Mišljenović, N., Mosbye, J., Schüller, R. B., Lekang, O. I., & Salas-Bringas, C. (2015). Physical quality and surface hydration properties of wood based pellets blended with waste vegetable oil. Fuel Processing Technology, 134, 214–222. https://doi.org/10.1016/j.fuproc.2015.01.037Mohan, D., Pittman, C. U., & Steele, P. H. (2006, May). Pyrolysis of wood/biomass for bio-oil: A critical review. Energy and Fuels. https://doi.org/10.1021/ef0502397Muazu, R. I., & Stegemann, J. A. (2015). Effects of operating variables on durability of fuel briquettes from rice husks and corn cobs. Fuel Processing Technology, 133, 137–145. https://doi.org/10.1016/j.fuproc.2015.01.022Nizetic, S. (2011). Technical utilisation of convective vortices for carbon-free electricity production: A review. Energy, 36(2), 1236–1242. https://doi.org/10.1016/j.energy.2010.11.021Nižetić, S., Tolj, I., & Papadopoulos, A. M. (2015). Hybrid energy fuel cell based system for household applications in a Mediterranean climate. Energy Conversion and Management, 105, 1037–1045. https://doi.org/10.1016/j.enconman.2015.08.063Promdee, K., & Vitidsant, T. (2013). Synthesis of char, bio-oil and gases using a screw feeder pyrolysis reactor. Coke and Chemistry, 56(12), 466–469. https://doi.org/10.3103/S1068364X13120107Ragauskas, A. J., Williams, C. K., Davison, B. H., Britovsek, G., Cairney, J., Eckert, C. A., … Tschaplinski, T. (2006, January 27). The path forward for biofuels and biomaterials. Science. https://doi.org/10.1126/science.1114736Schneider, J., Grube, C., Herrmann, A., & Rönsch, S. (2016). Atmospheric entrained-flow gasification of biomass and lignite for decentralized applications. Fuel Processing Technology, 152, 72–82. https://doi.org/10.1016/j.fuproc.2016.05.047Schönnenbeck, C., Trouvé, G., Valente, M., Garra, P., & Brilhac, J. F. (2016). Combustion tests of grape marc in a multi-fuel domestic boiler. Fuel, 180, 324–331. https://doi.org/10.1016/j.fuel.2016.04.034Serrano, C., Monedero, E., Lapuerta, M., & Portero, H. (2011). Effect of moisture content, particle size and pine addition on quality parameters of barley straw pellets. Fuel Processing Technology, 92(3), 699–706. https://doi.org/10.1016/j.fuproc.2010.11.031Soto, G., & Núñez, M. (2008). Manufacturing pellets of charcoal, using saw dust of Pinus radiata (D. Don), as a binder material. Maderas: Ciencia y Tecnologia, 10(2), 129–137. https://doi.org/10.4067/S0718-221X2008000200005Sutcu, H. (2008). The examination of liquid, solid, and gas products obtained by the pyrolysis of the three different peat and reed samples. Journal of Energy Resources Technology, Transactions of the ASME, 130(2), 0214011–0214014. https://doi.org/10.1115/1.2906118Tabakaev, R., Shanenkov, I., Kazakov, A., & Zavorin, A. (2017). Thermal processing of biomass into high-calorific solid composite fuel. Journal of Analytical and Applied Pyrolysis, 124, 94–102. https://doi.org/10.1016/j.jaap.2017.02.016Tugov, A. N., Ryabov, G. A., Shtegman, A. V., Ryzhii, I. A., & Litun, D. S. (2016). All-Russia Thermal Engineering Institute experience in using difficult to burn fuels in the power industry. Thermal Engineering, 63(7), 455–462. https://doi.org/10.1134/S0040601516070089Tumuluru, J. S., Wright, C. T., Hess, J. R., & Kenney, K. L. (2011, November). A review of biomass densification systems to develop uniform feedstock commodities for bioenergy application. Biofuels, Bioproducts and Biorefining. https://doi.org/10.1002/bbb.324Vassilev, S. V., Vassileva, C. G., & Vassilev, V. S. (2015, June 8). Advantages and disadvantages of composition and properties of biomass in comparison with coal: An overview. Fuel. Elsevier Ltd. https://doi.org/10.1016/j.fuel.2015.05.050Venkata Mohan, S., Nikhil, G. N., Chiranjeevi, P., Nagendranatha Reddy, C., Rohit, M. V., Kumar, A. N., & Sarkar, O. (2016, September 1). Waste biorefinery models towards sustainable circular bioeconomy: Critical review and future perspectives. Bioresource Technology. Elsevier Ltd. https://doi.org/10.1016/j.biortech.2016.03.130Xiu, S., & Shahbazi, A. (2012, September). Bio-oil production and upgrading research: A review. Renewable and Sustainable Energy Reviews. https://doi.org/10.1016/j.rser.2012.04.028Al Arni, S. (2018). Comparison of slow and fast pyrolysis for converting biomass into fuel. Renewable Energy, 124, 197–201. https://doi.org/10.1016/j.renene.2017.04.060 Alauddin, Z. A. B. Z., Lahijani, P., Mohammadi, M., & Mohamed, A. R. (2010). Gasification of lignocellulosic biomass in fluidized beds for renewable energy development: A review. Renewable and Sustainable Energy Reviews. Elsevier Ltd. https://doi.org/10.1016/j.rser.2010.07.026 Aliari, Y., & Haghani, A. (2016, June 1). Planning for integration of wind power capacity in power generation using stochastic optimization. Renewable and Sustainable Energy Reviews. Elsevier Ltd. https://doi.org/10.1016/j.rser.2016.01.018 Armaroli, N., & Balzani, V. (2011, September). Towards an electricity-powered world. Energy and Environmental Science. https://doi.org/10.1039/c1ee01249e Brethauer, S., & Studer, M. H. (2015). Biochemical conversion processes of lignocellulosic biomass to fuels and chemicals - A review. Chimia, 69(10), 572–581. https://doi.org/10.2533/chimia.2015.572 D’Adamo, I., & Rosa, P. (2016). Current state of renewable energies performances in the European Union: A new reference framework. Energy Conversion and Management, 121, 84–92. https://doi.org/10.1016/j.enconman.2016.05.027 Davies, A., Soheilian, R., Zhuo, C., & Levendis, Y. A. (2013). Pyrolytic Conversion of Biomass Residues to Gaseous Fuels for Electricity Generation. Journal of Energy Resources Technology, 136(2), 021101. https://doi.org/10.1115/1.4025286 Difs, K., Wetterlund, E., Trygg, L., & Söderström, M. (2010). Biomass gasification opportunities in a district heating system. Biomass and Bioenergy, 34(5), 637–651. https://doi.org/10.1016/j.biombioe.2010.01.007 Duić, N., Guzović, Z., Kafarov, V., Klemeš, J. J., Mathiessen, B. vad, & Yan, J. (2013). Sustainable development of energy, water and environment systems. Applied Energy, 101, 3–5. https://doi.org/10.1016/j.apenergy.2012.08.002 Fortov, V. E., & Popel’, O. S. (2014). The current status of the development of renewable energy sources worldwide and in Russia. Thermal Engineering, 61(6), 389–398. https://doi.org/10.1134/S0040601514060020 Huber, G. W., Iborra, S., & Corma, A. (2006, September). Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chemical Reviews. https://doi.org/10.1021/cr068360d Keshav, P. K., Shaik, N., Koti, S., & Linga, V. R. (2016). Bioconversion of alkali delignified cotton stalk using two-stage dilute acid hydrolysis and fermentation of detoxified hydrolysate into ethanol. Industrial Crops and Products, 91, 323–331. https://doi.org/10.1016/j.indcrop.2016.07.031 Liu, Z., & Han, G. (2015). Production of solid fuel biochar from waste biomass by low temperature pyrolysis. Fuel, 158, 159–165. https://doi.org/10.1016/j.fuel.2015.05.032 Mišljenović, N., Mosbye, J., Schüller, R. B., Lekang, O. I., & Salas-Bringas, C. (2015). Physical quality and surface hydration properties of wood based pellets blended with waste vegetable oil. Fuel Processing Technology, 134, 214–222. https://doi.org/10.1016/j.fuproc.2015.01.037 Mohan, D., Pittman, C. U., & Steele, P. H. (2006, May). Pyrolysis of wood/biomass for bio-oil: A critical review. Energy and Fuels. https://doi.org/10.1021/ef0502397 Muazu, R. I., & Stegemann, J. A. (2015). Effects of operating variables on durability of fuel briquettes from rice husks and corn cobs. Fuel Processing Technology, 133, 137–145. https://doi.org/10.1016/j.fuproc.2015.01.022 Nizetic, S. (2011). Technical utilisation of convective vortices for carbon-free electricity production: A review. Energy, 36(2), 1236–1242. https://doi.org/10.1016/j.energy.2010.11.021 Nižetić, S., Tolj, I., & Papadopoulos, A. M. (2015). Hybrid energy fuel cell based system for household applications in a Mediterranean climate. Energy Conversion and Management, 105, 1037–1045. https://doi.org/10.1016/j.enconman.2015.08.063 Promdee, K., & Vitidsant, T. (2013). Synthesis of char, bio-oil and gases using a screw feeder pyrolysis reactor. Coke and Chemistry, 56(12), 466–469. https://doi.org/10.3103/S1068364X13120107 Ragauskas, A. J., Williams, C. K., Davison, B. H., Britovsek, G., Cairney, J., Eckert, C. A., … Tschaplinski, T. (2006, January 27). The path forward for biofuels and biomaterials. Science. https://doi.org/10.1126/science.1114736 Schneider, J., Grube, C., Herrmann, A., & Rönsch, S. (2016). Atmospheric entrained-flow gasification of biomass and lignite for decentralized applications. Fuel Processing Technology, 152, 72–82. https://doi.org/10.1016/j.fuproc.2016.05.047 Schönnenbeck, C., Trouvé, G., Valente, M., Garra, P., & Brilhac, J. F. (2016). Combustion tests of grape marc in a multi-fuel domestic boiler. Fuel, 180, 324–331. https://doi.org/10.1016/j.fuel.2016.04.034 Serrano, C., Monedero, E., Lapuerta, M., & Portero, H. (2011). Effect of moisture content, particle size and pine addition on quality parameters of barley straw pellets. Fuel Processing Technology, 92(3), 699–706. https://doi.org/10.1016/j.fuproc.2010.11.031 Soto, G., & Núñez, M. (2008). Manufacturing pellets of charcoal, using saw dust of Pinus radiata (D. Don), as a binder material. Maderas: Ciencia y Tecnologia, 10(2), 129–137. https://doi.org/10.4067/S0718-221X2008000200005 Sutcu, H. (2008). The examination of liquid, solid, and gas products obtained by the pyrolysis of the three different peat and reed samples. Journal of Energy Resources Technology, Transactions of the ASME, 130(2), 0214011–0214014. https://doi.org/10.1115/1.2906118 Tabakaev, R., Shanenkov, I., Kazakov, A., & Zavorin, A. (2017). Thermal processing of biomass into high-calorific solid composite fuel. Journal of Analytical and Applied Pyrolysis, 124, 94–102. https://doi.org/10.1016/j.jaap.2017.02.016 Tugov, A. N., Ryabov, G. A., Shtegman, A. V., Ryzhii, I. A., & Litun, D. S. (2016). All-Russia Thermal Engineering Institute experience in using difficult to burn fuels in the power industry. Thermal Engineering, 63(7), 455–462. https://doi.org/10.1134/S0040601516070089 Tumuluru, J. S., Wright, C. T., Hess, J. R., & Kenney, K. L. (2011, November). A review of biomass densification systems to develop uniform feedstock commodities for bioenergy application. Biofuels, Bioproducts and Biorefining. https://doi.org/10.1002/bbb.324 Vassilev, S. V., Vassileva, C. G., & Vassilev, V. S. (2015, June 8). Advantages and disadvantages of composition and properties of biomass in comparison with coal: An overview. Fuel. Elsevier Ltd. https://doi.org/10.1016/j.fuel.2015.05.050 Venkata Mohan, S., Nikhil, G. N., Chiranjeevi, P., Nagendranatha Reddy, C., Rohit, M. V., Kumar, A. N., & Sarkar, O. (2016, September 1). Waste biorefinery models towards sustainable circular bioeconomy: Critical review and future perspectives. Bioresource Technology. Elsevier Ltd. https://doi.org/10.1016/j.biortech.2016.03.130 Xiu, S., & Shahbazi, A. (2012, September). Bio-oil production and upgrading research: A review. Renewable and Sustainable Energy Reviews. https://doi.org/10.1016/j.rser.2012.04.028 Zhang, S., Asadullah, M., Dong, L., Tay, H. L., & Li, C. Z. (2013). An advanced biomass gasification technology with integrated catalytic hot gas cleaning. Part II: Tar reforming using char as a catalyst or as a catalyst support. Fuel, 112, 646–653. https://doi.org/10.1016/j.fuel.2013.03.015PublicationORIGINAL2019_biomasa_densificado_huila.pdf2019_biomasa_densificado_huila.pdfTrabajo de gradoapplication/pdf236335https://repository.ucc.edu.co/bitstreams/205de78e-a7d1-450b-94f9-69439f1fc9cd/download9a5cf8a9317b832ca7f5ff551fccf2ceMD512019_biomasa_densificado_huila_licenciadeuso.pdf2019_biomasa_densificado_huila_licenciadeuso.pdfLicencia de usoapplication/pdf156641https://repository.ucc.edu.co/bitstreams/789e1732-aa81-4da2-b68c-76aac9177520/download68f5582e5675d7de5af1dff2b09f45faMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/eca1c82a-cd86-42ed-9b27-2d2b7d69656d/download3bce4f7ab09dfc588f126e1e36e98a45MD53TEXT2019_biomasa_densificado_huila.pdf.txt2019_biomasa_densificado_huila.pdf.txtExtracted texttext/plain32377https://repository.ucc.edu.co/bitstreams/455cb5e0-f984-476e-8e76-994acd15f881/downloadf0aea90149f9ee60dc5d8e043d3d3652MD542019_biomasa_densificado_huila_licenciadeuso.pdf.txt2019_biomasa_densificado_huila_licenciadeuso.pdf.txtExtracted texttext/plain5431https://repository.ucc.edu.co/bitstreams/cf4ce2bf-83d3-4401-8627-d888d21e5e63/download1a6866eebf295f4cdca0164ab6bad9e5MD55THUMBNAIL2019_biomasa_densificado_huila.pdf.jpg2019_biomasa_densificado_huila.pdf.jpgGenerated Thumbnailimage/jpeg2674https://repository.ucc.edu.co/bitstreams/90946662-2ca4-4c58-8241-7918c441a0b7/download9d54ab57f28b577c9eae73a20be2aa3dMD562019_biomasa_densificado_huila_licenciadeuso.pdf.jpg2019_biomasa_densificado_huila_licenciadeuso.pdf.jpgGenerated Thumbnailimage/jpeg5461https://repository.ucc.edu.co/bitstreams/72643ede-a663-4de1-bda8-de4f2c6f305d/downloadbbf1eb25b801ea125662a4a5557ae5c8MD5720.500.12494/15612oai:repository.ucc.edu.co:20.500.12494/156122024-08-10 21:48:45.064open.accesshttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo= |