Control térmico sostenible en edificaciones residenciales ubicadas en zonas de clima cálido

Este análisis sistemático de literatura busca revisar y sintetizar la investigación existente en este campo de las soluciones sostenibles para edificaciones residenciales, que responda a las características de las condiciones climáticas cálidas con el fin de que la edificación garantice el confort t...

Full description

Autores:
Maidy Estefanny Vargas Vargas
Heidy Camila Claros Oliveros
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2024
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
spa
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/56006
Acceso en línea:
https://hdl.handle.net/20.500.12494/56006
Palabra clave:
TG 2024 ICI 56006
Infraestructura
Construcción de vivienda
Clima Tropical
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id COOPER2_a1ca801bd41194db3784af9716fb2c73
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/56006
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.spa.fl_str_mv Control térmico sostenible en edificaciones residenciales ubicadas en zonas de clima cálido
title Control térmico sostenible en edificaciones residenciales ubicadas en zonas de clima cálido
spellingShingle Control térmico sostenible en edificaciones residenciales ubicadas en zonas de clima cálido
TG 2024 ICI 56006
Infraestructura
Construcción de vivienda
Clima Tropical
title_short Control térmico sostenible en edificaciones residenciales ubicadas en zonas de clima cálido
title_full Control térmico sostenible en edificaciones residenciales ubicadas en zonas de clima cálido
title_fullStr Control térmico sostenible en edificaciones residenciales ubicadas en zonas de clima cálido
title_full_unstemmed Control térmico sostenible en edificaciones residenciales ubicadas en zonas de clima cálido
title_sort Control térmico sostenible en edificaciones residenciales ubicadas en zonas de clima cálido
dc.creator.fl_str_mv Maidy Estefanny Vargas Vargas
Heidy Camila Claros Oliveros
dc.contributor.advisor.none.fl_str_mv Leandro Argotte Ibarra
dc.contributor.author.none.fl_str_mv Maidy Estefanny Vargas Vargas
Heidy Camila Claros Oliveros
dc.subject.classification.none.fl_str_mv TG 2024 ICI 56006
topic TG 2024 ICI 56006
Infraestructura
Construcción de vivienda
Clima Tropical
dc.subject.lemb.none.fl_str_mv Infraestructura
Construcción de vivienda
Clima Tropical
description Este análisis sistemático de literatura busca revisar y sintetizar la investigación existente en este campo de las soluciones sostenibles para edificaciones residenciales, que responda a las características de las condiciones climáticas cálidas con el fin de que la edificación garantice el confort térmico en los espacios interiores. El control térmico en edificaciones es un aspecto fundamental para garantizar el confort y la eficiencia energética en los espacios habitables. En el contexto de la construcción sostenible y la adaptación al cambio climático, se ha vuelto aún más relevante.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-06-19T19:28:51Z
dc.date.available.none.fl_str_mv 2024-06-19T19:28:51Z
dc.date.issued.none.fl_str_mv 2024-06-17
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.citation.none.fl_str_mv Claros Oliveros, H. C. y Vargas Vargas, M. E. (2024). Control térmico sostenible en edificaciones residenciales ubicadas en zonas de clima cálido [Tesis de pregrado, Universidad Cooperativa de Colombia]. Repositorio Institucional Universidad Cooperativa de Colombia. https://hdl.handle.net/20.500.12494/56006
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12494/56006
identifier_str_mv Claros Oliveros, H. C. y Vargas Vargas, M. E. (2024). Control térmico sostenible en edificaciones residenciales ubicadas en zonas de clima cálido [Tesis de pregrado, Universidad Cooperativa de Colombia]. Repositorio Institucional Universidad Cooperativa de Colombia. https://hdl.handle.net/20.500.12494/56006
url https://hdl.handle.net/20.500.12494/56006
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv Abdollahzadeh, S. M., Heidari, S., & Einifar, A. (2023). Evaluating thermal comfort and neutral temperature in residential apartments in hot and dry climate: A case study in Shiraz, Iran. Journal of Building Engineering, 76, 107161.
Ahmed, A., Ge, T., Peng, J., Yan, W. C., Tee, B. T., & You, S. (2022). Assessment of the renewable energy generation towards net-zero energy buildings: A review. Energy and Buildings, 256, 111755.
Allouhi, A., El Fouih, Y., Kousksou, T., Jamil, A., Zeraouli, Y., & Mourad, Y. (2015). Energy consumption and efficiency in buildings: current status and future trends. Journal of Cleaner production, 109, 118-130.
Aneli, S., Arena, R., Tina, G. M., & Gagliano, A. (2023). Improvement of energy selfsufficiency in residential buildings by using solar-assisted heat pumps and thermal and electrical storage. Sustainable Energy Technologies and Assessments, 60, 103446.
Arumugam, P., Ramalingam, V., & Vellaichamy, P. (2022). Effective PCM, insulation, natural and/or night ventilation techniques to enhance the thermal performance of buildings located in various climates–A review. Energy and Buildings, 258, 111840.
Baghoolizadeh, M., Rostamzadeh-Renani, M., Hakimazari, M., & Rostamzadeh-Renani, R. (2023). Improving CO2 concentration, CO2 pollutant and occupants’ thermal comfort in a residential building using genetic algorithm optimization. Energy and Buildings, 291, 113109.
Baglivo, C., Congedo, P. M., D'Agostino, D., & Zacà, I. (2015). Cost-optimal analysis and technical comparison between standard and high efficient mono-residential buildings in a warm climate. energy, 83, 560-575.
Bosu, I., Mahmoud, H., Ookawara, S., & Hassan, H. (2023). Applied single and hybrid solar energy techniques for building energy consumption and thermal comfort: A comprehensive review. Solar Energy, 259, 188-228.
Cárdenas-Rangel, J., Osma-Pinto, G., & Jaramillo-Ibarra, J. (2023). Energy characterization of residential and office buildings in a tropical location. Heliyon, 9(5).
Cavazzuti, M., & Bottarelli, M. (2023). Performance analysis of a multi-source renewable energy system for temperature control in buildings of varied thermal transmittance and climate zone. Renewable and Sustainable Energy Reviews, 187, 113725.
Chwieduk, D. (2003). Towards sustainable-energy buildings. Applied energy, 76(1-3), 211217.
Congedo, P. M., Baglivo, C., & Centonze, G. (2020). Walls comparative evaluation for the thermal performance improvement of low-rise residential buildings in warm Mediterranean climate. Journal of Building Engineering, 28, 101059.
Direct. Obtenido de https://www.sciencedirect.com/science/article/abs/pii/S1364032123002277 Cristancho Santos, M. A., Morales Mojica, J. A., & Baquero Rodríguez, G. A. (2017). Tendencias en el diseño, construcción y operación de techos verdes para el mejoramiento de la calidad del agua lluvia. Estado del arte. Ingeniería del agua, 21(3), 179-196.
Dabous, S. A., Ibrahim, T., Shareef, S., Mushtaha, E., & Alsyouf, I. (2022). Sustainable façade cladding selection for buildings in hot climates based on thermal performance and energy consumption. Results in Engineering, 16, 100643.
Darbani, E. S., Rafieian, M., Parapari, D. M., & Guldmann, J. M. (2023). Urban design strategies for summer and winter outdoor thermal comfort in arid regions: The case of historical, contemporary and modern urban areas in Mashhad, Iran. Sustainable Cities and Society, 89, 104339.
Del Barrio, E. P. (1998). Analysis of the green roofs cooling potential in buildings. Energy and buildings, 27(2), 179-193.
Ezeh, C. I., Hong, Y., Deng, W., & Zhao, H. (2022). High rise office building makeovers— Exploiting architectural and engineering factors in designing sustainable buildings in different climate zones. Energy Reports, 8, 6396-6410.
Fonseca-Granados, L. E. (2019). Análisis del comportamiento térmico de las envolventes de las viviendas VIS en la ciudad de Tunja desde el enfoque de las tecnologías limpias.
Gómez de Perozo, N. (2012). Estrategias para el control microclimático del espacio entre edificaciones en clima cálido–húmedo (Doctoral dissertation, Industriales).
Gómez, N. (2016). Análisis de Confort Térmico Social para el Control Sostenible del Microespacio Urbano entre Edificaciones (Doctoral dissertation, Universidad del Zulia).Gonçalves, F. L. (1 de Mayo de 2021). Sciencie Direct. Obtenido de https://www.sciencedirect.com/science/article/abs/pii/S0378778821001122
Granados, C. A. B., Delgado, A. Y. S., & Tapiero, D. I. S. (2022). Diseño de techos verdes y jardines verticales como sistemas urbanos de drenaje sostenible en edificaciones. Respuestas, 27(2), 26-39.
Granados, L. E. (2019). Análisis del comportamiento térmico de las envolventes de las viviendas VIS en la ciudad de Tunja desde el enfoque de las tecnologías limpias. Repositorio Universidda Catolica de Colombia.
Guillen-Lambea, S., Rodríguez-Soria, B., & Marín, J. M. (2019). Air infiltrations and energy demand for residential low energy buildings in warm climates. Renewable and Sustainable Energy Reviews, 116, 109469.
Hassan, A. A., & El-Rayes, K. (2021). Optimizing the integration of renewable energy in existing buildings. Energy and Buildings, 238, 110851.
Hernández-Ávila, W. N. (2022). Mejoramiento del confort térmico para clima cálido-seco en edificios turísticos de la ciudad de Santa Marta. Estudio de caso: proyecto Infinity Blue.
He, Q., Hossain, M. U., Ng, S. T., & Augenbroe, G. (2021). Identifying practical sustainable retrofit measures for existing high-rise residential buildings in various climate zones through an integrated energy-cost model. Renewable and Sustainable Energy Reviews, 151, 111578.
Hossain, M. F. (2019). WITHDRAWN: Green Technology: Thermal control of solar energy to cool and heat the building naturally.
Hu, M., Zhang, K., Nguyen, Q., & Tasdizen, T. (2023). The effects of passive design on indoor thermal comfort and energy savings for residential buildings in hot climates: A systematic review. Urban Climate, 49, 101466.
Imanari, T., Omori, T., & Bogaki, K. (1999). Thermal comfort and energy consumption of the radiant ceiling panel system.: Comparison with the conventional all-air system. Energy and buildings, 30(2), 167-175.
Ishween, A. (2021). Grays to greens: A place where humans and nature coexist A case study of Bosco Verticale, Milan, India. Descriptio, 3(1).
Kalaimathy, K., Priya, R. S., Rajagopal, P., Pradeepa, C., & Senthil, R. (2023). Daylight performance analysis of a residential building in a tropical climate. Energy Nexus, 11, 100226.
Khan, J., & Arsalan, M. H. (2016). Solar power technologies for sustainable electricity generation–A review. Renewable and Sustainable Energy Reviews, 55, 414-425.
Lazar, N., & Chithra, K. (2022). Benchmarking critical criteria for assessing sustainability of residential buildings in tropical climate. Journal of Building Engineering, 45, 103467.
Lazar, N., & Chithra, K. (2021). Evaluation of sustainability criteria for residential buildings of tropical climate: The stakeholder perspective. Energy and Buildings, 232, 110654.
Liu, S., Kwok, Y. T., Lau, K. K. L., Ouyang, W., & Ng, E. (2020). Effectiveness of passive design strategies in responding to future climate change for residential buildings in hot and humid Hong Kong. Energy and Buildings, 228, 110469.
Mansouri, S. T., & Zarghami, E. (2023). Investigating the effect of the physical layout of the architecture of high-rise buildings, residential complexes, and urban heat islands. Energy and Built Environment.
Monika, S., & Sundaram, A. M. (2023). Efficient and optimum design of native architecture– A means for sustainability. Case study of Residential units in Kottar, Kanyakumari. Energy and Buildings, 298, 113586.
Mousavi, S., Gheibi, M., Wacławek, S., Smith, N. R., Hajiaghaei-Keshteli, M., & Behzadian, K. (2023). Low-energy residential building optimisation for energy and comfort enhancement in semi-arid climate conditions. Energy Conversion and Management, 291, 117264.
Niachou, A., Papakonstantinou, K., Santamouris, M., Tsangrassoulis, A., & Mihalakakou, G. (2001). Analysis of the green roof thermal properties and investigation of its energy performance. Energy and buildings, 33(7), 719-729.
Olabi, A. G. (2014). 100% sustainable energy. Energy, 77, 1-5. Osorio, J. D., Zea, S., Rivera-Alvarez, A., Patiño-Jaramillo, G. A., Hovsapian, R., & Ordonez, J. C. (2023). Low-temperature solar thermal-power systems for residential electricity supply under various seasonal and climate conditions. Applied Thermal Engineering, 120905.
Pinto, G. A. O., & Plata, G. O. (2010). Desarrollo sostenible en edificaciones. Revista UIS ingenierías, 9(1), 103-121.
Raji, B., Tenpierik, M. J., & Van Den Dobbelsteen, A. (2015). The impact of greening systems on building energy performance: A literature review. Renewable and Sustainable Energy Reviews, 45, 610-623.
Raimundo, A. M., & Oliveira, A. V. M. (2022). Analyzing thermal comfort and related costs in buildings under Portuguese temperate climate. Building and Environment, 219, 109238. Ripoll Puentes, A., & Yepes Ayola, E. (2023). Análisis de los sistemas de aislamiento térmico en edificaciones residenciales de hormigón.
Rodríguez-Potes, L., & Meza-Estrada, C. E. (2018). La construcción sostenible frente a la mitigación del cambio climático. Módulo arquitectura CUC, 21(1), 9-22.
Rosa, N., Soares, N., Costa, J. J., Santos, P., & Gervásio, H. (2020). Assessment of an earthair heat exchanger (EAHE) system for residential buildings in warm-summer Mediterranean climate. Sustainable Energy Technologies and Assessments, 38, 100649.
Santamouris, M., Paraponiaris, K., & Mihalakakou, G. (2007). Estimating the Ecological Footprint of the Heat Island Effect over Athens, Greece. Climatic Change, 80, 265-276.
Santamouris, M., Cartalis, C., Synnefa, A., & Kolokotsa, D. (2015). On the impact of urban heat island and global warming on the power demand and electricity consumption of buildings— A review. Energy and buildings, 98, 119-124.
Santamouris, M. (2020). Recent progress on urban overheating and heat island research. Integrated assessment of the energy, environmental, vulnerability and health impact. Synergies with the global climate change. Energy and Buildings, 207, 109482.
Santamouris, M. (2014). Cooling the cities–a review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Solar energy, 103, 682-703.
Sedighi, M., Pourmoghaddam Qhazvini, P., & Amidpour, M. (2023). Algae-Powered Buildings: A Review of an Innovative, Sustainable Approach in the Built Environment. Sustainability, 15(4), 3729.
Stetiu, C. (1999). Energy and peak power savings potential of radiant cooling systems in US commercial buildings. Energy and buildings, 30(2), 127-138.
Tan, Z., & Deng, X. (2020). An optimised window control strategy for naturally ventilated residential buildings in warm climates. Sustainable Cities and Society, 57, 102118.
Tarek, D., Ahmed, M. M., Hussein, H. S., Zeyad, A. M., Al-Enizi, A. M., Yousef, A., & Ragab, A. (2022). Building envelope optimization using geopolymer bricks to improve the energy efficiency of residential buildings in hot arid regions. Case Studies in Construction Materials, 17, e01657.
Vargas-Serrato, V. (2022). Estrategias de diseño sostenible para una edificación de uso mixto en clima cálido seco. caso de estudio: Neiva, Huila.
Wang, M., Li, Q., Wang, F., Yuan, Z., Wang, L., & Zhou, X. (2023). Residential indoor thermal environment investigation and analysis on energy saving of air conditioning in hot summer and warm winter zone in China. Urban Climate, 47, 101369.
Yadeta, C., Indraganti, M., Tucho, G. T., & Alemayehu, E. (2023). Study on adaptive thermal comfort model and behavioral adaptation in naturally ventilated residential buildings, Jimma Town, Ethiopia. Energy and Buildings, 298, 113483.
Yan, H., Ji, G., & Yan, K. (2022). Data-driven prediction and optimization of residential building performance in Singapore considering the impact of climate change. Building and Environment, 226, 109735.
Yang, J., Pyrgou, A., Chong, A., Santamouris, M., Kolokotsa, D., & Lee, S. E. (2018). Green and cool roofs’ urban heat island mitigation potential in tropical climate. Solar Energy, 173, 597- 609.
Yang, Z., Zhang, W., Qin, M., & Liu, H. (2022). Comparative study of indoor thermal environment and human thermal comfort in residential buildings among cities, towns, and rural areas in arid regions of China. Energy and Buildings, 273, 112373.
Zakula, T., Armstrong, P. R., & Norford, L. (2015). Advanced cooling technology with thermally activated building surfaces and model predictive control. Energy and buildings, 86, 640-650.
Zhan, H., Mahyuddin, N., Sulaiman, R., & Khayatian, F. (2023). Phase change material (PCM) integrations into buildings in hot climates with simulation access for energy performance and thermal comfort: A review. Construction and Building Materials, 397, 132312.
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.none.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 International
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 51 p.
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Civil, Neiva
dc.publisher.program.none.fl_str_mv Ingeniería Civil
dc.publisher.faculty.none.fl_str_mv Ingenierías
dc.publisher.place.none.fl_str_mv Neiva
dc.publisher.branch.none.fl_str_mv Neiva
publisher.none.fl_str_mv Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Civil, Neiva
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/89b38477-0b76-4043-a7d6-c8a9d78c38db/download
https://repository.ucc.edu.co/bitstreams/23e87d04-1dfd-46ef-9637-358337e62a5f/download
https://repository.ucc.edu.co/bitstreams/b87ce5e2-091a-492f-8dc0-12a3d38781a4/download
https://repository.ucc.edu.co/bitstreams/52a64d68-62cd-436f-9678-7411836a206b/download
https://repository.ucc.edu.co/bitstreams/1114190f-272b-493d-99aa-7943c2eedea8/download
https://repository.ucc.edu.co/bitstreams/7ffe43c1-5a7c-4521-ad5f-df601150f3af/download
https://repository.ucc.edu.co/bitstreams/17853008-32a1-41f8-83ff-63286b6493ae/download
https://repository.ucc.edu.co/bitstreams/401ddbe6-01a2-4335-89cc-15c57b90f21b/download
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
3bce4f7ab09dfc588f126e1e36e98a45
92db321630ecf1d8e47a24f398ce3c6a
a97531cde27a8e197bb38a06c1bbec4e
de939e5d43b94e66bb9534abb73ceff4
06d3ce56efef2fea904a793161ff8eaa
15eef6901ebdda9f8d6c5d5e2c0a55f7
9430d52aeb5ade8d069a927a670f6ebc
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808789095033339904
spelling Leandro Argotte IbarraMaidy Estefanny Vargas VargasHeidy Camila Claros Oliveros2024-06-19T19:28:51Z2024-06-19T19:28:51Z2024-06-17Claros Oliveros, H. C. y Vargas Vargas, M. E. (2024). Control térmico sostenible en edificaciones residenciales ubicadas en zonas de clima cálido [Tesis de pregrado, Universidad Cooperativa de Colombia]. Repositorio Institucional Universidad Cooperativa de Colombia. https://hdl.handle.net/20.500.12494/56006https://hdl.handle.net/20.500.12494/56006Este análisis sistemático de literatura busca revisar y sintetizar la investigación existente en este campo de las soluciones sostenibles para edificaciones residenciales, que responda a las características de las condiciones climáticas cálidas con el fin de que la edificación garantice el confort térmico en los espacios interiores. El control térmico en edificaciones es un aspecto fundamental para garantizar el confort y la eficiencia energética en los espacios habitables. En el contexto de la construcción sostenible y la adaptación al cambio climático, se ha vuelto aún más relevante.This systematic literature analysis seeks to review and synthesize existing research in this field of sustainable solutions for residential buildings, which respond to the characteristics of warm climatic conditions so that the building guarantees thermal comfort in interior spaces. Thermal control in buildings is a fundamental aspect to guarantee comfort and energy efficiency in living spaces. In the context of sustainable construction and adaptation to climate change, it has become even more relevant.1. Planteamiento del Problema -- 2. Justificación -- 3. Objetivos -- 3.1 General -- 3.2 Específicos -- 4. Marco Conceptual -- 5. Metodología -- 5.1 Definición de objetivos 5.2 Búsqueda y Recopilación de Datos -- 5.3 Selección de documentos -- 5.4 Clasificación -- 5.6 Redacción -- 6. Resultados -- 6.1 Problemática del control térmico en viviendas -- 6.2 Soluciones innovadoras para control térmico -- 6.2.1 Masa térmica y aislamiento -- 6.2.2 Muros de Hormigón Inteligentes -- 6.2.3 Techos Sostenibles y Eficientes -- 6.2.4 Ventanas: Orientación y materiales -- 6.2.5 Ventanas con doble acristalamiento -- 6.2.6 Ventanas de techo -- 6.3 Soluciones desde la bioingeniería -- 6.3.1 Calefacción y refrigeración con paneles vivos: Algas -- 6.3.2 Jardines verticales -- 6.4 Soluciones innovadoras para control térmico en viviendas de interés social -- 7. DOFA -- 8. Discusión -- 9. Conclusiones.PregradoIngeniera Civil51 p.application/pdfspaUniversidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Civil, NeivaIngeniería CivilIngenieríasNeivaNeivaEsta licencia permite a otros distribuir, mezclar, ajustar y construir a partir de su obra, incluso con fines comerciales, siempre que le sea reconocida la autoría de la creación original. Esta es la licencia más servicial de las ofrecidas. Recomendada para una máxima difusión y utilización de los materiales sujetos a la licencia.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://purl.org/coar/access_right/c_abf2TG 2024 ICI 56006InfraestructuraConstrucción de viviendaClima TropicalControl térmico sostenible en edificaciones residenciales ubicadas en zonas de clima cálidoTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionAbdollahzadeh, S. M., Heidari, S., & Einifar, A. (2023). Evaluating thermal comfort and neutral temperature in residential apartments in hot and dry climate: A case study in Shiraz, Iran. Journal of Building Engineering, 76, 107161.Ahmed, A., Ge, T., Peng, J., Yan, W. C., Tee, B. T., & You, S. (2022). Assessment of the renewable energy generation towards net-zero energy buildings: A review. Energy and Buildings, 256, 111755.Allouhi, A., El Fouih, Y., Kousksou, T., Jamil, A., Zeraouli, Y., & Mourad, Y. (2015). Energy consumption and efficiency in buildings: current status and future trends. Journal of Cleaner production, 109, 118-130.Aneli, S., Arena, R., Tina, G. M., & Gagliano, A. (2023). Improvement of energy selfsufficiency in residential buildings by using solar-assisted heat pumps and thermal and electrical storage. Sustainable Energy Technologies and Assessments, 60, 103446.Arumugam, P., Ramalingam, V., & Vellaichamy, P. (2022). Effective PCM, insulation, natural and/or night ventilation techniques to enhance the thermal performance of buildings located in various climates–A review. Energy and Buildings, 258, 111840.Baghoolizadeh, M., Rostamzadeh-Renani, M., Hakimazari, M., & Rostamzadeh-Renani, R. (2023). Improving CO2 concentration, CO2 pollutant and occupants’ thermal comfort in a residential building using genetic algorithm optimization. Energy and Buildings, 291, 113109.Baglivo, C., Congedo, P. M., D'Agostino, D., & Zacà, I. (2015). Cost-optimal analysis and technical comparison between standard and high efficient mono-residential buildings in a warm climate. energy, 83, 560-575.Bosu, I., Mahmoud, H., Ookawara, S., & Hassan, H. (2023). Applied single and hybrid solar energy techniques for building energy consumption and thermal comfort: A comprehensive review. Solar Energy, 259, 188-228.Cárdenas-Rangel, J., Osma-Pinto, G., & Jaramillo-Ibarra, J. (2023). Energy characterization of residential and office buildings in a tropical location. Heliyon, 9(5).Cavazzuti, M., & Bottarelli, M. (2023). Performance analysis of a multi-source renewable energy system for temperature control in buildings of varied thermal transmittance and climate zone. Renewable and Sustainable Energy Reviews, 187, 113725.Chwieduk, D. (2003). Towards sustainable-energy buildings. Applied energy, 76(1-3), 211217.Congedo, P. M., Baglivo, C., & Centonze, G. (2020). Walls comparative evaluation for the thermal performance improvement of low-rise residential buildings in warm Mediterranean climate. Journal of Building Engineering, 28, 101059.Direct. Obtenido de https://www.sciencedirect.com/science/article/abs/pii/S1364032123002277 Cristancho Santos, M. A., Morales Mojica, J. A., & Baquero Rodríguez, G. A. (2017). Tendencias en el diseño, construcción y operación de techos verdes para el mejoramiento de la calidad del agua lluvia. Estado del arte. Ingeniería del agua, 21(3), 179-196.Dabous, S. A., Ibrahim, T., Shareef, S., Mushtaha, E., & Alsyouf, I. (2022). Sustainable façade cladding selection for buildings in hot climates based on thermal performance and energy consumption. Results in Engineering, 16, 100643.Darbani, E. S., Rafieian, M., Parapari, D. M., & Guldmann, J. M. (2023). Urban design strategies for summer and winter outdoor thermal comfort in arid regions: The case of historical, contemporary and modern urban areas in Mashhad, Iran. Sustainable Cities and Society, 89, 104339.Del Barrio, E. P. (1998). Analysis of the green roofs cooling potential in buildings. Energy and buildings, 27(2), 179-193.Ezeh, C. I., Hong, Y., Deng, W., & Zhao, H. (2022). High rise office building makeovers— Exploiting architectural and engineering factors in designing sustainable buildings in different climate zones. Energy Reports, 8, 6396-6410.Fonseca-Granados, L. E. (2019). Análisis del comportamiento térmico de las envolventes de las viviendas VIS en la ciudad de Tunja desde el enfoque de las tecnologías limpias.Gómez de Perozo, N. (2012). Estrategias para el control microclimático del espacio entre edificaciones en clima cálido–húmedo (Doctoral dissertation, Industriales).Gómez, N. (2016). Análisis de Confort Térmico Social para el Control Sostenible del Microespacio Urbano entre Edificaciones (Doctoral dissertation, Universidad del Zulia).Gonçalves, F. L. (1 de Mayo de 2021). Sciencie Direct. Obtenido de https://www.sciencedirect.com/science/article/abs/pii/S0378778821001122Granados, C. A. B., Delgado, A. Y. S., & Tapiero, D. I. S. (2022). Diseño de techos verdes y jardines verticales como sistemas urbanos de drenaje sostenible en edificaciones. Respuestas, 27(2), 26-39.Granados, L. E. (2019). Análisis del comportamiento térmico de las envolventes de las viviendas VIS en la ciudad de Tunja desde el enfoque de las tecnologías limpias. Repositorio Universidda Catolica de Colombia.Guillen-Lambea, S., Rodríguez-Soria, B., & Marín, J. M. (2019). Air infiltrations and energy demand for residential low energy buildings in warm climates. Renewable and Sustainable Energy Reviews, 116, 109469.Hassan, A. A., & El-Rayes, K. (2021). Optimizing the integration of renewable energy in existing buildings. Energy and Buildings, 238, 110851.Hernández-Ávila, W. N. (2022). Mejoramiento del confort térmico para clima cálido-seco en edificios turísticos de la ciudad de Santa Marta. Estudio de caso: proyecto Infinity Blue.He, Q., Hossain, M. U., Ng, S. T., & Augenbroe, G. (2021). Identifying practical sustainable retrofit measures for existing high-rise residential buildings in various climate zones through an integrated energy-cost model. Renewable and Sustainable Energy Reviews, 151, 111578.Hossain, M. F. (2019). WITHDRAWN: Green Technology: Thermal control of solar energy to cool and heat the building naturally.Hu, M., Zhang, K., Nguyen, Q., & Tasdizen, T. (2023). The effects of passive design on indoor thermal comfort and energy savings for residential buildings in hot climates: A systematic review. Urban Climate, 49, 101466.Imanari, T., Omori, T., & Bogaki, K. (1999). Thermal comfort and energy consumption of the radiant ceiling panel system.: Comparison with the conventional all-air system. Energy and buildings, 30(2), 167-175.Ishween, A. (2021). Grays to greens: A place where humans and nature coexist A case study of Bosco Verticale, Milan, India. Descriptio, 3(1).Kalaimathy, K., Priya, R. S., Rajagopal, P., Pradeepa, C., & Senthil, R. (2023). Daylight performance analysis of a residential building in a tropical climate. Energy Nexus, 11, 100226.Khan, J., & Arsalan, M. H. (2016). Solar power technologies for sustainable electricity generation–A review. Renewable and Sustainable Energy Reviews, 55, 414-425.Lazar, N., & Chithra, K. (2022). Benchmarking critical criteria for assessing sustainability of residential buildings in tropical climate. Journal of Building Engineering, 45, 103467.Lazar, N., & Chithra, K. (2021). Evaluation of sustainability criteria for residential buildings of tropical climate: The stakeholder perspective. Energy and Buildings, 232, 110654.Liu, S., Kwok, Y. T., Lau, K. K. L., Ouyang, W., & Ng, E. (2020). Effectiveness of passive design strategies in responding to future climate change for residential buildings in hot and humid Hong Kong. Energy and Buildings, 228, 110469.Mansouri, S. T., & Zarghami, E. (2023). Investigating the effect of the physical layout of the architecture of high-rise buildings, residential complexes, and urban heat islands. Energy and Built Environment.Monika, S., & Sundaram, A. M. (2023). Efficient and optimum design of native architecture– A means for sustainability. Case study of Residential units in Kottar, Kanyakumari. Energy and Buildings, 298, 113586.Mousavi, S., Gheibi, M., Wacławek, S., Smith, N. R., Hajiaghaei-Keshteli, M., & Behzadian, K. (2023). Low-energy residential building optimisation for energy and comfort enhancement in semi-arid climate conditions. Energy Conversion and Management, 291, 117264.Niachou, A., Papakonstantinou, K., Santamouris, M., Tsangrassoulis, A., & Mihalakakou, G. (2001). Analysis of the green roof thermal properties and investigation of its energy performance. Energy and buildings, 33(7), 719-729.Olabi, A. G. (2014). 100% sustainable energy. Energy, 77, 1-5. Osorio, J. D., Zea, S., Rivera-Alvarez, A., Patiño-Jaramillo, G. A., Hovsapian, R., & Ordonez, J. C. (2023). Low-temperature solar thermal-power systems for residential electricity supply under various seasonal and climate conditions. Applied Thermal Engineering, 120905.Pinto, G. A. O., & Plata, G. O. (2010). Desarrollo sostenible en edificaciones. Revista UIS ingenierías, 9(1), 103-121.Raji, B., Tenpierik, M. J., & Van Den Dobbelsteen, A. (2015). The impact of greening systems on building energy performance: A literature review. Renewable and Sustainable Energy Reviews, 45, 610-623.Raimundo, A. M., & Oliveira, A. V. M. (2022). Analyzing thermal comfort and related costs in buildings under Portuguese temperate climate. Building and Environment, 219, 109238. Ripoll Puentes, A., & Yepes Ayola, E. (2023). Análisis de los sistemas de aislamiento térmico en edificaciones residenciales de hormigón.Rodríguez-Potes, L., & Meza-Estrada, C. E. (2018). La construcción sostenible frente a la mitigación del cambio climático. Módulo arquitectura CUC, 21(1), 9-22.Rosa, N., Soares, N., Costa, J. J., Santos, P., & Gervásio, H. (2020). Assessment of an earthair heat exchanger (EAHE) system for residential buildings in warm-summer Mediterranean climate. Sustainable Energy Technologies and Assessments, 38, 100649.Santamouris, M., Paraponiaris, K., & Mihalakakou, G. (2007). Estimating the Ecological Footprint of the Heat Island Effect over Athens, Greece. Climatic Change, 80, 265-276.Santamouris, M., Cartalis, C., Synnefa, A., & Kolokotsa, D. (2015). On the impact of urban heat island and global warming on the power demand and electricity consumption of buildings— A review. Energy and buildings, 98, 119-124.Santamouris, M. (2020). Recent progress on urban overheating and heat island research. Integrated assessment of the energy, environmental, vulnerability and health impact. Synergies with the global climate change. Energy and Buildings, 207, 109482.Santamouris, M. (2014). Cooling the cities–a review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Solar energy, 103, 682-703.Sedighi, M., Pourmoghaddam Qhazvini, P., & Amidpour, M. (2023). Algae-Powered Buildings: A Review of an Innovative, Sustainable Approach in the Built Environment. Sustainability, 15(4), 3729.Stetiu, C. (1999). Energy and peak power savings potential of radiant cooling systems in US commercial buildings. Energy and buildings, 30(2), 127-138.Tan, Z., & Deng, X. (2020). An optimised window control strategy for naturally ventilated residential buildings in warm climates. Sustainable Cities and Society, 57, 102118.Tarek, D., Ahmed, M. M., Hussein, H. S., Zeyad, A. M., Al-Enizi, A. M., Yousef, A., & Ragab, A. (2022). Building envelope optimization using geopolymer bricks to improve the energy efficiency of residential buildings in hot arid regions. Case Studies in Construction Materials, 17, e01657.Vargas-Serrato, V. (2022). Estrategias de diseño sostenible para una edificación de uso mixto en clima cálido seco. caso de estudio: Neiva, Huila.Wang, M., Li, Q., Wang, F., Yuan, Z., Wang, L., & Zhou, X. (2023). Residential indoor thermal environment investigation and analysis on energy saving of air conditioning in hot summer and warm winter zone in China. Urban Climate, 47, 101369.Yadeta, C., Indraganti, M., Tucho, G. T., & Alemayehu, E. (2023). Study on adaptive thermal comfort model and behavioral adaptation in naturally ventilated residential buildings, Jimma Town, Ethiopia. Energy and Buildings, 298, 113483.Yan, H., Ji, G., & Yan, K. (2022). Data-driven prediction and optimization of residential building performance in Singapore considering the impact of climate change. Building and Environment, 226, 109735.Yang, J., Pyrgou, A., Chong, A., Santamouris, M., Kolokotsa, D., & Lee, S. E. (2018). Green and cool roofs’ urban heat island mitigation potential in tropical climate. Solar Energy, 173, 597- 609.Yang, Z., Zhang, W., Qin, M., & Liu, H. (2022). Comparative study of indoor thermal environment and human thermal comfort in residential buildings among cities, towns, and rural areas in arid regions of China. Energy and Buildings, 273, 112373.Zakula, T., Armstrong, P. R., & Norford, L. (2015). Advanced cooling technology with thermally activated building surfaces and model predictive control. Energy and buildings, 86, 640-650.Zhan, H., Mahyuddin, N., Sulaiman, R., & Khayatian, F. (2023). Phase change material (PCM) integrations into buildings in hot climates with simulation access for energy performance and thermal comfort: A review. Construction and Building Materials, 397, 132312.PublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repository.ucc.edu.co/bitstreams/89b38477-0b76-4043-a7d6-c8a9d78c38db/download4460e5956bc1d1639be9ae6146a50347MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/23e87d04-1dfd-46ef-9637-358337e62a5f/download3bce4f7ab09dfc588f126e1e36e98a45MD52ORIGINAL2024_Trabajo de grado.pdf2024_Trabajo de grado.pdfapplication/pdf741255https://repository.ucc.edu.co/bitstreams/b87ce5e2-091a-492f-8dc0-12a3d38781a4/download92db321630ecf1d8e47a24f398ce3c6aMD532024_Licenciadeuso.pdf2024_Licenciadeuso.pdfapplication/pdf366850https://repository.ucc.edu.co/bitstreams/52a64d68-62cd-436f-9678-7411836a206b/downloada97531cde27a8e197bb38a06c1bbec4eMD54TEXT2024_Trabajo de grado.pdf.txt2024_Trabajo de grado.pdf.txtExtracted texttext/plain82983https://repository.ucc.edu.co/bitstreams/1114190f-272b-493d-99aa-7943c2eedea8/downloadde939e5d43b94e66bb9534abb73ceff4MD552024_Licenciadeuso.pdf.txt2024_Licenciadeuso.pdf.txtExtracted texttext/plain4806https://repository.ucc.edu.co/bitstreams/7ffe43c1-5a7c-4521-ad5f-df601150f3af/download06d3ce56efef2fea904a793161ff8eaaMD57THUMBNAIL2024_Trabajo de grado.pdf.jpg2024_Trabajo de grado.pdf.jpgGenerated Thumbnailimage/jpeg5563https://repository.ucc.edu.co/bitstreams/17853008-32a1-41f8-83ff-63286b6493ae/download15eef6901ebdda9f8d6c5d5e2c0a55f7MD562024_Licenciadeuso.pdf.jpg2024_Licenciadeuso.pdf.jpgGenerated Thumbnailimage/jpeg11784https://repository.ucc.edu.co/bitstreams/401ddbe6-01a2-4335-89cc-15c57b90f21b/download9430d52aeb5ade8d069a927a670f6ebcMD5820.500.12494/56006oai:repository.ucc.edu.co:20.500.12494/560062024-08-10 21:35:14.284http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo=