Chemical Composition and In Vitro Ruminal Fermentation Characteristics of Native Grasses from the Floodplain Lowlands Ecosystem in the Colombian Orinoquia

Grasses from lowland ecosystems in flooded savannahs are useful to feed extensive grazing animals; however, scarce information about its agronomic and fermentation characteristics exists. This study aims to determine the chemical composition and fermentation parameters of native grasses from the flo...

Full description

Autores:
Vélez Terranova, Mauricio
Salamanca Carreño, Arcesio
Vargas Corzo, Oscar M.
Parés Casanova, Pere Miquel
Arias L., José N.
Tipo de recurso:
Article of investigation
Fecha de publicación:
2023
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/52599
Acceso en línea:
https://doi.org/10.3390/ani13172760
https://hdl.handle.net/20.500.12494/52599
Palabra clave:
composición química
sabana inundable
fermentación in vitro
forrajes tropicales
chemical composition
floodable savannas
invitro fermentation
tropical forages
Rights
openAccess
License
Atribución – No comercial – Sin Derivar
id COOPER2_a2adbe498644303f2b3118149fcb9886
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/52599
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.none.fl_str_mv Chemical Composition and In Vitro Ruminal Fermentation Characteristics of Native Grasses from the Floodplain Lowlands Ecosystem in the Colombian Orinoquia
title Chemical Composition and In Vitro Ruminal Fermentation Characteristics of Native Grasses from the Floodplain Lowlands Ecosystem in the Colombian Orinoquia
spellingShingle Chemical Composition and In Vitro Ruminal Fermentation Characteristics of Native Grasses from the Floodplain Lowlands Ecosystem in the Colombian Orinoquia
composición química
sabana inundable
fermentación in vitro
forrajes tropicales
chemical composition
floodable savannas
invitro fermentation
tropical forages
title_short Chemical Composition and In Vitro Ruminal Fermentation Characteristics of Native Grasses from the Floodplain Lowlands Ecosystem in the Colombian Orinoquia
title_full Chemical Composition and In Vitro Ruminal Fermentation Characteristics of Native Grasses from the Floodplain Lowlands Ecosystem in the Colombian Orinoquia
title_fullStr Chemical Composition and In Vitro Ruminal Fermentation Characteristics of Native Grasses from the Floodplain Lowlands Ecosystem in the Colombian Orinoquia
title_full_unstemmed Chemical Composition and In Vitro Ruminal Fermentation Characteristics of Native Grasses from the Floodplain Lowlands Ecosystem in the Colombian Orinoquia
title_sort Chemical Composition and In Vitro Ruminal Fermentation Characteristics of Native Grasses from the Floodplain Lowlands Ecosystem in the Colombian Orinoquia
dc.creator.fl_str_mv Vélez Terranova, Mauricio
Salamanca Carreño, Arcesio
Vargas Corzo, Oscar M.
Parés Casanova, Pere Miquel
Arias L., José N.
dc.contributor.author.none.fl_str_mv Vélez Terranova, Mauricio
Salamanca Carreño, Arcesio
Vargas Corzo, Oscar M.
Parés Casanova, Pere Miquel
Arias L., José N.
dc.subject.none.fl_str_mv composición química
sabana inundable
fermentación in vitro
forrajes tropicales
topic composición química
sabana inundable
fermentación in vitro
forrajes tropicales
chemical composition
floodable savannas
invitro fermentation
tropical forages
dc.subject.other.none.fl_str_mv chemical composition
floodable savannas
invitro fermentation
tropical forages
description Grasses from lowland ecosystems in flooded savannahs are useful to feed extensive grazing animals; however, scarce information about its agronomic and fermentation characteristics exists. This study aims to determine the chemical composition and fermentation parameters of native grasses from the floodplain lowlands ecosystem in the Colombian Orinoquia. Three native grasses (Leersia hexandra, Acroceras zizanioides and Hymenachne amplexicaulis) and a “control” grass (introduced Urochloa arrecta—Tanner grass) were sown and sampled at 30, 40 and 50 days of age. On each sampling date, biomass production in a 1 m2 frame was estimated, and the chemical composition and fermentation parameters were analyzed using near-infrared spectroscopy and the in vitro gas production technique, respectively. Data were analyzed using a mixed model for repeated measures and the least significant difference (LSD) was used for mean differentiation (p < 0.05). The grasses’ nutritional characteristics varied as follows: dry matter (DM, 0.7–2.0 ton/ha), crude protein (CP, 6.1–12.2%), neutral detergent fiber (NDF, 56.6–69.6%), ash (5.8–15.8%) and dry matter digestibility (DMD) between 20.8 and 60.6% from 12 to 48 h of fermentation. Native plants such as L. hexandra and A. zizanioides presented higher biomass production, CP, ash, cellulose, and Ca levels than the control plant. During the experimental period (30 to 50 days), the grasses did not present significant nutrient availability changes. In terms of fermentation characteristics, L. hexandra increased ammonia concentrations and total volatile fatty acids (TVFA) and butyric acid. This latter effect was also observed in A. zizanioides grass. L. hexandra and A. zizanioides grasses constitute a valuable alternative forage resource during the flooding times of the studied ecosystem.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-08-31T02:11:21Z
dc.date.available.none.fl_str_mv 2023-08-31T02:11:21Z
dc.date.issued.none.fl_str_mv 2023-08-30
dc.type.none.fl_str_mv Artículos Científicos
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2076-2615
dc.identifier.uri.none.fl_str_mv https://doi.org/10.3390/ani13172760
https://hdl.handle.net/20.500.12494/52599
dc.identifier.bibliographicCitation.none.fl_str_mv Vélez-Terranova, Salamanca-Carreño, Vargas-Corzo, Parés-Casanova, Ariaz-Landazábal. 2023. Chemical Composition and In Vitro Ruminal Fermentation Characteristics of Native Grasses from the Floodplain Lowlands Ecosystem in the Colombian Orinoquia. Animals, 13 (17), 2760: 1-16.
identifier_str_mv 2076-2615
Vélez-Terranova, Salamanca-Carreño, Vargas-Corzo, Parés-Casanova, Ariaz-Landazábal. 2023. Chemical Composition and In Vitro Ruminal Fermentation Characteristics of Native Grasses from the Floodplain Lowlands Ecosystem in the Colombian Orinoquia. Animals, 13 (17), 2760: 1-16.
url https://doi.org/10.3390/ani13172760
https://hdl.handle.net/20.500.12494/52599
dc.relation.isversionof.none.fl_str_mv https://www.mdpi.com/2076-2615/13/17/2760
dc.relation.ispartofjournal.none.fl_str_mv Animals
dc.relation.references.none.fl_str_mv 1. Peñuela, L.; Fernández, A.P.; Castro, F.; Ocampo, A. Uso y Manejo de Forrajes Nativos en la Sabana Inundable de la Orinoquia; Convenio de Cooperación Interinstitucional; Universidad de los Llanos, The Nature Conservancy y la Fundación Horizonte Verde con el apoyo de la Fundación Biodiversidad de España, la Corporación Autónoma Regional de la Orinoquia: Villavicencio, Colombia, 2011. 2. Vélez-Terranova, M. Estrategias tecnológicas para la intensificación de la productividad ganadera en condiciones de sabanas inundables en la Orinoquía colombiana. Trop. Subtrop. Agroecosyst. 2019, 22, 257–266. [CrossRef] 3. Peñuela, L.; Fernández, A. La ganadería ligada a procesos de conservación en la sabana inundable de la Orinoquia. Orinoquia 2010, 14 (Suppl. 1), 5–17. 4. Salamanca-Carreño, A.; Vélez-Terranova, M.; Vargas-Corzo, O.M.; Pérez-López, O.; Castillo-Pérez, A.F.; Parés-Casanova, P.M. Relationship of Physiographic Position to Physicochemical Characteristics of Soils of the Flooded-Savannah Agroecosystem, Colombia. Agriculture 2023, 13, 220. [CrossRef]. . Pérez Bona, R.A.; Vargas Corzo, O.M. Características de la Sabana Nativa y su Potencial de Producción Bovina en la Llanura Inundable de Arauca; Boleín Técnico N 25; Programa Regional de Investigación Pecuaria, Corpoica: Arauca, Colombia, 2001. 6. Amiri, F.; Mohamed-Sharif, A.R. Comparison of nutritive values of grasses and legume species using forage quality index. Songklanakarin J. Sci. Technol. 2012, 34, 577–586. 7. Rinehart, L. Ruminant Nutrition for Graziers. ATTRA—National Sustainable Agriculture Information Service. 2008. Available online: https://www.nrcs.usda.gov/sites/default/files/2022-10/Ruminant%20Nutrition%20for%20Graziers.pdf (accessed on 15 August 2023). 8. Ariza-Nieto, C.M.; Mojica, B.; Parra, D.; Afanador-Tellez, G. Use of LOCAL algorithm with near infrared spectroscopy in forage resources for grazing systems in Colombia. J. Near Infrared Spectrosc. 2018, 26, 44–52. [CrossRef] 9. Salamanca-Carreño, A.; Vélez-Terranova, M.; Vargas-Corzo, O.M.; Parés-Casanova, P.M.; Bentez-Molano, J. Productive and Nutritional Characteristics of Native Grasses from the Floodplain Banks Ecosystem in the Colombian Orinoquia. Sustainability 2022, 14, 15151. [CrossRef] 10. Getachew, G.; Blümmel, M.; Makkar, H.P.; Becker, K. In vitro measuring techniques for assessment of nutritional quality of feeds: A review. Anim. Feed Sci. Technol. 1998, 72, 261–281. [CrossRef] 11. Macheboeuf, D.; Coudert, l.; Bergeault, R.; Lalière, G.; Niderkorn, V. Screening of plants from diversified natural grasslands for their potential to combine high digestibility, and low methane and ammonia production. Animal 2014, 8, 1797–1806. [CrossRef] 12. Gemeda, B.S.; Hassen, A. In vitro fermentation, digestibility and methane production of tropical perennial grass especies. Crop Pasture Sci. 2014, 65, 479–488. [CrossRef] 13. Getachew, G.; Robinson, P.H.; DePeters, E.J.; Taylor, S.J. Relationships between chemical composition, dry matter degradation and in vitro gas production of several ruminant feeds. Anim. Feed Sci. Technol. 2004, 111, 57–71. [CrossRef] 14. Bekele, W.; Guinguina, A.; Zegeye, A.; Simachew, A.; Ramin, M. Contemporary Methods of Measuring and Estimating Methane Emission from Ruminants. Methane 2022, 1, 82–95. [CrossRef] 15. Flachowsky, G.; Lebzien, P. Effects of phytogenic substances on rumen fermentation and methane emissions: A proposal for a research process. Anim. Feed Sci. Technol. 2012, 176, 70–77. [CrossRef] 16. Reihardt, M.S.; Foote, A.P.; Lambert, B.D.; Muir, J.P. Effects of protein or energy supplementation on in situ disappearance of lowand high-quality Coastal Bermudagrass hay in goats. Texas J. Agric. Nat. Res. 2011, 24, 97–105. 17. Aparicio, R.; González-Ronquillo, M.; Torres, R.; Astudillo, L.; Cordova, L.; Carrasquel, J. Degradabilidad de los pastos lambedora (Leersia hexandra) y paja de agua (Hymenachne amplexicaulis) en cuatro épocas del año de una sabana inundable del estado Apure, Venezuela. Zootec. Trop. 2007, 25, 225–228. 18. González-Ronquillo, M.; Aparicio, R.; Torres, R.; Domínguez-Vara, I.A. Producción de biomasa, composición química y producción de gas in vitro de la vegetación de una sabana estacional modulada. Zootec. Trop. 2009, 2, 407–417. 19. Holdridge, L. Ecología Basada en Zonas de Vida; IICA: San Jose, Costa Rica, 1987; p. 216. 20. Cerdas, R. Programa de fertilización de forrajes. Desarrollo de un módulo práctico para técnicos y estudiantes de ganadería de Guanacaste, Costa Rica. InterSedes 2011, 12, 109–128. 21. Theodorou, M.K.; Williams, B.A.; Dhanoa, M.S.; McAllan, A.B.; France, J. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Technol. 1994, 48, 185–197. [CrossRef] 22. Goering, H.K.; Van Soest, P.J. Forage fiber analysis (apparatus, regents, procedures and some applications). Agric. Handb. 1970, 379, 1–20. 23. UN. Universidad Nacional de Colombia. Laboratorio de Biotecnología Ruminal (BIORUM)). 2023. Available online: https: //direcciondelaboratorios.medellin.unal.edu.co/index.php/nuestros-laboratorios/facultad-de-ciencias-agrarias/66 (accessed on 23 June 2023). 24. Littell, R.; Milliken, G.; Stroup, W.;Wolfinger, R.; Schabenberger, O. SAS for Mixed Models, 2nd ed.; SAS Institute Inc.: Cary, NC, USA, 2007. 25. InfoStat. Software Estadistico. Versión 30/04/2020; Grupo InfoStat, FCA, Universidad Nacional de Córdoba: Córdoba, Argentina, 2020. 26. Cruz-Hernández, A.; Hernández-Garay, A.; Aranda-Ibañez, E.; Chay-Canul, A.; Márquez-Quiroz, C.; Rojas-Garcia, A.L.; Gómez- Vázquez, A. Nutritive value of Mulato grass under dierent grazing strategies. Esosist. Recur. Agropec. 2017, 4, 65–72. [CrossRef] 27. Garay, J.R.; Joaquin-Cancino, S.; Zárate-Fortuna, P.; Ibarra-Hinojosa, M.A.; Martínez-González, J.C.; González-Dávila, R.P.; Cienfuegos-Rivas, E.G. Dry matter accumulation and crude protein concentration in Brachiaria spp. cultivars in the humid tropics of Ecuador. Trop. Grasslands-Forrajes Trop. 2017, 5, 66–76. [CrossRef] 28. Luce, M.S.; Gouveia, G.G.; Eudoxie, G.D. Comparative effects of food processing liquid slurry and inorganic fertilizers on tanner grass (Brachiaria arrecta) pasture: Grass yield, crude protein and P levels and residual soil N and P. Grass Forage Sci. 2016, 72, 401–413. [CrossRef] 29. Rojas-Sandoval, J. Urochloa arrecta (African signalgrass); CABI Compendium: Wallingford, UK, 2023. 30. Jiménez, J.C.; Cardoso, J.A.; Leiva, L.F.; Gil, J.; Forero, M.G.;Worthington, M.L.; Miles, J.W.; Rao, I.M. Non-destructive Phenotyping to Identify Brachiaria Hybrids Tolerant to Waterlogging Stress under Field Conditions. Front. Plant Sci. 2017, 8, 167. [CrossRef] 31. Dias-Filho, M.B.; Dos Santos-Lopes, M.J. Screening for tolerance to waterlogging in forage plants. In Proceedings of the III International Symposium on Forage Breeding, Bonito, MS, Brazil, 7–11 November 2011. 32. Reyes-Pérez, J.J.; Méndez-Martínez, Y.; Verdecia, D.; Luna-Murillo, R.A.; Hernández Montiel, L.G.; Herrera, R. Components of the yield and bromatological composition of three Brachiaria varieties in El Empalme area, Ecuador. Cuban J. Agric. Sci. 2018, 52, 35–445. 33. Cevallos, J.H.A.; Guerrero, F.C.; Zamora, G.Q.; Murillo, R.L.; Valdez, O.D.M.; Guerra, I.E.; Montes, S.Z.; Garaicoa, D.R.; Ruiz, J.V.; Mendoza, E.P. Comportamiento agronómico y composición química de tres variedades de Brachiaria en diferentes edades de cosecha. Cienc. Tecnol. 2008, 1, 87–94. [CrossRef] 34. Fonseca, P.G.; Emerenciano, N.J.; Dos Santos, D.G.; Cortes, A.C.; De Oliveira, L.P.; Da Silva Santos, R. Production and quality of tropical grasses at different regrowth intervals in the Brazilian semiarid. Acta Sci. 2021, 43, e52842. [CrossRef] 35. Canchila, E.R.; Soca, M.; Ojeda, F.; Machado, R. Evaluación de la composición bromatológica de 24 accesiones de Brachiaria spp. Pastos Forrajes 2009, 32, 1–9. 36. Liu, J.; Duan, C.; Zhang, X.; Zhu, Y.; Lu, X. Potential of Leersia hexandra Swartz for phytoextraction of Cr from soil. J. Hazard. Mater. 2011, 188, 85–91. [CrossRef] 37. Rodríguez-Rodríguez, N.; Rivera-Cruz, M.C.; Trujillo-Narcía, A.; Almaráz-Suárez, J.J.; Salgado-García, S. Spatial Distribution of Oil and Biostimulation Through the Rhizosphere of Leersia hexandra in Degraded Soil. Water Air Soil Pollut. 2016, 227, 319. [CrossRef] 38. Muñoz-González, J.C.; Huerta-Bravo, M.; Lara, B.A.; Rangel, S.R.; De la Rosa, A.J. Production and nutritional quality of forages in conditions Humid Tropics of Mexico. Rev. Mex. Cienc. Agríc. Pub. Esp. 2016, 16, 3315–3327. 39. Harper, K.J.; McNeill, D.M. The Role iNDF in the Regulation of Feed Intake and the Importance of Its Assessment in Subtropical Ruminant Systems (the Role of iNDF in the Regulation of Forage Intake). Agriculture 2015, 5, 778–790. [CrossRef] 40. Carrillo-Díaz, M.I.; Miranda-Romero, L.A.; Chávez-Aguilar, G.; Zepeda-Batista, J.L.; González-Reyes, M.; García-Casillas, A.C.; Tirado-González, D.N.; Tirado-Estrada, G. Improvement of Ruminal Neutral Detergent Fiber Degradability by Obtaining and Using Exogenous Fibrolytic Enzymes from White-Rot Fungi. Animals 2022, 12, 843. [CrossRef] [PubMed] 41. Mwendia, S.W.; Ohmstedt, U.; Nyakundi, F.; Notenbaert, A.; Peters, P. Does harvesting Urochloa and Megathyrsus forages at short intervals confer an advantage on cumulative dry matter yields and quality? J. Sci. Food Agric. 2022, 102, 750–756. [CrossRef] 42. Fonseca-Pereira, G.; Emerenciano-Neto, J.V.; dos Santos-Difante, G.; Cortes-Assis, L.C.; de Oliveira-Lima, P. Morphogenic and structural characteristics of tropical forage grasses managed under different regrowth periods in the Brazilian semi-arid region. Semin. Ciências Agrárias 2019, 40, 283–292. [CrossRef] 43. Bhatta, R.; Tajima, K.; Kurihara, M. Influence of temperature and pH on fermentation pattern and methane production in the rumen simulating fermenter (RUSITEC). Asian-Aust. J. Anim. Sci. 2006, 19, 376–380. [CrossRef] 44. Gaviria-Uribe, X.; Bolívar-Vergara, D.M.; Chirinda, N.; Molina-Botero, I.C.; Mazabel, J.; Barahona-Rosales, R.; Arango, J. In vitro methane production and ruminal fermentation parameters of tropical grasses and grass-legume associations commonly used for cattle feeding in the tropics. Livest. Res. Rural Dev. 2022, 34, 1–17. 45. Wilson-García, C.Y.; Sánchez-Santillán, P.; López-Zerón, N.E.; Domínguez-Rodríguez, I.E.; Ayala-Monter, M.A.; Torres-Salado, N.; Valenzuela Lagarda, J.L. In vitro fermentative characteristics and chemical quality of Guinea grass with organic and chemical fertilization Agro Productividad. Agro Product. 2022, 15, 79–86. [CrossRef] 46. Kamalak, A.; Canbolat, O.; Gurbuz, Y.; Ozay, O. Comparison of in vitro gas production technique with in situ nylon bag technique to estimate dry matter degradation. Czech J. Anim. Sci. 2005, 50, 60–67. [CrossRef] 47. Makkar, H.P. In vitro gas methods for evaluation of feeds containing phytochemicals. Anim. Feed Sci. Technol. 2005, 123–124, 291–302. [CrossRef] 48. Vélez, O.M.; Campos, R.; Sánchez, H. Uso de metabolitos secundarios de las Plantas para reducir la metanogénesis ruminal. Trop. Subtrop. Agroecos. 2014, 17, 489–499. 49. Miguel, M.A.; Lee, S.S.; Mamuad, L.L.; Choi, Y.J.; Jeong, C.D.; Son, A.; Cho, K.K.; Kim, E.T.; Kim, S.B.; Lee, S.S. Enhancing Butyrate Production, Ruminal Fermentation and Microbial Population through Supplementation with Clostridium saccharobutylicum. J. Microbiol. Biotechnol. 2019, 29, 1083–1095. [CrossRef] [PubMed] 50. Banik, B.K.; Durmic, Z.; Erskine, W.; Ghamkhar, K.; Revell, C. In vitro ruminal fermentation characteristics and methane production differ in selected key pasture species in Australia. Crop Pasture Sci. 2013, 64, 935–942. [CrossRef] 51. Giraldo-Parra, P.A. Efecto de Varios Aditivos y Suplementos Nutricionales en las Emisiones de Metano y los Parámetros de la Fermentación Ruminal In Vitro; Tesis Maestría en Ciencias Agrarias, Universidad Nacional de Colombia Medellín: Medellín, Colombia, 2013. 52. Bryant, M.P.; Robinson, I.M. Some nutritional characteristics of predominant culturable ruminal bacteria. J. Bacteriol. 1962, 84, 605–614. [CrossRef] 53. Leng, R.A. Factors affecting the utilization of “poor-quality” forages by ruminants particularly under tropical conditions. Nutr. Res. Rev. 1990, 3, 277–303. [CrossRef] 54. Marín, A.; Giraldo, L.A.; Correa, G. Parámetros de fermentación ruminal in vitro del pasto Kikuyo (Pennisetum clandestinum). Livest. Res. Rural Dev. 2014, 26, 1–6. 55. Ley de Coss, A.; Guerra-Medina, C.; Montañez-Valdez, O.; Guevara, F.; Pinto, R.; Reyes-Gutiérrez, J. In vitro production of gas methane by tropical grasses. Rev. MVZ Córdoba 2018, 23, 6788–6798. [CrossRef] 56. Vélez-Terranova, M.; Campos-Gaona, R.; Sánchez-Guerrero, H.; Giraldo, L.A. Fermentation dynamics and methane production of diets based on Brachiaria humidicola with high inclusion Levels of Enterolobium schomburgkii and Senna occidentalis in a Rusitec system. Trop. Subtrop. Agroecos. 2018, 21, 163–175. 57. Kulivand, M.; Kafilzadeh, F. Correlation between chemical composition, kinetics of fermentation and methane production of eight pasture grasses. Acta Sci. Anim. Sci. Mar. 2015, 37, 9–14. [CrossRef] 58. Lee, M.A. A global comparison of the nutritive values of forage plants grown in contrasting environments. J. Plant Res. 2018, 131, 641–654. [CrossRef] 59. Meale, S.J.; Chaves, A.V.; Baah, J.; McAllister, T.A. Methane Production of Different Forages in In vitro Ruminal Fermentation. Asian-Aust. J. Anim. Sci. 2012, 25, 86–91. [CrossRef] 60. Montalvão Lima, D.; Abdalla Filho, A.L.; Tavares Lima, P.M.; Zanuto Sakita, G.; Dias e Silva, T.P.; McManus, C.; Abdalla, A.L.; Louvandini, H. Morphological characteristics, nutritive quality, and methane production of tropical grasses in Brazil. Pesq. Agropec. Bras. 2018, 53, 323–331. [CrossRef] 61. Kondo, M.; Yoshida, M.; Loresco, M.; Lapitan, R.M.; Herrera, J.R.; Del Barrio, A.N.; Uyeno, Y.; Matsui, H.; Fujihara, T. Nutrient Contents and In vitro Ruminal Fermentation of Tropical Grasses Harvested in Wet Season in the Philippines. Adv. Anim. Vet. Sci. 2015, 3, 694–699. [CrossRef] 62. Chino Velasquez, L.B.; Molina-Botero, I.C.; Moscoso Muñoz, J.E.; Gómez Bravo, C. Relationship between Chemical Composition and In Vitro Methane Production of High Andean Grasses. Animals 2022, 12, 2348. [CrossRef] [PubMed]
dc.rights.license.none.fl_str_mv Atribución – No comercial – Sin Derivar
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución – No comercial – Sin Derivar
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 1-16
dc.coverage.temporal.none.fl_str_mv 13(17)
dc.publisher.none.fl_str_mv Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia
dc.publisher.program.none.fl_str_mv Medicina veterinaria y zootecnia
dc.publisher.place.none.fl_str_mv Villavicencio
publisher.none.fl_str_mv Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/13b61188-0ceb-49f9-be22-21099dfb6944/download
https://repository.ucc.edu.co/bitstreams/e0405c9c-ed0a-4f09-95bf-fede9bf11075/download
https://repository.ucc.edu.co/bitstreams/4abe032b-64f6-4602-a397-4cf77e6a7773/download
https://repository.ucc.edu.co/bitstreams/ce159261-3b1b-499b-8a13-13349f94cf99/download
https://repository.ucc.edu.co/bitstreams/459b5a23-827d-463e-9c03-91a06f46e58f/download
https://repository.ucc.edu.co/bitstreams/55494900-2ba5-4f6e-98a6-1f5d5c75169c/download
https://repository.ucc.edu.co/bitstreams/1934997c-1c92-4d90-b0bb-402514aa58ab/download
bitstream.checksum.fl_str_mv 003642c997049366891335d7dc5d14ad
6ca88891b7a80665927b022fb5b73efb
3bce4f7ab09dfc588f126e1e36e98a45
3e7bee209f2368b89118e636233882cd
f421488e37c30e962823ce97ac2e48dd
655ba0494d047dac5af00673b1cd2074
337743a66714040a570519a416d59926
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1811565588742406144
spelling Vélez Terranova, MauricioSalamanca Carreño, ArcesioVargas Corzo, Oscar M.Parés Casanova, Pere MiquelArias L., José N.13(17)2023-08-31T02:11:21Z2023-08-31T02:11:21Z2023-08-302076-2615https://doi.org/10.3390/ani13172760https://hdl.handle.net/20.500.12494/52599Vélez-Terranova, Salamanca-Carreño, Vargas-Corzo, Parés-Casanova, Ariaz-Landazábal. 2023. Chemical Composition and In Vitro Ruminal Fermentation Characteristics of Native Grasses from the Floodplain Lowlands Ecosystem in the Colombian Orinoquia. Animals, 13 (17), 2760: 1-16.Grasses from lowland ecosystems in flooded savannahs are useful to feed extensive grazing animals; however, scarce information about its agronomic and fermentation characteristics exists. This study aims to determine the chemical composition and fermentation parameters of native grasses from the floodplain lowlands ecosystem in the Colombian Orinoquia. Three native grasses (Leersia hexandra, Acroceras zizanioides and Hymenachne amplexicaulis) and a “control” grass (introduced Urochloa arrecta—Tanner grass) were sown and sampled at 30, 40 and 50 days of age. On each sampling date, biomass production in a 1 m2 frame was estimated, and the chemical composition and fermentation parameters were analyzed using near-infrared spectroscopy and the in vitro gas production technique, respectively. Data were analyzed using a mixed model for repeated measures and the least significant difference (LSD) was used for mean differentiation (p < 0.05). The grasses’ nutritional characteristics varied as follows: dry matter (DM, 0.7–2.0 ton/ha), crude protein (CP, 6.1–12.2%), neutral detergent fiber (NDF, 56.6–69.6%), ash (5.8–15.8%) and dry matter digestibility (DMD) between 20.8 and 60.6% from 12 to 48 h of fermentation. Native plants such as L. hexandra and A. zizanioides presented higher biomass production, CP, ash, cellulose, and Ca levels than the control plant. During the experimental period (30 to 50 days), the grasses did not present significant nutrient availability changes. In terms of fermentation characteristics, L. hexandra increased ammonia concentrations and total volatile fatty acids (TVFA) and butyric acid. This latter effect was also observed in A. zizanioides grass. L. hexandra and A. zizanioides grasses constitute a valuable alternative forage resource during the flooding times of the studied ecosystem.https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001022903https://orcid.org/0000-0002-5416-5906https://orcid.org/0000-0003-1440-6418https://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000009387asaca_65@yahoo.esarcesio.salamanca@campusucc.edu.cohttps://scholar.google.com/citations?hl=es&user=EqGLQZUAAAAJ1-16Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de ColombiaMedicina veterinaria y zootecniaVillavicenciohttps://www.mdpi.com/2076-2615/13/17/2760Animals1. Peñuela, L.; Fernández, A.P.; Castro, F.; Ocampo, A. Uso y Manejo de Forrajes Nativos en la Sabana Inundable de la Orinoquia; Convenio de Cooperación Interinstitucional; Universidad de los Llanos, The Nature Conservancy y la Fundación Horizonte Verde con el apoyo de la Fundación Biodiversidad de España, la Corporación Autónoma Regional de la Orinoquia: Villavicencio, Colombia, 2011. 2. Vélez-Terranova, M. Estrategias tecnológicas para la intensificación de la productividad ganadera en condiciones de sabanas inundables en la Orinoquía colombiana. Trop. Subtrop. Agroecosyst. 2019, 22, 257–266. [CrossRef] 3. Peñuela, L.; Fernández, A. La ganadería ligada a procesos de conservación en la sabana inundable de la Orinoquia. Orinoquia 2010, 14 (Suppl. 1), 5–17. 4. Salamanca-Carreño, A.; Vélez-Terranova, M.; Vargas-Corzo, O.M.; Pérez-López, O.; Castillo-Pérez, A.F.; Parés-Casanova, P.M. Relationship of Physiographic Position to Physicochemical Characteristics of Soils of the Flooded-Savannah Agroecosystem, Colombia. Agriculture 2023, 13, 220. [CrossRef]. . Pérez Bona, R.A.; Vargas Corzo, O.M. Características de la Sabana Nativa y su Potencial de Producción Bovina en la Llanura Inundable de Arauca; Boleín Técnico N 25; Programa Regional de Investigación Pecuaria, Corpoica: Arauca, Colombia, 2001. 6. Amiri, F.; Mohamed-Sharif, A.R. Comparison of nutritive values of grasses and legume species using forage quality index. Songklanakarin J. Sci. Technol. 2012, 34, 577–586. 7. Rinehart, L. Ruminant Nutrition for Graziers. ATTRA—National Sustainable Agriculture Information Service. 2008. Available online: https://www.nrcs.usda.gov/sites/default/files/2022-10/Ruminant%20Nutrition%20for%20Graziers.pdf (accessed on 15 August 2023). 8. Ariza-Nieto, C.M.; Mojica, B.; Parra, D.; Afanador-Tellez, G. Use of LOCAL algorithm with near infrared spectroscopy in forage resources for grazing systems in Colombia. J. Near Infrared Spectrosc. 2018, 26, 44–52. [CrossRef] 9. Salamanca-Carreño, A.; Vélez-Terranova, M.; Vargas-Corzo, O.M.; Parés-Casanova, P.M.; Bentez-Molano, J. Productive and Nutritional Characteristics of Native Grasses from the Floodplain Banks Ecosystem in the Colombian Orinoquia. Sustainability 2022, 14, 15151. [CrossRef] 10. Getachew, G.; Blümmel, M.; Makkar, H.P.; Becker, K. In vitro measuring techniques for assessment of nutritional quality of feeds: A review. Anim. Feed Sci. Technol. 1998, 72, 261–281. [CrossRef] 11. Macheboeuf, D.; Coudert, l.; Bergeault, R.; Lalière, G.; Niderkorn, V. Screening of plants from diversified natural grasslands for their potential to combine high digestibility, and low methane and ammonia production. Animal 2014, 8, 1797–1806. [CrossRef] 12. Gemeda, B.S.; Hassen, A. In vitro fermentation, digestibility and methane production of tropical perennial grass especies. Crop Pasture Sci. 2014, 65, 479–488. [CrossRef] 13. Getachew, G.; Robinson, P.H.; DePeters, E.J.; Taylor, S.J. Relationships between chemical composition, dry matter degradation and in vitro gas production of several ruminant feeds. Anim. Feed Sci. Technol. 2004, 111, 57–71. [CrossRef] 14. Bekele, W.; Guinguina, A.; Zegeye, A.; Simachew, A.; Ramin, M. Contemporary Methods of Measuring and Estimating Methane Emission from Ruminants. Methane 2022, 1, 82–95. [CrossRef] 15. Flachowsky, G.; Lebzien, P. Effects of phytogenic substances on rumen fermentation and methane emissions: A proposal for a research process. Anim. Feed Sci. Technol. 2012, 176, 70–77. [CrossRef] 16. Reihardt, M.S.; Foote, A.P.; Lambert, B.D.; Muir, J.P. Effects of protein or energy supplementation on in situ disappearance of lowand high-quality Coastal Bermudagrass hay in goats. Texas J. Agric. Nat. Res. 2011, 24, 97–105. 17. Aparicio, R.; González-Ronquillo, M.; Torres, R.; Astudillo, L.; Cordova, L.; Carrasquel, J. Degradabilidad de los pastos lambedora (Leersia hexandra) y paja de agua (Hymenachne amplexicaulis) en cuatro épocas del año de una sabana inundable del estado Apure, Venezuela. Zootec. Trop. 2007, 25, 225–228. 18. González-Ronquillo, M.; Aparicio, R.; Torres, R.; Domínguez-Vara, I.A. Producción de biomasa, composición química y producción de gas in vitro de la vegetación de una sabana estacional modulada. Zootec. Trop. 2009, 2, 407–417. 19. Holdridge, L. Ecología Basada en Zonas de Vida; IICA: San Jose, Costa Rica, 1987; p. 216. 20. Cerdas, R. Programa de fertilización de forrajes. Desarrollo de un módulo práctico para técnicos y estudiantes de ganadería de Guanacaste, Costa Rica. InterSedes 2011, 12, 109–128. 21. Theodorou, M.K.; Williams, B.A.; Dhanoa, M.S.; McAllan, A.B.; France, J. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Technol. 1994, 48, 185–197. [CrossRef] 22. Goering, H.K.; Van Soest, P.J. Forage fiber analysis (apparatus, regents, procedures and some applications). Agric. Handb. 1970, 379, 1–20. 23. UN. Universidad Nacional de Colombia. Laboratorio de Biotecnología Ruminal (BIORUM)). 2023. Available online: https: //direcciondelaboratorios.medellin.unal.edu.co/index.php/nuestros-laboratorios/facultad-de-ciencias-agrarias/66 (accessed on 23 June 2023). 24. Littell, R.; Milliken, G.; Stroup, W.;Wolfinger, R.; Schabenberger, O. SAS for Mixed Models, 2nd ed.; SAS Institute Inc.: Cary, NC, USA, 2007. 25. InfoStat. Software Estadistico. Versión 30/04/2020; Grupo InfoStat, FCA, Universidad Nacional de Córdoba: Córdoba, Argentina, 2020. 26. Cruz-Hernández, A.; Hernández-Garay, A.; Aranda-Ibañez, E.; Chay-Canul, A.; Márquez-Quiroz, C.; Rojas-Garcia, A.L.; Gómez- Vázquez, A. Nutritive value of Mulato grass under dierent grazing strategies. Esosist. Recur. Agropec. 2017, 4, 65–72. [CrossRef] 27. Garay, J.R.; Joaquin-Cancino, S.; Zárate-Fortuna, P.; Ibarra-Hinojosa, M.A.; Martínez-González, J.C.; González-Dávila, R.P.; Cienfuegos-Rivas, E.G. Dry matter accumulation and crude protein concentration in Brachiaria spp. cultivars in the humid tropics of Ecuador. Trop. Grasslands-Forrajes Trop. 2017, 5, 66–76. [CrossRef] 28. Luce, M.S.; Gouveia, G.G.; Eudoxie, G.D. Comparative effects of food processing liquid slurry and inorganic fertilizers on tanner grass (Brachiaria arrecta) pasture: Grass yield, crude protein and P levels and residual soil N and P. Grass Forage Sci. 2016, 72, 401–413. [CrossRef] 29. Rojas-Sandoval, J. Urochloa arrecta (African signalgrass); CABI Compendium: Wallingford, UK, 2023. 30. Jiménez, J.C.; Cardoso, J.A.; Leiva, L.F.; Gil, J.; Forero, M.G.;Worthington, M.L.; Miles, J.W.; Rao, I.M. Non-destructive Phenotyping to Identify Brachiaria Hybrids Tolerant to Waterlogging Stress under Field Conditions. Front. Plant Sci. 2017, 8, 167. [CrossRef] 31. Dias-Filho, M.B.; Dos Santos-Lopes, M.J. Screening for tolerance to waterlogging in forage plants. In Proceedings of the III International Symposium on Forage Breeding, Bonito, MS, Brazil, 7–11 November 2011. 32. Reyes-Pérez, J.J.; Méndez-Martínez, Y.; Verdecia, D.; Luna-Murillo, R.A.; Hernández Montiel, L.G.; Herrera, R. Components of the yield and bromatological composition of three Brachiaria varieties in El Empalme area, Ecuador. Cuban J. Agric. Sci. 2018, 52, 35–445. 33. Cevallos, J.H.A.; Guerrero, F.C.; Zamora, G.Q.; Murillo, R.L.; Valdez, O.D.M.; Guerra, I.E.; Montes, S.Z.; Garaicoa, D.R.; Ruiz, J.V.; Mendoza, E.P. Comportamiento agronómico y composición química de tres variedades de Brachiaria en diferentes edades de cosecha. Cienc. Tecnol. 2008, 1, 87–94. [CrossRef] 34. Fonseca, P.G.; Emerenciano, N.J.; Dos Santos, D.G.; Cortes, A.C.; De Oliveira, L.P.; Da Silva Santos, R. Production and quality of tropical grasses at different regrowth intervals in the Brazilian semiarid. Acta Sci. 2021, 43, e52842. [CrossRef] 35. Canchila, E.R.; Soca, M.; Ojeda, F.; Machado, R. Evaluación de la composición bromatológica de 24 accesiones de Brachiaria spp. Pastos Forrajes 2009, 32, 1–9. 36. Liu, J.; Duan, C.; Zhang, X.; Zhu, Y.; Lu, X. Potential of Leersia hexandra Swartz for phytoextraction of Cr from soil. J. Hazard. Mater. 2011, 188, 85–91. [CrossRef] 37. Rodríguez-Rodríguez, N.; Rivera-Cruz, M.C.; Trujillo-Narcía, A.; Almaráz-Suárez, J.J.; Salgado-García, S. Spatial Distribution of Oil and Biostimulation Through the Rhizosphere of Leersia hexandra in Degraded Soil. Water Air Soil Pollut. 2016, 227, 319. [CrossRef] 38. Muñoz-González, J.C.; Huerta-Bravo, M.; Lara, B.A.; Rangel, S.R.; De la Rosa, A.J. Production and nutritional quality of forages in conditions Humid Tropics of Mexico. Rev. Mex. Cienc. Agríc. Pub. Esp. 2016, 16, 3315–3327. 39. Harper, K.J.; McNeill, D.M. The Role iNDF in the Regulation of Feed Intake and the Importance of Its Assessment in Subtropical Ruminant Systems (the Role of iNDF in the Regulation of Forage Intake). Agriculture 2015, 5, 778–790. [CrossRef] 40. Carrillo-Díaz, M.I.; Miranda-Romero, L.A.; Chávez-Aguilar, G.; Zepeda-Batista, J.L.; González-Reyes, M.; García-Casillas, A.C.; Tirado-González, D.N.; Tirado-Estrada, G. Improvement of Ruminal Neutral Detergent Fiber Degradability by Obtaining and Using Exogenous Fibrolytic Enzymes from White-Rot Fungi. Animals 2022, 12, 843. [CrossRef] [PubMed] 41. Mwendia, S.W.; Ohmstedt, U.; Nyakundi, F.; Notenbaert, A.; Peters, P. Does harvesting Urochloa and Megathyrsus forages at short intervals confer an advantage on cumulative dry matter yields and quality? J. Sci. Food Agric. 2022, 102, 750–756. [CrossRef] 42. Fonseca-Pereira, G.; Emerenciano-Neto, J.V.; dos Santos-Difante, G.; Cortes-Assis, L.C.; de Oliveira-Lima, P. Morphogenic and structural characteristics of tropical forage grasses managed under different regrowth periods in the Brazilian semi-arid region. Semin. Ciências Agrárias 2019, 40, 283–292. [CrossRef] 43. Bhatta, R.; Tajima, K.; Kurihara, M. Influence of temperature and pH on fermentation pattern and methane production in the rumen simulating fermenter (RUSITEC). Asian-Aust. J. Anim. Sci. 2006, 19, 376–380. [CrossRef] 44. Gaviria-Uribe, X.; Bolívar-Vergara, D.M.; Chirinda, N.; Molina-Botero, I.C.; Mazabel, J.; Barahona-Rosales, R.; Arango, J. In vitro methane production and ruminal fermentation parameters of tropical grasses and grass-legume associations commonly used for cattle feeding in the tropics. Livest. Res. Rural Dev. 2022, 34, 1–17. 45. Wilson-García, C.Y.; Sánchez-Santillán, P.; López-Zerón, N.E.; Domínguez-Rodríguez, I.E.; Ayala-Monter, M.A.; Torres-Salado, N.; Valenzuela Lagarda, J.L. In vitro fermentative characteristics and chemical quality of Guinea grass with organic and chemical fertilization Agro Productividad. Agro Product. 2022, 15, 79–86. [CrossRef] 46. Kamalak, A.; Canbolat, O.; Gurbuz, Y.; Ozay, O. Comparison of in vitro gas production technique with in situ nylon bag technique to estimate dry matter degradation. Czech J. Anim. Sci. 2005, 50, 60–67. [CrossRef] 47. Makkar, H.P. In vitro gas methods for evaluation of feeds containing phytochemicals. Anim. Feed Sci. Technol. 2005, 123–124, 291–302. [CrossRef] 48. Vélez, O.M.; Campos, R.; Sánchez, H. Uso de metabolitos secundarios de las Plantas para reducir la metanogénesis ruminal. Trop. Subtrop. Agroecos. 2014, 17, 489–499. 49. Miguel, M.A.; Lee, S.S.; Mamuad, L.L.; Choi, Y.J.; Jeong, C.D.; Son, A.; Cho, K.K.; Kim, E.T.; Kim, S.B.; Lee, S.S. Enhancing Butyrate Production, Ruminal Fermentation and Microbial Population through Supplementation with Clostridium saccharobutylicum. J. Microbiol. Biotechnol. 2019, 29, 1083–1095. [CrossRef] [PubMed] 50. Banik, B.K.; Durmic, Z.; Erskine, W.; Ghamkhar, K.; Revell, C. In vitro ruminal fermentation characteristics and methane production differ in selected key pasture species in Australia. Crop Pasture Sci. 2013, 64, 935–942. [CrossRef] 51. Giraldo-Parra, P.A. Efecto de Varios Aditivos y Suplementos Nutricionales en las Emisiones de Metano y los Parámetros de la Fermentación Ruminal In Vitro; Tesis Maestría en Ciencias Agrarias, Universidad Nacional de Colombia Medellín: Medellín, Colombia, 2013. 52. Bryant, M.P.; Robinson, I.M. Some nutritional characteristics of predominant culturable ruminal bacteria. J. Bacteriol. 1962, 84, 605–614. [CrossRef] 53. Leng, R.A. Factors affecting the utilization of “poor-quality” forages by ruminants particularly under tropical conditions. Nutr. Res. Rev. 1990, 3, 277–303. [CrossRef] 54. Marín, A.; Giraldo, L.A.; Correa, G. Parámetros de fermentación ruminal in vitro del pasto Kikuyo (Pennisetum clandestinum). Livest. Res. Rural Dev. 2014, 26, 1–6. 55. Ley de Coss, A.; Guerra-Medina, C.; Montañez-Valdez, O.; Guevara, F.; Pinto, R.; Reyes-Gutiérrez, J. In vitro production of gas methane by tropical grasses. Rev. MVZ Córdoba 2018, 23, 6788–6798. [CrossRef] 56. Vélez-Terranova, M.; Campos-Gaona, R.; Sánchez-Guerrero, H.; Giraldo, L.A. Fermentation dynamics and methane production of diets based on Brachiaria humidicola with high inclusion Levels of Enterolobium schomburgkii and Senna occidentalis in a Rusitec system. Trop. Subtrop. Agroecos. 2018, 21, 163–175. 57. Kulivand, M.; Kafilzadeh, F. Correlation between chemical composition, kinetics of fermentation and methane production of eight pasture grasses. Acta Sci. Anim. Sci. Mar. 2015, 37, 9–14. [CrossRef] 58. Lee, M.A. A global comparison of the nutritive values of forage plants grown in contrasting environments. J. Plant Res. 2018, 131, 641–654. [CrossRef] 59. Meale, S.J.; Chaves, A.V.; Baah, J.; McAllister, T.A. Methane Production of Different Forages in In vitro Ruminal Fermentation. Asian-Aust. J. Anim. Sci. 2012, 25, 86–91. [CrossRef] 60. Montalvão Lima, D.; Abdalla Filho, A.L.; Tavares Lima, P.M.; Zanuto Sakita, G.; Dias e Silva, T.P.; McManus, C.; Abdalla, A.L.; Louvandini, H. Morphological characteristics, nutritive quality, and methane production of tropical grasses in Brazil. Pesq. Agropec. Bras. 2018, 53, 323–331. [CrossRef] 61. Kondo, M.; Yoshida, M.; Loresco, M.; Lapitan, R.M.; Herrera, J.R.; Del Barrio, A.N.; Uyeno, Y.; Matsui, H.; Fujihara, T. Nutrient Contents and In vitro Ruminal Fermentation of Tropical Grasses Harvested in Wet Season in the Philippines. Adv. Anim. Vet. Sci. 2015, 3, 694–699. [CrossRef] 62. Chino Velasquez, L.B.; Molina-Botero, I.C.; Moscoso Muñoz, J.E.; Gómez Bravo, C. Relationship between Chemical Composition and In Vitro Methane Production of High Andean Grasses. Animals 2022, 12, 2348. [CrossRef] [PubMed]composición químicasabana inundablefermentación in vitroforrajes tropicaleschemical compositionfloodable savannasinvitro fermentationtropical foragesChemical Composition and In Vitro Ruminal Fermentation Characteristics of Native Grasses from the Floodplain Lowlands Ecosystem in the Colombian OrinoquiaArtículos Científicoshttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionAtribución – No comercial – Sin Derivarinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationORIGINALFermentacion pastos nativos bajo animals-13-02760.pdfFermentacion pastos nativos bajo animals-13-02760.pdfapplication/pdf1198484https://repository.ucc.edu.co/bitstreams/13b61188-0ceb-49f9-be22-21099dfb6944/download003642c997049366891335d7dc5d14adMD51Licencia de uso RI Ver5 - 9-07-2021 Fermentacion pastos nativos.pdfLicencia de uso RI Ver5 - 9-07-2021 Fermentacion pastos nativos.pdfapplication/pdf198095https://repository.ucc.edu.co/bitstreams/e0405c9c-ed0a-4f09-95bf-fede9bf11075/download6ca88891b7a80665927b022fb5b73efbMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/4abe032b-64f6-4602-a397-4cf77e6a7773/download3bce4f7ab09dfc588f126e1e36e98a45MD53TEXTFermentacion pastos nativos bajo animals-13-02760.pdf.txtFermentacion pastos nativos bajo animals-13-02760.pdf.txtExtracted texttext/plain76909https://repository.ucc.edu.co/bitstreams/ce159261-3b1b-499b-8a13-13349f94cf99/download3e7bee209f2368b89118e636233882cdMD54Licencia de uso RI Ver5 - 9-07-2021 Fermentacion pastos nativos.pdf.txtLicencia de uso RI Ver5 - 9-07-2021 Fermentacion pastos nativos.pdf.txtExtracted texttext/plain6173https://repository.ucc.edu.co/bitstreams/459b5a23-827d-463e-9c03-91a06f46e58f/downloadf421488e37c30e962823ce97ac2e48ddMD56THUMBNAILFermentacion pastos nativos bajo animals-13-02760.pdf.jpgFermentacion pastos nativos bajo animals-13-02760.pdf.jpgGenerated Thumbnailimage/jpeg16500https://repository.ucc.edu.co/bitstreams/55494900-2ba5-4f6e-98a6-1f5d5c75169c/download655ba0494d047dac5af00673b1cd2074MD55Licencia de uso RI Ver5 - 9-07-2021 Fermentacion pastos nativos.pdf.jpgLicencia de uso RI Ver5 - 9-07-2021 Fermentacion pastos nativos.pdf.jpgGenerated Thumbnailimage/jpeg12894https://repository.ucc.edu.co/bitstreams/1934997c-1c92-4d90-b0bb-402514aa58ab/download337743a66714040a570519a416d59926MD5720.500.12494/52599oai:repository.ucc.edu.co:20.500.12494/525992024-08-20 16:24:10.357open.accesshttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo=