Proteomic Architecture of Valvular Extracellular Matrix: FNDC1 and MXRA5 Are New Biomarkers of Aortic Stenosis
Este estudio analizó la expresión de las proteínas de la matriz extracelular (ECM) durante la calcificación de la válvula aórtica con espectrometría de masas y luego se validó en una cohorte humana independiente utilizando datos de RNAseq. El estudio revela que la calcificación de la válvula está as...
- Autores:
-
Guauque Olarte, Sandra
Bouchareb, Rihab
Zaminski, Devyn
Snider, Justin
Anyanwu, Anelechi
Stelzer, Paul
Lebeche, Djamel
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2021
- Institución:
- Universidad Cooperativa de Colombia
- Repositorio:
- Repositorio UCC
- Idioma:
- OAI Identifier:
- oai:repository.ucc.edu.co:20.500.12494/46728
- Acceso en línea:
- https://doi.org/10.1016/j.jacbts.2020.11.008
https://hdl.handle.net/20.500.12494/46728
- Palabra clave:
- estenosis aórtica
válvulas aórticas calcificadas
ECM
proteómica
RNA-Seq
Q1
aortic stenosis
calcified aortic valve
ECM
proteomics
RNA-Seq
- Rights
- openAccess
- License
- Atribución – No comercial – Sin Derivar
id |
COOPER2_9c78cfbf8e560b8579d801138aeb8c90 |
---|---|
oai_identifier_str |
oai:repository.ucc.edu.co:20.500.12494/46728 |
network_acronym_str |
COOPER2 |
network_name_str |
Repositorio UCC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Proteomic Architecture of Valvular Extracellular Matrix: FNDC1 and MXRA5 Are New Biomarkers of Aortic Stenosis |
title |
Proteomic Architecture of Valvular Extracellular Matrix: FNDC1 and MXRA5 Are New Biomarkers of Aortic Stenosis |
spellingShingle |
Proteomic Architecture of Valvular Extracellular Matrix: FNDC1 and MXRA5 Are New Biomarkers of Aortic Stenosis estenosis aórtica válvulas aórticas calcificadas ECM proteómica RNA-Seq Q1 aortic stenosis calcified aortic valve ECM proteomics RNA-Seq |
title_short |
Proteomic Architecture of Valvular Extracellular Matrix: FNDC1 and MXRA5 Are New Biomarkers of Aortic Stenosis |
title_full |
Proteomic Architecture of Valvular Extracellular Matrix: FNDC1 and MXRA5 Are New Biomarkers of Aortic Stenosis |
title_fullStr |
Proteomic Architecture of Valvular Extracellular Matrix: FNDC1 and MXRA5 Are New Biomarkers of Aortic Stenosis |
title_full_unstemmed |
Proteomic Architecture of Valvular Extracellular Matrix: FNDC1 and MXRA5 Are New Biomarkers of Aortic Stenosis |
title_sort |
Proteomic Architecture of Valvular Extracellular Matrix: FNDC1 and MXRA5 Are New Biomarkers of Aortic Stenosis |
dc.creator.fl_str_mv |
Guauque Olarte, Sandra Bouchareb, Rihab Zaminski, Devyn Snider, Justin Anyanwu, Anelechi Stelzer, Paul Lebeche, Djamel |
dc.contributor.author.none.fl_str_mv |
Guauque Olarte, Sandra Bouchareb, Rihab Zaminski, Devyn Snider, Justin Anyanwu, Anelechi Stelzer, Paul Lebeche, Djamel |
dc.subject.spa.fl_str_mv |
estenosis aórtica válvulas aórticas calcificadas ECM proteómica RNA-Seq |
topic |
estenosis aórtica válvulas aórticas calcificadas ECM proteómica RNA-Seq Q1 aortic stenosis calcified aortic valve ECM proteomics RNA-Seq |
dc.subject.classification.spa.fl_str_mv |
Q1 |
dc.subject.other.spa.fl_str_mv |
aortic stenosis calcified aortic valve ECM proteomics RNA-Seq |
description |
Este estudio analizó la expresión de las proteínas de la matriz extracelular (ECM) durante la calcificación de la válvula aórtica con espectrometría de masas y luego se validó en una cohorte humana independiente utilizando datos de RNAseq. El estudio revela que la calcificación de la válvula está asociada con una interrupción significativa en la ECM y las vías metabólicas, y destaca una fuerte conexión entre los marcadores metabólicos y la remodelación de la ECM. También identifica FNDC1 y MXRA5 como nuevos biomarcadores de ECM en válvulas calcificadas, eligiéndolos como objetivos potenciales en el desarrollo y la progresión de la estenosis aórtica. |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021-01-13 |
dc.date.accessioned.none.fl_str_mv |
2022-10-13T23:59:55Z |
dc.date.available.none.fl_str_mv |
2022-10-13T23:59:55Z |
dc.type.none.fl_str_mv |
Artículos Científicos |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
ISSN: 2452-302X |
dc.identifier.uri.spa.fl_str_mv |
https://doi.org/10.1016/j.jacbts.2020.11.008 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12494/46728 |
dc.identifier.bibliographicCitation.spa.fl_str_mv |
Bouchareb, R., Guauque-Olarte, S., Snider, J., Zaminski, D., Anyanwu, A., Stelzer, P., & Lebeche, D. (2021). Arquitectura proteómica de la matriz extracelular valvular: FNDC1 y MXRA5 son nuevos biomarcadores de estenosis aórtica. JACC. Básico a la ciencia traslacional, 6(1), 25–39. https://doi.org/10.1016/j.jacbts.2020.11.008https://repository.ucc.edu.co/handle/20.500.12494/46728 |
identifier_str_mv |
ISSN: 2452-302X Bouchareb, R., Guauque-Olarte, S., Snider, J., Zaminski, D., Anyanwu, A., Stelzer, P., & Lebeche, D. (2021). Arquitectura proteómica de la matriz extracelular valvular: FNDC1 y MXRA5 son nuevos biomarcadores de estenosis aórtica. JACC. Básico a la ciencia traslacional, 6(1), 25–39. https://doi.org/10.1016/j.jacbts.2020.11.008https://repository.ucc.edu.co/handle/20.500.12494/46728 |
url |
https://doi.org/10.1016/j.jacbts.2020.11.008 https://hdl.handle.net/20.500.12494/46728 |
dc.relation.isversionof.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S2452302X2030485X?via%3Dihub |
dc.relation.ispartofjournal.spa.fl_str_mv |
JACC: Basic to Translational Science |
dc.relation.references.spa.fl_str_mv |
Stewart BF, Siscovick D, Lind BK, Gardin JM, Gottdiener JS, Smith VE, Kitzman DW and Otto CM. Clinical factors associated with calcific aortic valve disease. Cardiovascular Health Study. J Am Coll Cardiol. 1997;29:630-4. Rajamannan NM, Evans FJ, Aikawa E, Grande-Allen KJ, Demer LL, Heistad DD, Simmons CA, Masters KS, Mathieu P, O'Brien KD, Schoen FJ, Towler DA, Yoganathan AP and Otto CM. Calcific aortic valve disease: not simply a degenerative process: A review and agenda for research from the National Heart and Lung and Blood Institute Aortic Stenosis Working Group. Executive summary: Calcific aortic valve disease-2011 update. Circulation. 2011;124:1783-91. Briand M, Lemieux I, Dumesnil JG, Mathieu P, Cartier A, Despres JP, Arsenault M, Couet J and Pibarot P. Metabolic syndrome negatively influences disease progression and prognosis in aortic stenosis. J Am Coll Cardiol. 2006;47:2229-36. Owens DS, Katz R, Takasu J, Kronmal R, Budoff MJ and O'Brien KD. Incidence and progression of aortic valve calcium in the Multi-ethnic Study of Atherosclerosis (MESA). Am J Cardiol. 2010;105:701-8. Wenaweser P, Pilgrim T, Kadner A, Huber C, Stortecky S, Buellesfeld L, Khattab AA, Meuli F, Roth N, Eberle B, Erdos G, Brinks H, Kalesan B, Meier B, Juni P, Carrel T and Windecker S. Clinical outcomes of patients with severe aortic stenosis at increased surgical risk according to treatment modality. J Am Coll Cardiol. 2011;58:2151-62. Snarr BS, Kern CB and Wessels A. Origin and fate of cardiac mesenchyme. Dev Dyn. 2008;237:2804-19. Dupuis LE, McCulloch DR, McGarity JD, Bahan A, Wessels A, Weber D, Diminich AM, Nelson CM, Apte SS and Kern CB. Altered versican cleavage in ADAMTS5 deficient mice; a novel etiology of myxomatous valve disease. Dev Biol. 2011;357:152-64. Wilson CL, Gough PJ, Chang CA, Chan CK, Frey JM, Liu Y, Braun KR, Chin MT, Wight TN and Raines EW. Endothelial deletion of ADAM17 in mice results in defective remodeling of the semilunar valves and cardiac dysfunction in adults. Mech Dev. 2013;130:272-89. Krishnamurthy VK, Opoka AM, Kern CB, Guilak F, Narmoneva DA and Hinton RB. Maladaptive matrix remodeling and regional biomechanical dysfunction in a mouse model of aortic valve disease. Matrix Biol. 2012;31:197-205. Balachandran K, Sucosky P, Jo H and Yoganathan AP. Elevated cyclic stretch induces aortic valve calcification in a bone morphogenic protein-dependent manner. Am J Pathol. 2010;177:49-57. Lehmann S, Walther T, Kempfert J, Rastan A, Garbade J, Dhein S and Mohr FW. Mechanical strain and the aortic valve: influence on fibroblasts, extracellular matrix, and potential stenosis. Ann Thorac Surg. 2009;88:1476-83. Sonbol HS. Extracellular Matrix Remodeling in Human Disease. J Microsc Ultrastruct. 2018;6:123-128. Romani P, Brian I, Santinon G, Pocaterra A, Audano M, Pedretti S, Mathieu S, Forcato M, Bicciato S, Manneville JB, Mitro N and Dupont S. Extracellular matrix mechanical cues regulate lipid metabolism through Lipin-1 and SREBP. Nat Cell Biol. 2019;21:338-347. Cheng H, Yao Q, Song R, Zhai Y, Wang W, Fullerton DA and Meng X. Lysophosphatidylcholine activates the Akt pathway to upregulate extracellular matrix protein production in human aortic valve cells. J Surg Res. 2017;213:243-250. Neufeld EB, Zadrozny LM, Phillips D, Aponte A, Yu ZX and Balaban RS. Decorin and biglycan retain LDL in disease-prone valvular and aortic subendothelial intimal matrix. Atherosclerosis. 2014;233:113-21. Bouchareb R, Mahmut A, Nsaibia MJ, Boulanger MC, Dahou A, Lepine JL, Laflamme MH, Hadji F, Couture C, Trahan S, Page S, Bosse Y, Pibarot P, Scipione CA, Romagnuolo R, Koschinsky ML, Arsenault BJ, Marette A and Mathieu P. Autotaxin Derived From Lipoprotein(a) and Valve Interstitial Cells Promotes Inflammation and Mineralization of the Aortic Valve. Circulation. 2015;132:677-90. Nsaibia MJ, Boulanger MC, Bouchareb R, Mkannez G, Le Quang K, Hadji F, Argaud D, Dahou A, Bosse Y, Koschinsky ML, Pibarot P, Arsenault BJ, Marette A and Mathieu P. OxLDL-derived lysophosphatidic acid promotes the progression of aortic valve stenosis through a LPAR1-RhoA-NF-kappaB pathway. Cardiovasc Res. 2017;113:1351-1363. Mahmut A, Mahjoub H, Boulanger MC, Dahou A, Bouchareb R, Capoulade R, Arsenault BJ, Larose E, Bosse Y, Pibarot P and Mathieu P. Circulating Lp-PLA2 is associated with high valvuloarterial impedance and low arterial compliance in patients with aortic valve bioprostheses. Clin Chim Acta. 2016;455:20-5. Mahmut A, Boulanger MC, El Husseini D, Fournier D, Bouchareb R, Despres JP, Pibarot P, Bosse Y and Mathieu P. Elevated expression of lipoprotein-associated phospholipase A2 in calcific aortic valve disease: implications for valve mineralization. J Am Coll Cardiol. 2014;63:460-9. Hinton RB, Jr., Lincoln J, Deutsch GH, Osinska H, Manning PB, Benson DW and Yutzey KE. Extracellular matrix remodeling and organization in developing and diseased aortic valves. Circ Res. 2006;98:1431-8 Choi YJ, Kim S, Choi Y, Nielsen TB, Yan J, Lu A, Ruan J, Lee HR, Wu H, Spellberg B and Jung JU. SERPINB1-mediated checkpoint of inflammatory caspase activation. Nat Immunol. 2019;20:276-287. Bouchareb R, Boulanger MC, Fournier D, Pibarot P, Messaddeq Y and Mathieu P. Mechanical strain induces the production of spheroid mineralized microparticles in the aortic valve through a RhoA/ROCK-dependent mechanism. J Mol Cell Cardiol. 2014;67:49-59. Arjunon S, Rathan S, Jo H and Yoganathan AP. Aortic valve: mechanical environment and mechanobiology. Ann Biomed Eng. 2013;41:1331-46. Xiao Y, Wei R, Yuan Z, Lan X, Kuang J, Hu D, Song Y and Luo J. Rutin suppresses FNDC1 expression in bone marrow mesenchymal stem cells to inhibit postmenopausal osteoporosis. Am J Transl Res. 2019;11:6680-6690. Bentmann A, Kawelke N, Moss D, Zentgraf H, Bala Y, Berger I, Gasser JA and Nakchbandi IA. Circulating fibronectin affects bone matrix, whereas osteoblast fibronectin modulates osteoblast function. J Bone Miner Res. 2010;25:706-15. Padang R, Bagnall RD, Tsoutsman T, Bannon PG and Semsarian C. Comparative transcriptome profiling in human bicuspid aortic valve disease using RNA sequencing. Physiol Genomics. 2015;47:75-87. Schlotter F, Halu A, Goto S, Blaser MC, Body SC, Lee LH, Higashi H, DeLaughter DM, Hutcheson JD, Vyas P, Pham T, Rogers MA, Sharma A, Seidman CE, Loscalzo J, Seidman JG, Aikawa M, Singh SA and Aikawa E. Spatiotemporal Multi-Omics Mapping Generates a Molecular Atlas of the Aortic Valve and Reveals Networks Driving Disease. Circulation. 2018;138:377-393. Bouchareb R, Boulanger MC, Tastet L, Mkannez G, Nsaibia MJ, Hadji F, Dahou A, Messadeq Y, Arsenault BJ, Pibarot P, Bosse Y, Marette A and Mathieu P. Activated platelets promote an osteogenic programme and the progression of calcific aortic valve stenosis. Eur Heart J. 2019;40:1362-1373. Capoulade R, Clavel MA, Dumesnil JG, Chan KL, Teo KK, Tam JW, Cote N, Mathieu P, Despres JP and Pibarot P. Impact of metabolic syndrome on progression of aortic stenosis: influence of age and statin therapy. J Am Coll Cardiol. 2012;60:216-23. |
dc.rights.license.none.fl_str_mv |
Atribución – No comercial – Sin Derivar |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución – No comercial – Sin Derivar http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
25-39 |
dc.coverage.temporal.spa.fl_str_mv |
6(1) |
dc.publisher.spa.fl_str_mv |
Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Odontología, Pasto |
dc.publisher.program.spa.fl_str_mv |
Odontología |
dc.publisher.place.spa.fl_str_mv |
Pasto |
institution |
Universidad Cooperativa de Colombia |
bitstream.url.fl_str_mv |
https://repository.ucc.edu.co/bitstreams/736b2856-bd53-4593-97c9-4e2f6ef1ad62/download https://repository.ucc.edu.co/bitstreams/a5b6649d-d518-4ba2-9c01-672c5d7c6c4e/download https://repository.ucc.edu.co/bitstreams/aa210d3f-437f-45ed-a862-000bd146a972/download https://repository.ucc.edu.co/bitstreams/734b1e86-481e-4895-9b72-ccdce2b63fca/download https://repository.ucc.edu.co/bitstreams/931347fe-d507-4787-9628-a535f0ef1e74/download https://repository.ucc.edu.co/bitstreams/d8ba97ca-72b2-4cfe-9685-92db3ef80e51/download https://repository.ucc.edu.co/bitstreams/64943db9-f501-4d98-bd78-68842dcbe40c/download |
bitstream.checksum.fl_str_mv |
33b8781f3742a1323d988cb500fbdbf6 478a324dcd5c2c5581fca98141487549 8a4605be74aa9ea9d79846c1fba20a33 41f4f31dc579b9e3284dc649468f1c68 25991a8d83190e7282c576ed96bdb9c9 f990fc42fd73c84633a22e022d41bb60 4737f0370571a66e7144b54c0e6c241f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Cooperativa de Colombia |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1811564968039940096 |
spelling |
Guauque Olarte, SandraBouchareb, RihabZaminski, DevynSnider, JustinAnyanwu, AnelechiStelzer, PaulLebeche, Djamel6(1)2022-10-13T23:59:55Z2022-10-13T23:59:55Z2021-01-13ISSN: 2452-302Xhttps://doi.org/10.1016/j.jacbts.2020.11.008https://hdl.handle.net/20.500.12494/46728Bouchareb, R., Guauque-Olarte, S., Snider, J., Zaminski, D., Anyanwu, A., Stelzer, P., & Lebeche, D. (2021). Arquitectura proteómica de la matriz extracelular valvular: FNDC1 y MXRA5 son nuevos biomarcadores de estenosis aórtica. JACC. Básico a la ciencia traslacional, 6(1), 25–39. https://doi.org/10.1016/j.jacbts.2020.11.008https://repository.ucc.edu.co/handle/20.500.12494/46728Este estudio analizó la expresión de las proteínas de la matriz extracelular (ECM) durante la calcificación de la válvula aórtica con espectrometría de masas y luego se validó en una cohorte humana independiente utilizando datos de RNAseq. El estudio revela que la calcificación de la válvula está asociada con una interrupción significativa en la ECM y las vías metabólicas, y destaca una fuerte conexión entre los marcadores metabólicos y la remodelación de la ECM. También identifica FNDC1 y MXRA5 como nuevos biomarcadores de ECM en válvulas calcificadas, eligiéndolos como objetivos potenciales en el desarrollo y la progresión de la estenosis aórtica.https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=00005140120000-0003-0336-9682https://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000002911sandra.guauque@campusucc.edu.cohttps://scholar.google.ca/citations?user=9uoINksAAAAJ&hl=en25-39Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Odontología, PastoOdontologíaPastohttps://www.sciencedirect.com/science/article/pii/S2452302X2030485X?via%3DihubJACC: Basic to Translational ScienceStewart BF, Siscovick D, Lind BK, Gardin JM, Gottdiener JS, Smith VE, Kitzman DW and Otto CM. Clinical factors associated with calcific aortic valve disease. Cardiovascular Health Study. J Am Coll Cardiol. 1997;29:630-4.Rajamannan NM, Evans FJ, Aikawa E, Grande-Allen KJ, Demer LL, Heistad DD, Simmons CA, Masters KS, Mathieu P, O'Brien KD, Schoen FJ, Towler DA, Yoganathan AP and Otto CM. Calcific aortic valve disease: not simply a degenerative process: A review and agenda for research from the National Heart and Lung and Blood Institute Aortic Stenosis Working Group. Executive summary: Calcific aortic valve disease-2011 update. Circulation. 2011;124:1783-91.Briand M, Lemieux I, Dumesnil JG, Mathieu P, Cartier A, Despres JP, Arsenault M, Couet J and Pibarot P. Metabolic syndrome negatively influences disease progression and prognosis in aortic stenosis. J Am Coll Cardiol. 2006;47:2229-36.Owens DS, Katz R, Takasu J, Kronmal R, Budoff MJ and O'Brien KD. Incidence and progression of aortic valve calcium in the Multi-ethnic Study of Atherosclerosis (MESA). Am J Cardiol. 2010;105:701-8.Wenaweser P, Pilgrim T, Kadner A, Huber C, Stortecky S, Buellesfeld L, Khattab AA, Meuli F, Roth N, Eberle B, Erdos G, Brinks H, Kalesan B, Meier B, Juni P, Carrel T and Windecker S. Clinical outcomes of patients with severe aortic stenosis at increased surgical risk according to treatment modality. J Am Coll Cardiol. 2011;58:2151-62.Snarr BS, Kern CB and Wessels A. Origin and fate of cardiac mesenchyme. Dev Dyn. 2008;237:2804-19.Dupuis LE, McCulloch DR, McGarity JD, Bahan A, Wessels A, Weber D, Diminich AM, Nelson CM, Apte SS and Kern CB. Altered versican cleavage in ADAMTS5 deficient mice; a novel etiology of myxomatous valve disease. Dev Biol. 2011;357:152-64.Wilson CL, Gough PJ, Chang CA, Chan CK, Frey JM, Liu Y, Braun KR, Chin MT, Wight TN and Raines EW. Endothelial deletion of ADAM17 in mice results in defective remodeling of the semilunar valves and cardiac dysfunction in adults. Mech Dev. 2013;130:272-89.Krishnamurthy VK, Opoka AM, Kern CB, Guilak F, Narmoneva DA and Hinton RB. Maladaptive matrix remodeling and regional biomechanical dysfunction in a mouse model of aortic valve disease. Matrix Biol. 2012;31:197-205.Balachandran K, Sucosky P, Jo H and Yoganathan AP. Elevated cyclic stretch induces aortic valve calcification in a bone morphogenic protein-dependent manner. Am J Pathol. 2010;177:49-57.Lehmann S, Walther T, Kempfert J, Rastan A, Garbade J, Dhein S and Mohr FW. Mechanical strain and the aortic valve: influence on fibroblasts, extracellular matrix, and potential stenosis. Ann Thorac Surg. 2009;88:1476-83.Sonbol HS. Extracellular Matrix Remodeling in Human Disease. J Microsc Ultrastruct. 2018;6:123-128.Romani P, Brian I, Santinon G, Pocaterra A, Audano M, Pedretti S, Mathieu S, Forcato M, Bicciato S, Manneville JB, Mitro N and Dupont S. Extracellular matrix mechanical cues regulate lipid metabolism through Lipin-1 and SREBP. Nat Cell Biol. 2019;21:338-347.Cheng H, Yao Q, Song R, Zhai Y, Wang W, Fullerton DA and Meng X. Lysophosphatidylcholine activates the Akt pathway to upregulate extracellular matrix protein production in human aortic valve cells. J Surg Res. 2017;213:243-250.Neufeld EB, Zadrozny LM, Phillips D, Aponte A, Yu ZX and Balaban RS. Decorin and biglycan retain LDL in disease-prone valvular and aortic subendothelial intimal matrix. Atherosclerosis. 2014;233:113-21.Bouchareb R, Mahmut A, Nsaibia MJ, Boulanger MC, Dahou A, Lepine JL, Laflamme MH, Hadji F, Couture C, Trahan S, Page S, Bosse Y, Pibarot P, Scipione CA, Romagnuolo R, Koschinsky ML, Arsenault BJ, Marette A and Mathieu P. Autotaxin Derived From Lipoprotein(a) and Valve Interstitial Cells Promotes Inflammation and Mineralization of the Aortic Valve. Circulation. 2015;132:677-90.Nsaibia MJ, Boulanger MC, Bouchareb R, Mkannez G, Le Quang K, Hadji F, Argaud D, Dahou A, Bosse Y, Koschinsky ML, Pibarot P, Arsenault BJ, Marette A and Mathieu P. OxLDL-derived lysophosphatidic acid promotes the progression of aortic valve stenosis through a LPAR1-RhoA-NF-kappaB pathway. Cardiovasc Res. 2017;113:1351-1363.Mahmut A, Mahjoub H, Boulanger MC, Dahou A, Bouchareb R, Capoulade R, Arsenault BJ, Larose E, Bosse Y, Pibarot P and Mathieu P. Circulating Lp-PLA2 is associated with high valvuloarterial impedance and low arterial compliance in patients with aortic valve bioprostheses. Clin Chim Acta. 2016;455:20-5.Mahmut A, Boulanger MC, El Husseini D, Fournier D, Bouchareb R, Despres JP, Pibarot P, Bosse Y and Mathieu P. Elevated expression of lipoprotein-associated phospholipase A2 in calcific aortic valve disease: implications for valve mineralization. J Am Coll Cardiol. 2014;63:460-9.Hinton RB, Jr., Lincoln J, Deutsch GH, Osinska H, Manning PB, Benson DW and Yutzey KE. Extracellular matrix remodeling and organization in developing and diseased aortic valves. Circ Res. 2006;98:1431-8Choi YJ, Kim S, Choi Y, Nielsen TB, Yan J, Lu A, Ruan J, Lee HR, Wu H, Spellberg B and Jung JU. SERPINB1-mediated checkpoint of inflammatory caspase activation. Nat Immunol. 2019;20:276-287.Bouchareb R, Boulanger MC, Fournier D, Pibarot P, Messaddeq Y and Mathieu P. Mechanical strain induces the production of spheroid mineralized microparticles in the aortic valve through a RhoA/ROCK-dependent mechanism. J Mol Cell Cardiol. 2014;67:49-59.Arjunon S, Rathan S, Jo H and Yoganathan AP. Aortic valve: mechanical environment and mechanobiology. Ann Biomed Eng. 2013;41:1331-46.Xiao Y, Wei R, Yuan Z, Lan X, Kuang J, Hu D, Song Y and Luo J. Rutin suppresses FNDC1 expression in bone marrow mesenchymal stem cells to inhibit postmenopausal osteoporosis. Am J Transl Res. 2019;11:6680-6690.Bentmann A, Kawelke N, Moss D, Zentgraf H, Bala Y, Berger I, Gasser JA and Nakchbandi IA. Circulating fibronectin affects bone matrix, whereas osteoblast fibronectin modulates osteoblast function. J Bone Miner Res. 2010;25:706-15.Padang R, Bagnall RD, Tsoutsman T, Bannon PG and Semsarian C. Comparative transcriptome profiling in human bicuspid aortic valve disease using RNA sequencing. Physiol Genomics. 2015;47:75-87.Schlotter F, Halu A, Goto S, Blaser MC, Body SC, Lee LH, Higashi H, DeLaughter DM, Hutcheson JD, Vyas P, Pham T, Rogers MA, Sharma A, Seidman CE, Loscalzo J, Seidman JG, Aikawa M, Singh SA and Aikawa E. Spatiotemporal Multi-Omics Mapping Generates a Molecular Atlas of the Aortic Valve and Reveals Networks Driving Disease. Circulation. 2018;138:377-393.Bouchareb R, Boulanger MC, Tastet L, Mkannez G, Nsaibia MJ, Hadji F, Dahou A, Messadeq Y, Arsenault BJ, Pibarot P, Bosse Y, Marette A and Mathieu P. Activated platelets promote an osteogenic programme and the progression of calcific aortic valve stenosis. Eur Heart J. 2019;40:1362-1373.Capoulade R, Clavel MA, Dumesnil JG, Chan KL, Teo KK, Tam JW, Cote N, Mathieu P, Despres JP and Pibarot P. Impact of metabolic syndrome on progression of aortic stenosis: influence of age and statin therapy. J Am Coll Cardiol. 2012;60:216-23.estenosis aórticaválvulas aórticas calcificadasECMproteómicaRNA-SeqQ1aortic stenosiscalcified aortic valveECMproteomicsRNA-SeqProteomic Architecture of Valvular Extracellular Matrix: FNDC1 and MXRA5 Are New Biomarkers of Aortic StenosisArtículos Científicoshttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribución – No comercial – Sin Derivarinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationORIGINALJACC_Guauque._Repositorio.pdfJACC_Guauque._Repositorio.pdfVersión manuscritoapplication/pdf373077https://repository.ucc.edu.co/bitstreams/736b2856-bd53-4593-97c9-4e2f6ef1ad62/download33b8781f3742a1323d988cb500fbdbf6MD51JACC_Licencia de uso RI Ver5 - 9-07-2021.doc.pdfJACC_Licencia de uso RI Ver5 - 9-07-2021.doc.pdfLicencia de usoapplication/pdf195613https://repository.ucc.edu.co/bitstreams/a5b6649d-d518-4ba2-9c01-672c5d7c6c4e/download478a324dcd5c2c5581fca98141487549MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repository.ucc.edu.co/bitstreams/aa210d3f-437f-45ed-a862-000bd146a972/download8a4605be74aa9ea9d79846c1fba20a33MD54THUMBNAILJACC_Guauque._Repositorio.pdf.jpgJACC_Guauque._Repositorio.pdf.jpgGenerated Thumbnailimage/jpeg2844https://repository.ucc.edu.co/bitstreams/734b1e86-481e-4895-9b72-ccdce2b63fca/download41f4f31dc579b9e3284dc649468f1c68MD55JACC_Licencia de uso RI Ver5 - 9-07-2021.doc.pdf.jpgJACC_Licencia de uso RI Ver5 - 9-07-2021.doc.pdf.jpgGenerated Thumbnailimage/jpeg5296https://repository.ucc.edu.co/bitstreams/931347fe-d507-4787-9628-a535f0ef1e74/download25991a8d83190e7282c576ed96bdb9c9MD56TEXTJACC_Guauque._Repositorio.pdf.txtJACC_Guauque._Repositorio.pdf.txtExtracted texttext/plain11974https://repository.ucc.edu.co/bitstreams/d8ba97ca-72b2-4cfe-9685-92db3ef80e51/downloadf990fc42fd73c84633a22e022d41bb60MD57JACC_Licencia de uso RI Ver5 - 9-07-2021.doc.pdf.txtJACC_Licencia de uso RI Ver5 - 9-07-2021.doc.pdf.txtExtracted texttext/plain5887https://repository.ucc.edu.co/bitstreams/64943db9-f501-4d98-bd78-68842dcbe40c/download4737f0370571a66e7144b54c0e6c241fMD5820.500.12494/46728oai:repository.ucc.edu.co:20.500.12494/467282024-08-10 22:49:44.421open.accesshttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |