Mechanistic and kinetic studies of benzyl alcohol photocatalytic oxidation by nanostructured titanium (hydro)oxides: do we know the entire story?
La mejora selectiva de compuestos aromáticos derivados de biomasa lignocelulósica mediante oxidación fotocatalítica se considera un proceso próspero, respetuoso con el medio ambiente y rentable. Presentamos por primera vez la aplicación de varios nano-fotocatalizadores de óxido de titanio ventajosos...
- Autores:
-
Giannakoudakis, Dimitrios A.
Qayyum, Abdul
Barczak, Mariusz
Colmenares Quintero, Ramón Fernando
Borowski, Piotr
Triantafyllidis, Konstantinos
Colmenares, Juan Carlos
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2023
- Institución:
- Universidad Cooperativa de Colombia
- Repositorio:
- Repositorio UCC
- Idioma:
- OAI Identifier:
- oai:repository.ucc.edu.co:20.500.12494/52377
- Acceso en línea:
- https://doi.org/10.1016/j.apcatb.2022.121939
https://hdl.handle.net/20.500.12494/52377
- Palabra clave:
- Valorización de biomasa
Fotocatálisis
Oxidación de alcohol bencílico
Benzaldehído
Nanomateriales de TiO2
Nanotubos de titanato
Biomass valorization
Photocatalysis
Benzyl alcohol oxidation
Benzaldehyde
TiO2 nanomaterials
Titanate nanotubes
- Rights
- openAccess
- License
- http://purl.org/coar/access_right/c_abf2
id |
COOPER2_961d7536f703c87518811c95c6acffbc |
---|---|
oai_identifier_str |
oai:repository.ucc.edu.co:20.500.12494/52377 |
network_acronym_str |
COOPER2 |
network_name_str |
Repositorio UCC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Mechanistic and kinetic studies of benzyl alcohol photocatalytic oxidation by nanostructured titanium (hydro)oxides: do we know the entire story? |
title |
Mechanistic and kinetic studies of benzyl alcohol photocatalytic oxidation by nanostructured titanium (hydro)oxides: do we know the entire story? |
spellingShingle |
Mechanistic and kinetic studies of benzyl alcohol photocatalytic oxidation by nanostructured titanium (hydro)oxides: do we know the entire story? Valorización de biomasa Fotocatálisis Oxidación de alcohol bencílico Benzaldehído Nanomateriales de TiO2 Nanotubos de titanato Biomass valorization Photocatalysis Benzyl alcohol oxidation Benzaldehyde TiO2 nanomaterials Titanate nanotubes |
title_short |
Mechanistic and kinetic studies of benzyl alcohol photocatalytic oxidation by nanostructured titanium (hydro)oxides: do we know the entire story? |
title_full |
Mechanistic and kinetic studies of benzyl alcohol photocatalytic oxidation by nanostructured titanium (hydro)oxides: do we know the entire story? |
title_fullStr |
Mechanistic and kinetic studies of benzyl alcohol photocatalytic oxidation by nanostructured titanium (hydro)oxides: do we know the entire story? |
title_full_unstemmed |
Mechanistic and kinetic studies of benzyl alcohol photocatalytic oxidation by nanostructured titanium (hydro)oxides: do we know the entire story? |
title_sort |
Mechanistic and kinetic studies of benzyl alcohol photocatalytic oxidation by nanostructured titanium (hydro)oxides: do we know the entire story? |
dc.creator.fl_str_mv |
Giannakoudakis, Dimitrios A. Qayyum, Abdul Barczak, Mariusz Colmenares Quintero, Ramón Fernando Borowski, Piotr Triantafyllidis, Konstantinos Colmenares, Juan Carlos |
dc.contributor.author.none.fl_str_mv |
Giannakoudakis, Dimitrios A. Qayyum, Abdul Barczak, Mariusz Colmenares Quintero, Ramón Fernando Borowski, Piotr Triantafyllidis, Konstantinos Colmenares, Juan Carlos |
dc.subject.none.fl_str_mv |
Valorización de biomasa Fotocatálisis Oxidación de alcohol bencílico Benzaldehído Nanomateriales de TiO2 Nanotubos de titanato |
topic |
Valorización de biomasa Fotocatálisis Oxidación de alcohol bencílico Benzaldehído Nanomateriales de TiO2 Nanotubos de titanato Biomass valorization Photocatalysis Benzyl alcohol oxidation Benzaldehyde TiO2 nanomaterials Titanate nanotubes |
dc.subject.other.none.fl_str_mv |
Biomass valorization Photocatalysis Benzyl alcohol oxidation Benzaldehyde TiO2 nanomaterials Titanate nanotubes |
description |
La mejora selectiva de compuestos aromáticos derivados de biomasa lignocelulósica mediante oxidación fotocatalítica se considera un proceso próspero, respetuoso con el medio ambiente y rentable. Presentamos por primera vez la aplicación de varios nano-fotocatalizadores de óxido de titanio ventajosos para la oxidación parcial selectiva sin aditivos de alcohol bencílico a benzaldehído en condiciones ambientales. Los dos materiales con mejor desempeño fueron los nanotubos de titanato.y nanonúcleos de anatasa rodeados por una fase amorfa de hidróxido de titanio. Los resultados obtenidos por las pruebas de barrido además de los cálculos de DFT nos llevaron a concluir que varias reacciones y especies activas son responsables de una manera compleja de la fotorreactividad de los materiales. Dependiendo de las características fisicoquímicas de los nanocatalizadores, así como de la irradiación de la luz (ultravioleta o azul real), se fotocatalizan diferentes mecanismos/vías de oxidación. Finalmente, mostramos que la utilización de compuestos orgánicos como la benzoquinona como eliminador oculta los riesgos debido a las interacciones con el objetivo que se convertirá en orgánico que da como resultado una descomposición fotolítica elevada incluso bajo luz azul real. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-08-09T19:41:34Z |
dc.date.available.none.fl_str_mv |
2023-08-09T19:41:34Z |
dc.date.issued.none.fl_str_mv |
2023-01 |
dc.type.none.fl_str_mv |
Artículos Científicos |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
0926-3373 |
dc.identifier.uri.none.fl_str_mv |
https://doi.org/10.1016/j.apcatb.2022.121939 https://hdl.handle.net/20.500.12494/52377 |
dc.identifier.bibliographicCitation.none.fl_str_mv |
Dimitrios A. Giannakoudakis, Abdul Qayyum, Mariusz Barczak, Ramón Fernando Colmenares-Quintero, Piotr Borowski, Konstantinos Triantafyllidis, Juan Carlos Colmenares, Mechanistic and kinetic studies of benzyl alcohol photocatalytic oxidation by nanostructured titanium (hydro)oxides: Do we know the entire story?, Applied Catalysis B: Environmental, Volume 320, 2023, 121939, ISSN 0926-3373, https://doi.org/10.1016/j.apcatb.2022.121939. (https://www.sciencedirect.com/science/article/pii/S0926337322008803) Abstract: Selective upgrade of lignocellulosic biomass-derived aromatic compounds by photocatalytic oxidation is assumed as a prosperous, environmentally friendly, and cost-effective process. We present for the first time the application of various advantageous titanium oxide nano-photocatalysts for the additives-free selective partial oxidation of benzyl alcohol to benzaldehyde at ambient conditions. The two best-performing materials were found titanate nanotubes and nanocores of anatase surrounded by amorphous titanium hydroxide phase. The results obtained by scavenger tests on top of the DFT calculations led us to conclude that various reactions and active species are responsible by a complex way for materials’ photoreactivity. Depending on nanocatalysts’ physicochemical features as well as the light irradiation (ultraviolet vs. royal-blue), different mechanisms/oxidation-pathways are photo-catalyzed. Finally, we show that utilizing organic compounds like benzoquinone as scavenger hides risks due to the interactions with the targeted to be converted organic that results in elevated photolytic decomposition even under royal-blue light. Keywords: Biomass valorization; Photocatalysis; Benzyl alcohol oxidation; Benzaldehyde; TiO2 nanomaterials; Titanate nanotubes DIMITRIOS A GIANNAKOUDAKIS, ABDUL QAYUUM, MARIUSZ BARCZAK, RAMON FERNANDO COLMENARES QUINTERO, PIOTR BOROWSKI, KONSTANTINOS TRIANTAFYLLIDIS, JUAN CARLOS COLMENARES QUINTERO, "Mechanistic and kinetic studies of benzyl alcohol photocatalytic oxidation by nanostructured titanium (hydro)oxides: do we know the entire story?" . En: Países Bajos Applied Catalysis B: Environmental ISSN: 0926-3373 ed: Elsevier Science Bv v.320 fasc.N/A p.1 - 54 ,2022, DOI: 10.1016/j.apcatb.2022.121939 |
identifier_str_mv |
0926-3373 Dimitrios A. Giannakoudakis, Abdul Qayyum, Mariusz Barczak, Ramón Fernando Colmenares-Quintero, Piotr Borowski, Konstantinos Triantafyllidis, Juan Carlos Colmenares, Mechanistic and kinetic studies of benzyl alcohol photocatalytic oxidation by nanostructured titanium (hydro)oxides: Do we know the entire story?, Applied Catalysis B: Environmental, Volume 320, 2023, 121939, ISSN 0926-3373, https://doi.org/10.1016/j.apcatb.2022.121939. (https://www.sciencedirect.com/science/article/pii/S0926337322008803) Abstract: Selective upgrade of lignocellulosic biomass-derived aromatic compounds by photocatalytic oxidation is assumed as a prosperous, environmentally friendly, and cost-effective process. We present for the first time the application of various advantageous titanium oxide nano-photocatalysts for the additives-free selective partial oxidation of benzyl alcohol to benzaldehyde at ambient conditions. The two best-performing materials were found titanate nanotubes and nanocores of anatase surrounded by amorphous titanium hydroxide phase. The results obtained by scavenger tests on top of the DFT calculations led us to conclude that various reactions and active species are responsible by a complex way for materials’ photoreactivity. Depending on nanocatalysts’ physicochemical features as well as the light irradiation (ultraviolet vs. royal-blue), different mechanisms/oxidation-pathways are photo-catalyzed. Finally, we show that utilizing organic compounds like benzoquinone as scavenger hides risks due to the interactions with the targeted to be converted organic that results in elevated photolytic decomposition even under royal-blue light. Keywords: Biomass valorization; Photocatalysis; Benzyl alcohol oxidation; Benzaldehyde; TiO2 nanomaterials; Titanate nanotubes DIMITRIOS A GIANNAKOUDAKIS, ABDUL QAYUUM, MARIUSZ BARCZAK, RAMON FERNANDO COLMENARES QUINTERO, PIOTR BOROWSKI, KONSTANTINOS TRIANTAFYLLIDIS, JUAN CARLOS COLMENARES QUINTERO, "Mechanistic and kinetic studies of benzyl alcohol photocatalytic oxidation by nanostructured titanium (hydro)oxides: do we know the entire story?" . En: Países Bajos Applied Catalysis B: Environmental ISSN: 0926-3373 ed: Elsevier Science Bv v.320 fasc.N/A p.1 - 54 ,2022, DOI: 10.1016/j.apcatb.2022.121939 |
url |
https://doi.org/10.1016/j.apcatb.2022.121939 https://hdl.handle.net/20.500.12494/52377 |
dc.relation.isversionof.none.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S0926337322008803?via%3Dihub#ab0010 |
dc.relation.ispartofjournal.none.fl_str_mv |
Applied Catalysis B: Environmental |
dc.relation.references.none.fl_str_mv |
C.-H. Zhou, X. Xia, C.-X. Lin, D.-S. Tong, J. Beltramini, Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels, Chem. Soc. Rev. 40 (2011) 5588–5617, https://doi.org/10.1039/C1CS15124J. V. Nair, M.J. Munoz-Batista, ˜ M. Fernandez-García, ´ R. Luque, J.C. Colmenares, Thermo-photocatalysis: environmental and energy applications, ChemSusChem 12 (2019) 2098–2116, https://doi.org/10.1002/cssc.201900175. M. Garedew, F. Lin, B. Song, T.M. DeWinter, J.E. Jackson, C.M. Saffron, C.H. Lam, P.T. Anastas, Greener routes to biomass waste valorization: lignin transformation through electrocatalysis for renewable chemicals and fuels production, ChemSusChem 13 (2020) 4214–4237, https://doi.org/10.1002/cssc.202000987. S.H. Li, S. Liu, J.C. Colmenares, Y.J. Xu, A sustainable approach for lignin valorization by heterogeneous photocatalysis, Green. Chem. 18 (2016) 594–607, https://doi.org/10.1039/c5gc02109j. S. Kumaravel, P. Thiruvengetam, K. Karthick, S.S. Sankar, A. Karmakar, S. Kundu, Green and sustainable route for oxidative depolymerization of lignin: New platform for fine chemicals and fuels, Biotechnol. Prog. 37 (2021), https://doi.org/10.1002/ btpr.3111 P. Azadi, O.R. Inderwildi, R. Farnood, D.A. King, Liquid fuels, hydrogen and chemicals from lignin: A critical review, Renew. Sustain. Energy Rev. 21 (2013) 506–523, https://doi.org/10.1016/j.rser.2012.12.022. C. Xiao, L. Zhang, H. Hao, W. Wang, High Selective Oxidation of Benzyl Alcohol to Benzylaldehyde and Benzoic Acid with Surface Oxygen Vacancies on W18O49/ Holey Ultrathin g-C3N4 Nanosheets, ACS Sustain. Chem. Eng. 7 (2019) 7268–7276, https://doi.org/10.1021/acssuschemeng.9b00299 C.M. Crombie, R.J. Lewis, R.L. Taylor, D.J. Morgan, T.E. Davies, A. Folli, D. M. Murphy, J.K. Edwards, J. Qi, H. Jiang, C.J. Kiely, X. Liu, M.S. Skjøth-Rasmussen, G.J. Hutchings, Enhanced Selective Oxidation of Benzyl Alcohol via in Situ H2O2Production over Supported Pd-Based Catalysts, ACS Catal. 11 (2021) 2701–2714, https://doi.org/10.1021/acscatal.0c04586. X. Bao, H. Li, Z. Wang, F. Tong, M. Liu, Z. Zheng, P. Wang, H. Cheng, Y. Liu, Y. Dai, Y. Fan, Z. Li, B. Huang, TiO2/Ti3C2 as an efficient photocatalyst for selective oxidation of benzyl alcohol to benzaldehyde, Appl. Catal. B: Environ. 286 (2021), 119885, https://doi.org/10.1016/j.apcatb.2021.119885. M.J. Lima, A.M.T. Silva, C.G. Silva, J.L. Faria, N.M. Reis, Selective photocatalytic synthesis of benzaldehyde in microcapillaries with immobilized carbon nitride, Chem. Eng. J. 430 (2022), https://doi.org/10.1016/j.cej.2021.132643. A. Akhundi, A. Badiei, G.M. Ziarani, A. Habibi-Yangjeh, M.J. Munoz-Batista, ˜ R. Luque, Graphitic carbon nitride-based photocatalysts: Toward efficient organic transformation for value-added chemicals production, Mol. Catal. 488 (2020), 110902, https://doi.org/10.1016/j.mcat.2020.110902. D.S.M. Constantino, M.M. Dias, A.M.T. Silva, J.L. Faria, C.G. Silva, Intensification strategies for improving the performance of photocatalytic processes: A review, J. Clean. Prod. 340 (2022), https://doi.org/10.1016/j.jclepro.2022.130800. A.V. Vorontsov, P.G. Smirniotis. Environmentally Benign Photocatalysts: Applications of Titanium Oxide-based Materials, 1st ed.,, Springer,, New York, New York, 2010, https://doi.org/10.1007/978-0-387-48444-0. C. Berberidou, G.Z. Kyzas, I. Paspaltsis, T. Sklaviadis, I. Poulios, Photocatalytic disinfection and purification of water employing reduced graphene oxide/TiO2 composites, J. Chem. Technol. Biotechnol. 94 (2019) 3905–3914, https://doi.org/ 10.1002/jctb.6188. S. Peiris, H.B. de Silva, K.N. Ranasinghe, S.V. Bandara, I.R. Perera, Recent development and future prospects of TiO2 photocatalysis, J. Chin. Chem. Soc. 68 (2021) 738–769, https://doi.org/10.1002/jccs.202000465. M.J. Lima, M.J. Sampaio, C.G. Silva, A.M.T. Silva, J.L. Faria, Magnetically recoverable Fe 3 O 4 /g-C 3 N 4 composite for photocatalytic production of benzaldehyde under UV-LED radiation, Catal. Today 328 (2019) 293–299, https:// doi.org/10.1016/j.cattod.2018.11.018. J.F.J.R. Pesqueira, M.F.R. Pereira, A.M.T. Silva, A life cycle assessment of solarbased treatments (H2O2, TiO2 photocatalysis, circumneutral photo-Fenton) for the removal of organic micropollutants, Sci. Total Environ. 761 (2021), https://doi. org/10.1016/j.scitotenv.2020.143258. D.A. Giannakoudakis, N. Farahmand, D. Łomot, K. Sobczak, T.J. Bandosz, J. C. Colmenares, Ultrasound-activated TiO2/GO-based bifunctional photoreactive adsorbents for detoxification of chemical warfare agent surrogate vapors, Chem. Eng. J. 395 (2020), 125099, https://doi.org/10.1016/j.cej.2020.125099. D.A. Giannakoudakis, A. Qayyum, D. Łomot, M.O. Besenhard, D. Lisovytskiy, T. J. Bandosz, J.C. Colmenares, Boosting the Photoactivity of Grafted Titania: Ultrasound-Driven Synthesis of a Multi-Phase Heterogeneous Nano-Architected Photocatalyst, Adv. Funct. Mater. 31 (2021) 1–7, https://doi.org/10.1002/ adfm.202007115. D.A. Giannakoudakis, K. Vikrant, A.P. LaGrow, D. Lisovytskiy, K.-H. Kim, T. J. Bandosz, J. Carlos Colmenares, Scrolled titanate nanosheet composites with reduced graphite oxide for photocatalytic and adsorptive removal of toxic vapors, Chem. Eng. J. 415 (2021), 128907, https://doi.org/10.1016/j.cej.2021.128907. Y. Chen, S. Yang, K. Wang, L. Lou, Role of primary active species and TiO2 surface characteristic in UV-illuminated photodegradation of Acid Orange 7, J. Photochem. Photobiol. A: Chem. 172 (2005) 47–54, https://doi.org/10.1016/j. jphotochem.2004.11.006 S. Higashimoto, N. Suetsugu, M. Azuma, H. Ohue, Y. Sakata, Efficient and selective oxidation of benzylic alcohol by O2 into corresponding aldehydes on a TiO2 photocatalyst under visible light irradiation: Effect of phenyl-ring substitution on the photocatalytic activity, J. Catal. 274 (2010) 76–83, https://doi.org/10.1016/j. jcat.2010.06.006 L. Zhao, B. Zhang, X. Xiao, F.L. Gu, R.Q. Zhang, Roles of the active species involved in the photocatalytic oxidation of benzyl alcohol into benzaldehyde on TiO2 under UV light: Experimental and DFT studies, J. Mol. Catal. A: Chem. 420 (2016) 82–87, https://doi.org/10.1016/j.molcata.2016.03.012. X. Li, J.L. Shi, H. Hao, X. Lang, Visible light-induced selective oxidation of alcohols with air by dye-sensitized TiO2 photocatalysis, Appl. Catal. B: Environ. 232 (2018) 260–267, https://doi.org/10.1016/j.apcatb.2018.03.043. C.J. Li, G.R. Xu, B. Zhang, J.R. Gong, High selectivity in visible-light-driven partial photocatalytic oxidation of benzyl alcohol into benzaldehyde over singlecrystalline rutile TiO 2 nanorods, Appl. Catal. B: Environ. 115–116 (2012) 201–208, https://doi.org/10.1016/j.apcatb.2011.12.003. R. Li, H. Kobayashi, J. Guo, J. Fan, Visible-light induced high-yielding benzyl alcohol-to-benzaldehyde transformation over mesoporous crystalline TiO2: A selfadjustable photo-oxidation system with controllable hole-generation, J. Phys. Chem. C. 115 (2011) 23408–23416, https://doi.org/10.1021/jp207259u. C.Y. Wang, R. Pagel, J.K. Dohrmann, D.W. Bahnemann, Antenna mechanism and de-aggregation concept: Novel mechanistic principles for photocatalysis, Mater. Sci. Forum 544– 545 (2007) 17–22, https://doi.org/10.1016/j.crci.2005.02.053. S. Higashimoto, N. Kitao, N. Yoshida, T. Sakura, M. Azuma, H. Ohue, Y. Sakata, Selective photocatalytic oxidation of benzyl alcohol and its derivatives into corresponding aldehydes by molecular oxygen on titanium dioxide under visible light irradiation, J. Catal. 266 (2009) 279–285, https://doi.org/10.1016/j. jcat.2009.06.018. A. Magdziarz, J.C. Colmenares, O. Chernyayeva, D. Lisovytskiy, J. Grzonka, K. Kurzydłowski, K. Freindl, J. Korecki, Insight into the synthesis procedure of Fe3 +/TiO2-based photocatalyst applied in the selective photo-oxidation of benzyl alcohol under sun-imitating lamp, Ultrason. Sonochem. 38 (2017) 187–196, https://doi.org/10.1016/j.ultsonch.2017.03.012. C.-Y. Wu, K.-J. Tu, J.-P. Deng, Y.-S. Lo, C.-H. Wu, Markedly Enhanced Surface Hydroxyl Groups of TiO2 Nanoparticles with Superior Water-Dispersibility for Photocatalysis, Materials 10 (2017) 566, https://doi.org/10.3390/ma10050566. A. Khan, M. Goepel, A. Kubas, D. Łomot, W. Lisowski, D. Lisovytskiy, A. Nowicka, J.C. Colmenares, R. Gl¨ aser, Selective oxidation of 5-hydroxymethylfurfural to 2,5- diformylfuran by visible light-driven photocatalysis over in situ substratesensitized titania, ChemSusChem 14 (2021) 1351–1362, https://doi.org/10.1002/ cssc.202002687. H. Kobayashi, S. Higashimoto, DFT study on the reaction mechanisms behind the catalytic oxidation of benzyl alcohol into benzaldehyde by O2 over anatase TiO2 surfaces with hydroxyl groups: role of visible-light irradiation, Appl. Catal. B: Environ. 170– 171 (2015) 135–143, https://doi.org/10.1016/j. apcatb.2015.01.035. X. Yan, Y. Li, T. Xia, Black titanium dioxide nanomaterials in photocatalysis, Int. J. Photo 2017 (2017), https://doi.org/10.1155/2017/8529851. A. Naldoni, M. Altomare, G. Zoppellaro, N. Liu, S. ˇ Kment, R. Zboˇril, P. Schmuki, Photocatalysis with reduced TiO 2: From Black TiO 2 to cocatalyst-free hydrogen production, ACS Catal. 9 (2019) 345–364, https://doi.org/10.1021/ acscatal.8b04068. B. Ohtani, O.O. Prieto-Mahaney, D. Li, R. Abe, What is Degussa (Evonic) P25? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity test, J. Photochem. Photobiol. A: Chem. 216 (2010) 179–182, https://doi.org/10.1016/j.jphotochem.2010.07.024. F. Parrino, M. Bellardita, E.I. García-Lopez, ´ G. Marcì, V. Loddo, L. Palmisano, Heterogeneous photocatalysis for selective formation of high-value-added molecules: some chemical and engineering aspects, ACS Catal. 8 (2018) 11191–11225, https://doi.org/10.1021/acscatal.8b03093. V. Augugliaro, T. Caronna, V. Loddo, G. Marcì, G. Palmisano, L. Palmisano, S. Yurdakal, Oxidation of aromatic alcohols in irradiated aqueous suspensions of commercial and home-prepared rutile TiO2: A selectivity study, Chem. - A Eur. J. 14 (2008) 4640–4646, https://doi.org/10.1002/chem.200702044. A.K. Datye, G. Riegel, J.R. Bolton, M. Huang, M.R. Prairie, Microstructural characterization of a fumed titanium dioxide photocatalyst, J. Solid State Chem. 115 (1995) 236–239, https://doi.org/10.1006/jssc.1995.1126. D.A. Giannakoudakis, D. Łomot, J.C. Colmenares, When sonochemistry meets heterogeneous photocatalysis: designing a sonophotoreactor towards sustainable selective oxidation, Green. Chem. 22 (2020) 4896–4905, https://doi.org/10.1039/ D0GC00329H. I. Velo-Gala, A. Torres-Pinto, C.G. Silva, B. Ohtani, A.M.T. Silva, J.L. Faria, Graphitic carbon nitride photocatalysis: The hydroperoxyl radical role revealed by kinetic modelling, Catal. Sci. Technol. 11 (2021) 7712–7726, https://doi.org/ 10.1039/d1cy01657a. E. Kusmierek, A. CeO2, semiconductor as a photocatalytic and photoelectrocatalytic material for the remediation of pollutants in industrial wastewater: A review, Catalysts 10 (2020) 1–54, https://doi.org/10.3390/ catal10121435. C. Zheng, G. He, X. Xiao, M. Lu, H. Zhong, X. Zuo, J. Nan, Selective photocatalytic oxidation of benzyl alcohol into benzaldehyde with high selectivity and conversion ratio over Bi4O5Br2 nanoflakes under blue LED irradiation, Appl. Catal. B: Environ. 205 (2017) 201–210, https://doi.org/10.1016/j.apcatb.2016.12.026. G. Palmisano, G. Scandura, V. Augugliaro, V. Loddo, A. Pace, B.S. Tek, S. Yurdakal, L. Palmisano, Unexpectedly ambivalent O2 role in the autocatalytic photooxidation of 2-methoxybenzyl alcohol in water, J. Mol. Catal. A: Chem. 403 (2015) 37–42, https://doi.org/10.1016/j.molcata.2015.03.021. M.J. Pavan, H. Fridman, G. Segalovich, A.I. Shames, N.G. Lemcoff, T. Mokari, Photoxidation of Benzyl Alcohol with Heterogeneous Photocatalysts in the UV Range: The Complex Interplay with the Autoxidative Reaction, ChemCatChem 10 (2018) 2541–2545, https://doi.org/10.1002/cctc.201800284. X. Xiao, C. Zheng, M. Lu, L. Zhang, F. Liu, X. Zuo, J. Nan, Deficient Bi24O31Br10as a highly efficient photocatalyst for selective oxidation of benzyl alcohol into benzaldehyde under blue LED irradiation, Appl. Catal. B: Environ. 228 (2018) 142–151, https://doi.org/10.1016/j.apcatb.2018.01.076. S. Higashimoto, N. Suetsugu, M. Azuma, H. Ohue, Y. Sakata, Efficient and selective oxidation of benzylic alcohol by O2into corresponding aldehydes on a TiO2photocatalyst under visible light irradiation: Effect of phenyl-ring substitution on the photocatalytic activity, J. Catal. 274 (2010) 76–83, https://doi.org/ 10.1016/j.jcat.2010.06.006. X.F. Zhang, Z. Wang, Y. Zhong, J. Qiu, X. Zhang, Y. Gao, X. Gu, J. Yao, TiO 2 nanorods loaded with Au–Pt alloy nanoparticles for the photocatalytic oxidation of benzyl alcohol, J. Phys. Chem. Solids 126 (2019) 27–32, https://doi.org/10.1016/ j.jpcs.2018.10.026 D.A. Giannakoudakis, M. Florent, R. Wallace, J. Secor, C. Karwacki, T.J. Bandosz, Zinc peroxide nanoparticles: Surface, chemical and optical properties and the effect of thermal treatment on the detoxification of mustard gas, Appl. Catal. B: Environ. 226 (2018) 429–440, https://doi.org/10.1016/j.apcatb.2017.12.068. A. Khan, M. Goepel, W. Lisowski, D. Łomot, D. Lisovytskiy, M. MazurkiewiczPawlicka, R. Glaser, ¨ J.C. Colmenares, Titania/chitosan-lignin nanocomposite as an efficient photocatalyst for the selective oxidation of benzyl alcohol under UV and visible light, RSC Adv. 11 (2021) 34996–35010, https://doi.org/10.1039/ d1ra06500a. J.M. Achord, C.L. Hussey, Determination of dissolved oxygen in nonaqueous electrochemical solvents, Anal. Chem. 52 (1980) 601–602, https://doi.org/ 10.1021/ac50053a061. D.A. Giannakoudakis, V. Nair, A. Khan, E.A. Deliyanni, J.C. Colmenares, K. S. Triantafyllidis, Additive-free photo-assisted selective partial oxidation at ambient conditions of 5-hydroxymethylfurfural by manganese (IV) oxide nanorods, Appl. Catal. B: Environ. 256 (2019), 117803, https://doi.org/10.1016/j. apcatb.2019.117803. F. Vendruscolo, M.J. Rossi, W. Schmidell, J.L. Ninow, Determination of Oxygen Solubility in Liquid Media, ISRN Chem. Eng. 2012 (2012) 1–5, https://doi.org/ 10.5402/2012/601458. Q. Li, C. Batchelor-Mcauley, N.S. Lawrence, R.S. Hartshorne, R.G. Compton, Anomalous solubility of oxygen in acetonitrile/water mixture containing tetra-nbutylammonium perchlorate supporting electrolyte; The solubility and diffusion coefficient of oxygen in anhydrous acetonitrile and aqueous mixtures, J. Electroanal. Chem. 688 (2013) 328–335, https://doi.org/10.1016/j. jelechem.2012.07.039. D.A. Giannakoudakis, M. Seredych, E. Rodríguez-Castellon, ´ T.J. Bandosz, Mesoporous graphitic carbon nitride-based nanospheres as visible-light active chemical warfare agents decontaminant, ChemNanoMat 2 (2016) 268–272, https://doi.org/10.1002/cnma.201600030. D.A. Giannakoudakis, T.J. Bandosz, Building MOF nanocomposites with oxidized graphitic carbon nitride nanospheres: the effect of framework geometry on the structural heterogeneity, Molecules 24 (2019) 4529, https://doi.org/10.3390/ molecules24244529. D.A. Giannakoudakis, N.A. Travlou, J. Secor, T.J. Bandosz, Oxidized g-C 3 N 4 Nanospheres as Catalytically Photoactive Linkers in MOF/g-C 3 N 4 Composite of Hierarchical Pore Structure, Small 13 (2017), 1601758, https://doi.org/10.1002/ smll.201601758. D.A. Giannakoudakis, T.J. Bandosz, Defectous UiO-66 MOF Nanocomposites as Reactive Media of Superior Protection against Toxic Vapors, ACS Appl. Mater. Interfaces 12 (2020) 14678–14689, https://doi.org/10.1021/acsami.9b17314 D.A. Giannakoudakis, J.A. Arcibar-Orozco, T.J. Bandosz, Key role of terminal hydroxyl groups and visible light in the reactive adsorption/catalytic conversion of mustard gas surrogate on zinc (hydr)oxides, Appl. Catal. B: Environ. 174 (2015) 96–104, https://doi.org/10.1016/j.apcatb.2015.02.028. |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.format.extent.none.fl_str_mv |
1 - 16 |
dc.coverage.temporal.none.fl_str_mv |
320 |
dc.publisher.none.fl_str_mv |
Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Mecánica, Medellín y Envigado |
dc.publisher.program.none.fl_str_mv |
Ingeniería mecanica |
dc.publisher.place.none.fl_str_mv |
Medellín |
publisher.none.fl_str_mv |
Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Mecánica, Medellín y Envigado |
institution |
Universidad Cooperativa de Colombia |
bitstream.url.fl_str_mv |
https://repository.ucc.edu.co/bitstreams/e63ed7f8-98e7-4d43-951a-ead95214262d/download https://repository.ucc.edu.co/bitstreams/8e51ed95-1983-4fd8-a7ff-5bc77f3a560f/download https://repository.ucc.edu.co/bitstreams/ae0f5c1a-bf00-4265-8ede-738099c1e43a/download https://repository.ucc.edu.co/bitstreams/872043dd-767f-48f4-9424-a2ab6460329b/download https://repository.ucc.edu.co/bitstreams/718b0893-856c-442c-965d-2a97cfa8479f/download https://repository.ucc.edu.co/bitstreams/981ab23f-40e9-47d7-8fa4-99d9a0550542/download https://repository.ucc.edu.co/bitstreams/e214d1a3-388c-4725-bc05-5877df115ee2/download |
bitstream.checksum.fl_str_mv |
3bce4f7ab09dfc588f126e1e36e98a45 4c69670655b040c766e18c3f4e8764cc d621f92548c95bca9139cf1d494c170f 1c1423bd6a58fcb8a749f1c9b627df67 9ccb44946e87a050fb81189f90162299 29e35304af68064e2d97aa7435fed5af bddfda268029c32149e62b524ff8f619 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Cooperativa de Colombia |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1811565442568814592 |
spelling |
Giannakoudakis, Dimitrios A.Qayyum, AbdulBarczak, MariuszColmenares Quintero, Ramón FernandoBorowski, PiotrTriantafyllidis, KonstantinosColmenares, Juan Carlos3202023-08-09T19:41:34Z2023-08-09T19:41:34Z2023-010926-3373https://doi.org/10.1016/j.apcatb.2022.121939https://hdl.handle.net/20.500.12494/52377Dimitrios A. Giannakoudakis, Abdul Qayyum, Mariusz Barczak, Ramón Fernando Colmenares-Quintero, Piotr Borowski, Konstantinos Triantafyllidis, Juan Carlos Colmenares, Mechanistic and kinetic studies of benzyl alcohol photocatalytic oxidation by nanostructured titanium (hydro)oxides: Do we know the entire story?, Applied Catalysis B: Environmental, Volume 320, 2023, 121939, ISSN 0926-3373, https://doi.org/10.1016/j.apcatb.2022.121939. (https://www.sciencedirect.com/science/article/pii/S0926337322008803) Abstract: Selective upgrade of lignocellulosic biomass-derived aromatic compounds by photocatalytic oxidation is assumed as a prosperous, environmentally friendly, and cost-effective process. We present for the first time the application of various advantageous titanium oxide nano-photocatalysts for the additives-free selective partial oxidation of benzyl alcohol to benzaldehyde at ambient conditions. The two best-performing materials were found titanate nanotubes and nanocores of anatase surrounded by amorphous titanium hydroxide phase. The results obtained by scavenger tests on top of the DFT calculations led us to conclude that various reactions and active species are responsible by a complex way for materials’ photoreactivity. Depending on nanocatalysts’ physicochemical features as well as the light irradiation (ultraviolet vs. royal-blue), different mechanisms/oxidation-pathways are photo-catalyzed. Finally, we show that utilizing organic compounds like benzoquinone as scavenger hides risks due to the interactions with the targeted to be converted organic that results in elevated photolytic decomposition even under royal-blue light. Keywords: Biomass valorization; Photocatalysis; Benzyl alcohol oxidation; Benzaldehyde; TiO2 nanomaterials; Titanate nanotubesDIMITRIOS A GIANNAKOUDAKIS, ABDUL QAYUUM, MARIUSZ BARCZAK, RAMON FERNANDO COLMENARES QUINTERO, PIOTR BOROWSKI, KONSTANTINOS TRIANTAFYLLIDIS, JUAN CARLOS COLMENARES QUINTERO, "Mechanistic and kinetic studies of benzyl alcohol photocatalytic oxidation by nanostructured titanium (hydro)oxides: do we know the entire story?" . En: Países Bajos Applied Catalysis B: Environmental ISSN: 0926-3373 ed: Elsevier Science Bv v.320 fasc.N/A p.1 - 54 ,2022, DOI: 10.1016/j.apcatb.2022.121939La mejora selectiva de compuestos aromáticos derivados de biomasa lignocelulósica mediante oxidación fotocatalítica se considera un proceso próspero, respetuoso con el medio ambiente y rentable. Presentamos por primera vez la aplicación de varios nano-fotocatalizadores de óxido de titanio ventajosos para la oxidación parcial selectiva sin aditivos de alcohol bencílico a benzaldehído en condiciones ambientales. Los dos materiales con mejor desempeño fueron los nanotubos de titanato.y nanonúcleos de anatasa rodeados por una fase amorfa de hidróxido de titanio. Los resultados obtenidos por las pruebas de barrido además de los cálculos de DFT nos llevaron a concluir que varias reacciones y especies activas son responsables de una manera compleja de la fotorreactividad de los materiales. Dependiendo de las características fisicoquímicas de los nanocatalizadores, así como de la irradiación de la luz (ultravioleta o azul real), se fotocatalizan diferentes mecanismos/vías de oxidación. Finalmente, mostramos que la utilización de compuestos orgánicos como la benzoquinona como eliminador oculta los riesgos debido a las interacciones con el objetivo que se convertirá en orgánico que da como resultado una descomposición fotolítica elevada incluso bajo luz azul real.Selective upgrade of lignocellulosic biomass-derived aromatic compounds by photocatalytic oxidation is assumed as a prosperous, environmentally friendly, and cost-effective process. We present for the first time the application of various advantageous titanium oxide nano-photocatalysts for the additives-free selective partial oxidation of benzyl alcohol to benzaldehyde at ambient conditions. The two best-performing materials were found titanate nanotubes and nanocores of anatase surrounded by amorphous titanium hydroxide phase. The results obtained by scavenger tests on top of the DFT calculations led us to conclude that various reactions and active species are responsible by a complex way for materials’ photoreactivity. Depending on nanocatalysts’ physicochemical features as well as the light irradiation (ultraviolet vs. royal-blue), different mechanisms/oxidation-pathways are photo-catalyzed. Finally, we show that utilizing organic compounds like benzoquinone as scavenger hides risks due to the interactions with the targeted to be converted organic that results in elevated photolytic decomposition even under royal-blue light.https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000192503https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000436798https://orcid.org/0000-0001-5996-6510https://orcid.org/0000-0003-1166-1982https://orcid.org/0000-0003-3701-6340https://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000005961dagchem@gmail.comaqayyum@ichf.edu.plramon.colmenaresq@campusucc.edu.coktrianta@chem.auth.grjcarloscolmenares@ichf.edu.plhttps://scholar.google.gr/citations?user=f0_QSeMAAAAJ&hl=enhttps://scholar.google.com/citations?user=_8Bem6wAAAAJ&hl=es&oi=srahttps://scholar.google.com/citations?user=9HLAZYUAAAAJ&hl=eshttps://scholar.google.pl/citations?user=9spgFMUAAAAJ&hl=plhttps://scholar.google.com/citations?user=Wz-do_IAAAAJ&hl=en1 - 16Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Mecánica, Medellín y EnvigadoIngeniería mecanicaMedellínhttps://www.sciencedirect.com/science/article/pii/S0926337322008803?via%3Dihub#ab0010Applied Catalysis B: EnvironmentalC.-H. Zhou, X. Xia, C.-X. Lin, D.-S. Tong, J. Beltramini, Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels, Chem. Soc. Rev. 40 (2011) 5588–5617, https://doi.org/10.1039/C1CS15124J.V. Nair, M.J. Munoz-Batista, ˜ M. Fernandez-García, ´ R. Luque, J.C. Colmenares, Thermo-photocatalysis: environmental and energy applications, ChemSusChem 12 (2019) 2098–2116, https://doi.org/10.1002/cssc.201900175.M. Garedew, F. Lin, B. Song, T.M. DeWinter, J.E. Jackson, C.M. Saffron, C.H. Lam, P.T. Anastas, Greener routes to biomass waste valorization: lignin transformation through electrocatalysis for renewable chemicals and fuels production, ChemSusChem 13 (2020) 4214–4237, https://doi.org/10.1002/cssc.202000987.S.H. Li, S. Liu, J.C. Colmenares, Y.J. Xu, A sustainable approach for lignin valorization by heterogeneous photocatalysis, Green. Chem. 18 (2016) 594–607, https://doi.org/10.1039/c5gc02109j.S. Kumaravel, P. Thiruvengetam, K. Karthick, S.S. Sankar, A. Karmakar, S. Kundu, Green and sustainable route for oxidative depolymerization of lignin: New platform for fine chemicals and fuels, Biotechnol. Prog. 37 (2021), https://doi.org/10.1002/ btpr.3111P. Azadi, O.R. Inderwildi, R. Farnood, D.A. King, Liquid fuels, hydrogen and chemicals from lignin: A critical review, Renew. Sustain. Energy Rev. 21 (2013) 506–523, https://doi.org/10.1016/j.rser.2012.12.022.C. Xiao, L. Zhang, H. Hao, W. Wang, High Selective Oxidation of Benzyl Alcohol to Benzylaldehyde and Benzoic Acid with Surface Oxygen Vacancies on W18O49/ Holey Ultrathin g-C3N4 Nanosheets, ACS Sustain. Chem. Eng. 7 (2019) 7268–7276, https://doi.org/10.1021/acssuschemeng.9b00299C.M. Crombie, R.J. Lewis, R.L. Taylor, D.J. Morgan, T.E. Davies, A. Folli, D. M. Murphy, J.K. Edwards, J. Qi, H. Jiang, C.J. Kiely, X. Liu, M.S. Skjøth-Rasmussen, G.J. Hutchings, Enhanced Selective Oxidation of Benzyl Alcohol via in Situ H2O2Production over Supported Pd-Based Catalysts, ACS Catal. 11 (2021) 2701–2714, https://doi.org/10.1021/acscatal.0c04586.X. Bao, H. Li, Z. Wang, F. Tong, M. Liu, Z. Zheng, P. Wang, H. Cheng, Y. Liu, Y. Dai, Y. Fan, Z. Li, B. Huang, TiO2/Ti3C2 as an efficient photocatalyst for selective oxidation of benzyl alcohol to benzaldehyde, Appl. Catal. B: Environ. 286 (2021), 119885, https://doi.org/10.1016/j.apcatb.2021.119885.M.J. Lima, A.M.T. Silva, C.G. Silva, J.L. Faria, N.M. Reis, Selective photocatalytic synthesis of benzaldehyde in microcapillaries with immobilized carbon nitride, Chem. Eng. J. 430 (2022), https://doi.org/10.1016/j.cej.2021.132643.A. Akhundi, A. Badiei, G.M. Ziarani, A. Habibi-Yangjeh, M.J. Munoz-Batista, ˜ R. Luque, Graphitic carbon nitride-based photocatalysts: Toward efficient organic transformation for value-added chemicals production, Mol. Catal. 488 (2020), 110902, https://doi.org/10.1016/j.mcat.2020.110902.D.S.M. Constantino, M.M. Dias, A.M.T. Silva, J.L. Faria, C.G. Silva, Intensification strategies for improving the performance of photocatalytic processes: A review, J. Clean. Prod. 340 (2022), https://doi.org/10.1016/j.jclepro.2022.130800.A.V. Vorontsov, P.G. Smirniotis. Environmentally Benign Photocatalysts: Applications of Titanium Oxide-based Materials, 1st ed.,, Springer,, New York, New York, 2010, https://doi.org/10.1007/978-0-387-48444-0.C. Berberidou, G.Z. Kyzas, I. Paspaltsis, T. Sklaviadis, I. Poulios, Photocatalytic disinfection and purification of water employing reduced graphene oxide/TiO2 composites, J. Chem. Technol. Biotechnol. 94 (2019) 3905–3914, https://doi.org/ 10.1002/jctb.6188.S. Peiris, H.B. de Silva, K.N. Ranasinghe, S.V. Bandara, I.R. Perera, Recent development and future prospects of TiO2 photocatalysis, J. Chin. Chem. Soc. 68 (2021) 738–769, https://doi.org/10.1002/jccs.202000465.M.J. Lima, M.J. Sampaio, C.G. Silva, A.M.T. Silva, J.L. Faria, Magnetically recoverable Fe 3 O 4 /g-C 3 N 4 composite for photocatalytic production of benzaldehyde under UV-LED radiation, Catal. Today 328 (2019) 293–299, https:// doi.org/10.1016/j.cattod.2018.11.018.J.F.J.R. Pesqueira, M.F.R. Pereira, A.M.T. Silva, A life cycle assessment of solarbased treatments (H2O2, TiO2 photocatalysis, circumneutral photo-Fenton) for the removal of organic micropollutants, Sci. Total Environ. 761 (2021), https://doi. org/10.1016/j.scitotenv.2020.143258.D.A. Giannakoudakis, N. Farahmand, D. Łomot, K. Sobczak, T.J. Bandosz, J. C. Colmenares, Ultrasound-activated TiO2/GO-based bifunctional photoreactive adsorbents for detoxification of chemical warfare agent surrogate vapors, Chem. Eng. J. 395 (2020), 125099, https://doi.org/10.1016/j.cej.2020.125099.D.A. Giannakoudakis, A. Qayyum, D. Łomot, M.O. Besenhard, D. Lisovytskiy, T. J. Bandosz, J.C. Colmenares, Boosting the Photoactivity of Grafted Titania: Ultrasound-Driven Synthesis of a Multi-Phase Heterogeneous Nano-Architected Photocatalyst, Adv. Funct. Mater. 31 (2021) 1–7, https://doi.org/10.1002/ adfm.202007115.D.A. Giannakoudakis, K. Vikrant, A.P. LaGrow, D. Lisovytskiy, K.-H. Kim, T. J. Bandosz, J. Carlos Colmenares, Scrolled titanate nanosheet composites with reduced graphite oxide for photocatalytic and adsorptive removal of toxic vapors, Chem. Eng. J. 415 (2021), 128907, https://doi.org/10.1016/j.cej.2021.128907.Y. Chen, S. Yang, K. Wang, L. Lou, Role of primary active species and TiO2 surface characteristic in UV-illuminated photodegradation of Acid Orange 7, J. Photochem. Photobiol. A: Chem. 172 (2005) 47–54, https://doi.org/10.1016/j. jphotochem.2004.11.006S. Higashimoto, N. Suetsugu, M. Azuma, H. Ohue, Y. Sakata, Efficient and selective oxidation of benzylic alcohol by O2 into corresponding aldehydes on a TiO2 photocatalyst under visible light irradiation: Effect of phenyl-ring substitution on the photocatalytic activity, J. Catal. 274 (2010) 76–83, https://doi.org/10.1016/j. jcat.2010.06.006L. Zhao, B. Zhang, X. Xiao, F.L. Gu, R.Q. Zhang, Roles of the active species involved in the photocatalytic oxidation of benzyl alcohol into benzaldehyde on TiO2 under UV light: Experimental and DFT studies, J. Mol. Catal. A: Chem. 420 (2016) 82–87, https://doi.org/10.1016/j.molcata.2016.03.012.X. Li, J.L. Shi, H. Hao, X. Lang, Visible light-induced selective oxidation of alcohols with air by dye-sensitized TiO2 photocatalysis, Appl. Catal. B: Environ. 232 (2018) 260–267, https://doi.org/10.1016/j.apcatb.2018.03.043.C.J. Li, G.R. Xu, B. Zhang, J.R. Gong, High selectivity in visible-light-driven partial photocatalytic oxidation of benzyl alcohol into benzaldehyde over singlecrystalline rutile TiO 2 nanorods, Appl. Catal. B: Environ. 115–116 (2012) 201–208, https://doi.org/10.1016/j.apcatb.2011.12.003.R. Li, H. Kobayashi, J. Guo, J. Fan, Visible-light induced high-yielding benzyl alcohol-to-benzaldehyde transformation over mesoporous crystalline TiO2: A selfadjustable photo-oxidation system with controllable hole-generation, J. Phys. Chem. C. 115 (2011) 23408–23416, https://doi.org/10.1021/jp207259u.C.Y. Wang, R. Pagel, J.K. Dohrmann, D.W. Bahnemann, Antenna mechanism and de-aggregation concept: Novel mechanistic principles for photocatalysis, Mater. Sci. Forum 544– 545 (2007) 17–22, https://doi.org/10.1016/j.crci.2005.02.053.S. Higashimoto, N. Kitao, N. Yoshida, T. Sakura, M. Azuma, H. Ohue, Y. Sakata, Selective photocatalytic oxidation of benzyl alcohol and its derivatives into corresponding aldehydes by molecular oxygen on titanium dioxide under visible light irradiation, J. Catal. 266 (2009) 279–285, https://doi.org/10.1016/j. jcat.2009.06.018.A. Magdziarz, J.C. Colmenares, O. Chernyayeva, D. Lisovytskiy, J. Grzonka, K. Kurzydłowski, K. Freindl, J. Korecki, Insight into the synthesis procedure of Fe3 +/TiO2-based photocatalyst applied in the selective photo-oxidation of benzyl alcohol under sun-imitating lamp, Ultrason. Sonochem. 38 (2017) 187–196, https://doi.org/10.1016/j.ultsonch.2017.03.012.C.-Y. Wu, K.-J. Tu, J.-P. Deng, Y.-S. Lo, C.-H. Wu, Markedly Enhanced Surface Hydroxyl Groups of TiO2 Nanoparticles with Superior Water-Dispersibility for Photocatalysis, Materials 10 (2017) 566, https://doi.org/10.3390/ma10050566.A. Khan, M. Goepel, A. Kubas, D. Łomot, W. Lisowski, D. Lisovytskiy, A. Nowicka, J.C. Colmenares, R. Gl¨ aser, Selective oxidation of 5-hydroxymethylfurfural to 2,5- diformylfuran by visible light-driven photocatalysis over in situ substratesensitized titania, ChemSusChem 14 (2021) 1351–1362, https://doi.org/10.1002/ cssc.202002687.H. Kobayashi, S. Higashimoto, DFT study on the reaction mechanisms behind the catalytic oxidation of benzyl alcohol into benzaldehyde by O2 over anatase TiO2 surfaces with hydroxyl groups: role of visible-light irradiation, Appl. Catal. B: Environ. 170– 171 (2015) 135–143, https://doi.org/10.1016/j. apcatb.2015.01.035.X. Yan, Y. Li, T. Xia, Black titanium dioxide nanomaterials in photocatalysis, Int. J. Photo 2017 (2017), https://doi.org/10.1155/2017/8529851.A. Naldoni, M. Altomare, G. Zoppellaro, N. Liu, S. ˇ Kment, R. Zboˇril, P. Schmuki, Photocatalysis with reduced TiO 2: From Black TiO 2 to cocatalyst-free hydrogen production, ACS Catal. 9 (2019) 345–364, https://doi.org/10.1021/ acscatal.8b04068.B. Ohtani, O.O. Prieto-Mahaney, D. Li, R. Abe, What is Degussa (Evonic) P25? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity test, J. Photochem. Photobiol. A: Chem. 216 (2010) 179–182, https://doi.org/10.1016/j.jphotochem.2010.07.024.F. Parrino, M. Bellardita, E.I. García-Lopez, ´ G. Marcì, V. Loddo, L. Palmisano, Heterogeneous photocatalysis for selective formation of high-value-added molecules: some chemical and engineering aspects, ACS Catal. 8 (2018) 11191–11225, https://doi.org/10.1021/acscatal.8b03093.V. Augugliaro, T. Caronna, V. Loddo, G. Marcì, G. Palmisano, L. Palmisano, S. Yurdakal, Oxidation of aromatic alcohols in irradiated aqueous suspensions of commercial and home-prepared rutile TiO2: A selectivity study, Chem. - A Eur. J. 14 (2008) 4640–4646, https://doi.org/10.1002/chem.200702044.A.K. Datye, G. Riegel, J.R. Bolton, M. Huang, M.R. Prairie, Microstructural characterization of a fumed titanium dioxide photocatalyst, J. Solid State Chem. 115 (1995) 236–239, https://doi.org/10.1006/jssc.1995.1126.D.A. Giannakoudakis, D. Łomot, J.C. Colmenares, When sonochemistry meets heterogeneous photocatalysis: designing a sonophotoreactor towards sustainable selective oxidation, Green. Chem. 22 (2020) 4896–4905, https://doi.org/10.1039/ D0GC00329H.I. Velo-Gala, A. Torres-Pinto, C.G. Silva, B. Ohtani, A.M.T. Silva, J.L. Faria, Graphitic carbon nitride photocatalysis: The hydroperoxyl radical role revealed by kinetic modelling, Catal. Sci. Technol. 11 (2021) 7712–7726, https://doi.org/ 10.1039/d1cy01657a.E. Kusmierek, A. CeO2, semiconductor as a photocatalytic and photoelectrocatalytic material for the remediation of pollutants in industrial wastewater: A review, Catalysts 10 (2020) 1–54, https://doi.org/10.3390/ catal10121435.C. Zheng, G. He, X. Xiao, M. Lu, H. Zhong, X. Zuo, J. Nan, Selective photocatalytic oxidation of benzyl alcohol into benzaldehyde with high selectivity and conversion ratio over Bi4O5Br2 nanoflakes under blue LED irradiation, Appl. Catal. B: Environ. 205 (2017) 201–210, https://doi.org/10.1016/j.apcatb.2016.12.026.G. Palmisano, G. Scandura, V. Augugliaro, V. Loddo, A. Pace, B.S. Tek, S. Yurdakal, L. Palmisano, Unexpectedly ambivalent O2 role in the autocatalytic photooxidation of 2-methoxybenzyl alcohol in water, J. Mol. Catal. A: Chem. 403 (2015) 37–42, https://doi.org/10.1016/j.molcata.2015.03.021.M.J. Pavan, H. Fridman, G. Segalovich, A.I. Shames, N.G. Lemcoff, T. Mokari, Photoxidation of Benzyl Alcohol with Heterogeneous Photocatalysts in the UV Range: The Complex Interplay with the Autoxidative Reaction, ChemCatChem 10 (2018) 2541–2545, https://doi.org/10.1002/cctc.201800284.X. Xiao, C. Zheng, M. Lu, L. Zhang, F. Liu, X. Zuo, J. Nan, Deficient Bi24O31Br10as a highly efficient photocatalyst for selective oxidation of benzyl alcohol into benzaldehyde under blue LED irradiation, Appl. Catal. B: Environ. 228 (2018) 142–151, https://doi.org/10.1016/j.apcatb.2018.01.076.S. Higashimoto, N. Suetsugu, M. Azuma, H. Ohue, Y. Sakata, Efficient and selective oxidation of benzylic alcohol by O2into corresponding aldehydes on a TiO2photocatalyst under visible light irradiation: Effect of phenyl-ring substitution on the photocatalytic activity, J. Catal. 274 (2010) 76–83, https://doi.org/ 10.1016/j.jcat.2010.06.006.X.F. Zhang, Z. Wang, Y. Zhong, J. Qiu, X. Zhang, Y. Gao, X. Gu, J. Yao, TiO 2 nanorods loaded with Au–Pt alloy nanoparticles for the photocatalytic oxidation of benzyl alcohol, J. Phys. Chem. Solids 126 (2019) 27–32, https://doi.org/10.1016/ j.jpcs.2018.10.026D.A. Giannakoudakis, M. Florent, R. Wallace, J. Secor, C. Karwacki, T.J. Bandosz, Zinc peroxide nanoparticles: Surface, chemical and optical properties and the effect of thermal treatment on the detoxification of mustard gas, Appl. Catal. B: Environ. 226 (2018) 429–440, https://doi.org/10.1016/j.apcatb.2017.12.068.A. Khan, M. Goepel, W. Lisowski, D. Łomot, D. Lisovytskiy, M. MazurkiewiczPawlicka, R. Glaser, ¨ J.C. Colmenares, Titania/chitosan-lignin nanocomposite as an efficient photocatalyst for the selective oxidation of benzyl alcohol under UV and visible light, RSC Adv. 11 (2021) 34996–35010, https://doi.org/10.1039/ d1ra06500a.J.M. Achord, C.L. Hussey, Determination of dissolved oxygen in nonaqueous electrochemical solvents, Anal. Chem. 52 (1980) 601–602, https://doi.org/ 10.1021/ac50053a061.D.A. Giannakoudakis, V. Nair, A. Khan, E.A. Deliyanni, J.C. Colmenares, K. S. Triantafyllidis, Additive-free photo-assisted selective partial oxidation at ambient conditions of 5-hydroxymethylfurfural by manganese (IV) oxide nanorods, Appl. Catal. B: Environ. 256 (2019), 117803, https://doi.org/10.1016/j. apcatb.2019.117803.F. Vendruscolo, M.J. Rossi, W. Schmidell, J.L. Ninow, Determination of Oxygen Solubility in Liquid Media, ISRN Chem. Eng. 2012 (2012) 1–5, https://doi.org/ 10.5402/2012/601458.Q. Li, C. Batchelor-Mcauley, N.S. Lawrence, R.S. Hartshorne, R.G. Compton, Anomalous solubility of oxygen in acetonitrile/water mixture containing tetra-nbutylammonium perchlorate supporting electrolyte; The solubility and diffusion coefficient of oxygen in anhydrous acetonitrile and aqueous mixtures, J. Electroanal. Chem. 688 (2013) 328–335, https://doi.org/10.1016/j. jelechem.2012.07.039.D.A. Giannakoudakis, M. Seredych, E. Rodríguez-Castellon, ´ T.J. Bandosz, Mesoporous graphitic carbon nitride-based nanospheres as visible-light active chemical warfare agents decontaminant, ChemNanoMat 2 (2016) 268–272, https://doi.org/10.1002/cnma.201600030.D.A. Giannakoudakis, T.J. Bandosz, Building MOF nanocomposites with oxidized graphitic carbon nitride nanospheres: the effect of framework geometry on the structural heterogeneity, Molecules 24 (2019) 4529, https://doi.org/10.3390/ molecules24244529.D.A. Giannakoudakis, N.A. Travlou, J. Secor, T.J. Bandosz, Oxidized g-C 3 N 4 Nanospheres as Catalytically Photoactive Linkers in MOF/g-C 3 N 4 Composite of Hierarchical Pore Structure, Small 13 (2017), 1601758, https://doi.org/10.1002/ smll.201601758.D.A. Giannakoudakis, T.J. Bandosz, Defectous UiO-66 MOF Nanocomposites as Reactive Media of Superior Protection against Toxic Vapors, ACS Appl. Mater. Interfaces 12 (2020) 14678–14689, https://doi.org/10.1021/acsami.9b17314D.A. Giannakoudakis, J.A. Arcibar-Orozco, T.J. Bandosz, Key role of terminal hydroxyl groups and visible light in the reactive adsorption/catalytic conversion of mustard gas surrogate on zinc (hydr)oxides, Appl. Catal. B: Environ. 174 (2015) 96–104, https://doi.org/10.1016/j.apcatb.2015.02.028.Valorización de biomasaFotocatálisisOxidación de alcohol bencílicoBenzaldehídoNanomateriales de TiO2Nanotubos de titanatoBiomass valorizationPhotocatalysisBenzyl alcohol oxidationBenzaldehydeTiO2 nanomaterialsTitanate nanotubesMechanistic and kinetic studies of benzyl alcohol photocatalytic oxidation by nanostructured titanium (hydro)oxides: do we know the entire story?Artículos Científicoshttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/e63ed7f8-98e7-4d43-951a-ead95214262d/download3bce4f7ab09dfc588f126e1e36e98a45MD52ORIGINALMechanistic and kinetic studies of benzyl alcohol photocatalytic oxidatio by nanostructured titanium.pdfMechanistic and kinetic studies of benzyl alcohol photocatalytic oxidatio by nanostructured titanium.pdfapplication/pdf8486514https://repository.ucc.edu.co/bitstreams/8e51ed95-1983-4fd8-a7ff-5bc77f3a560f/download4c69670655b040c766e18c3f4e8764ccMD53Licencia de uso _ Mechanistic and kinetic studies of benzyl alcohol photocatalytic _compressed.pdfLicencia de uso _ Mechanistic and kinetic studies of benzyl alcohol photocatalytic _compressed.pdfapplication/pdf71904https://repository.ucc.edu.co/bitstreams/ae0f5c1a-bf00-4265-8ede-738099c1e43a/downloadd621f92548c95bca9139cf1d494c170fMD54TEXTMechanistic and kinetic studies of benzyl alcohol photocatalytic oxidatio by nanostructured titanium.pdf.txtMechanistic and kinetic studies of benzyl alcohol photocatalytic oxidatio by nanostructured titanium.pdf.txtExtracted texttext/plain100490https://repository.ucc.edu.co/bitstreams/872043dd-767f-48f4-9424-a2ab6460329b/download1c1423bd6a58fcb8a749f1c9b627df67MD55Licencia de uso _ Mechanistic and kinetic studies of benzyl alcohol photocatalytic _compressed.pdf.txtLicencia de uso _ Mechanistic and kinetic studies of benzyl alcohol photocatalytic _compressed.pdf.txtExtracted texttext/plain5226https://repository.ucc.edu.co/bitstreams/718b0893-856c-442c-965d-2a97cfa8479f/download9ccb44946e87a050fb81189f90162299MD57THUMBNAILMechanistic and kinetic studies of benzyl alcohol photocatalytic oxidatio by nanostructured titanium.pdf.jpgMechanistic and kinetic studies of benzyl alcohol photocatalytic oxidatio by nanostructured titanium.pdf.jpgGenerated Thumbnailimage/jpeg15049https://repository.ucc.edu.co/bitstreams/981ab23f-40e9-47d7-8fa4-99d9a0550542/download29e35304af68064e2d97aa7435fed5afMD56Licencia de uso _ Mechanistic and kinetic studies of benzyl alcohol photocatalytic _compressed.pdf.jpgLicencia de uso _ Mechanistic and kinetic studies of benzyl alcohol photocatalytic _compressed.pdf.jpgGenerated Thumbnailimage/jpeg11359https://repository.ucc.edu.co/bitstreams/e214d1a3-388c-4725-bc05-5877df115ee2/downloadbddfda268029c32149e62b524ff8f619MD5820.500.12494/52377oai:repository.ucc.edu.co:20.500.12494/523772024-08-10 20:55:56.281open.accesshttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo= |