Determination of geometric factor for crack growing from a notch

This manuscript studies the behavior of an ASTM A 36 structural steel specimen with a circular stress concentrator of variable diameter and a notch using computational modeling of finite elements (Ansys) and fracture mechanics, the test specimen has a thickness of 5 mm and a notch of 30 mm with open...

Full description

Autores:
Gallego Cossio, Laura Constanza
Araque De Los Rios, Oscar Javier
Pérez, Eduardo
Urrego, Luis Fabian
Tipo de recurso:
Article of journal
Fecha de publicación:
2019
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/17281
Acceso en línea:
https://hdl.handle.net/20.500.12494/17281
Palabra clave:
Stress intensity factor
Geometric factor
Crack growth
ANSYS
Structural steel
Regression
Kernels
Rights
closedAccess
License
Atribución
id COOPER2_9296d2c4ee0b29ff68ac2b98f297823c
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/17281
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.spa.fl_str_mv Determination of geometric factor for crack growing from a notch
title Determination of geometric factor for crack growing from a notch
spellingShingle Determination of geometric factor for crack growing from a notch
Stress intensity factor
Geometric factor
Crack growth
ANSYS
Structural steel
Regression
Kernels
title_short Determination of geometric factor for crack growing from a notch
title_full Determination of geometric factor for crack growing from a notch
title_fullStr Determination of geometric factor for crack growing from a notch
title_full_unstemmed Determination of geometric factor for crack growing from a notch
title_sort Determination of geometric factor for crack growing from a notch
dc.creator.fl_str_mv Gallego Cossio, Laura Constanza
Araque De Los Rios, Oscar Javier
Pérez, Eduardo
Urrego, Luis Fabian
dc.contributor.author.none.fl_str_mv Gallego Cossio, Laura Constanza
Araque De Los Rios, Oscar Javier
Pérez, Eduardo
Urrego, Luis Fabian
dc.subject.spa.fl_str_mv Stress intensity factor
Geometric factor
Crack growth
ANSYS
Structural steel
Regression
Kernels
topic Stress intensity factor
Geometric factor
Crack growth
ANSYS
Structural steel
Regression
Kernels
description This manuscript studies the behavior of an ASTM A 36 structural steel specimen with a circular stress concentrator of variable diameter and a notch using computational modeling of finite elements (Ansys) and fracture mechanics, the test specimen has a thickness of 5 mm and a notch of 30 mm with opening of 45° was subjected to cyclic axial load and the diameter of the concentrator varies from 5mm, 9mm, 13mm,17mm and 21 mm. This in order to establish the function that describes the behavior of the dimensionless geometrical factor (β) in the calculation of the Stress Intensity Factor (SIF). For each selected diameter, the characteristic equation is obtained using the Support Vector Machine algorithm based on the Kernel equations. These results were compared with other accepted modes, obtaining a high degree of correlation and an error percentage close to 1.7%. As a main contribution, a new general mathematical model is obtained for specimens of defined geometry and concentrator of circular stress.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019-10-05
dc.date.accessioned.none.fl_str_mv 2020-03-27T19:46:41Z
dc.date.available.none.fl_str_mv 2020-03-27T19:46:41Z
dc.type.none.fl_str_mv Artículo
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 0974-3154
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12494/17281
dc.identifier.bibliographicCitation.spa.fl_str_mv Araque, O., Pérez, E., Urrego, L. y Gallego, L. (2019). Determination of geometric factor for crack growing from a notch. International Journal of Engineering Research and Technology, 12(9), 1541-1546.
identifier_str_mv 0974-3154
Araque, O., Pérez, E., Urrego, L. y Gallego, L. (2019). Determination of geometric factor for crack growing from a notch. International Journal of Engineering Research and Technology, 12(9), 1541-1546.
url https://hdl.handle.net/20.500.12494/17281
dc.relation.isversionof.spa.fl_str_mv https://pure.unibague.edu.co/es/publications/determination-of-geometric-factor-for-crack-growing-from-a-notch
dc.relation.ispartofjournal.spa.fl_str_mv International Journal of Engineering Research and Technology
dc.relation.references.spa.fl_str_mv Nairn, J.A., “Direct comparison of anisotropic damage mechanics to fracture mechanics of explicit cracks”, Engineering Fracture Mechanics, No. 203, (2018), 197- 207
Mecholsky Jr, J., “Fracture mechanics principles”, Dental Materials, Vol. 11, No. 2, (1995), 111-112
Taylor, D., Cornetti, P., & Pugno, N., “The fracture mechanics of finite crack extension”, Engineering Fracture Mechanics, Vol. 72, No. 7, (2005), 1021-1038
Atzori, B., Lazzarin, P., & Meneghetti, G., “Fracture mechanics and notch sensitivity”, Fatigue & Fracture of Engineering Materials & Structures, Vol. 26, No. 3, (2003), 257-267.
Smith, S. M., & Scattergood, R. O., “Crack‐shape effects for indentation fracture toughness measurements”, Journal of the American Ceramic Society, Vol. 75, No. 2, (1992), 305-315
Newman Jr, J. C., & Raju, I. S., “An empirical stressintensity factor equation for the surface crack”, Engineering fracture mechanics, Vol. 15, No. (1-2), (1981), 185-192.
Nix, K. J., & Lindley, T. C., “The application of fracture mechanics to fretting fatigue”, Fatigue & Fracture of Engineering Materials & Structures, Vol. 8, No. 2, (1985), 143-160.
Clarke, S. M., Griebsch, J. H., & Simpson, T. W., “Analysis of support vector regression for approximation of complex engineering analyses”, Journal of mechanical design, Vol. 127, No. 6, (2005), 1077-1087.
Smola, A. J., & Schölkopf, B., “A tutorial on support vector regression”, Statistics and computing, Vol. 14, No. 3, (2004), 199-222.
Heydari, M. H., & Choupani, N., “A new comparative method to evaluate the fracture properties of laminated composite”, International Journal of Engineering, Vol. 27, No. 6, (2014), 1025-2495.
EL-Desouky, A. R., & El-Wazery, M. S., “Mixed mode crack propagation of zirconia/nickel functionally graded materials”, International Journal of Engineering (IJE), Vol. 26, No. 8, (2013), 885-894.
Vapnik, V., "The Nature of Statistical Learning Theory", Springer, New York, (1995).
Clarke, S. M., Griebsch, J. H., & Simpson, T. W., “Analysis of support vector regression for approximation of complex engineering analyses”, Journal of mechanical design, Vol. 127, No. 6, (2005), 1077-1087.
MatWeb, L. L. C. Material property data. MatWeb,[Online]. Available: http://www. matweb. com. (2019)
Ghafoori, E., Motavalli, M., Botsis, J., Herwig, A., & Galli, M., “Fatigue strengthening of damaged metallic beams using prestressed unbonded and bonded CFRP plates”, International Journal of Fatigue, No. 44, (2012), 303-315
Anderson, T. L., "Fracture mechanics: fundamentals and applications", CRC press, (2017).
Araque, O., Arzola, N., & Varón, O., “Computational modeling of fatigue crack propagation in butt welded joints subjected to axial load”, PloS one, Vol. 14, No. 6, (2019), 1-17.
Hernández Laguna, E., Arzola de la Peña, N., & Araque de los Ríos, O., Fracture mechanics assessment of fatigue semi-elliptical cracks in butt-welded joints. Ingeniare. Revista chilena de ingeniería, Vol. 26, Nº 4, (2018), 568- 576.
Gallego Cossio, L., & Hernandez Aros, L., “Methods of Economic-Financial Valuation: Analysis from a Case of Study”, International Business Management, Vol. 12, Nº 2, (2018), 196-204.
dc.rights.license.none.fl_str_mv Atribución
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/closedAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_14cb
rights_invalid_str_mv Atribución
http://purl.org/coar/access_right/c_14cb
eu_rights_str_mv closedAccess
dc.format.extent.spa.fl_str_mv 1538-1543
dc.coverage.temporal.spa.fl_str_mv 12
dc.publisher.spa.fl_str_mv Universidad Cooperativa de Colombia, Facultad de Ciencias Económicas, Administrativas y Contables, Contaduría Pública, Ibagué
dc.publisher.program.spa.fl_str_mv Contaduría Pública
dc.publisher.place.spa.fl_str_mv Ibagué
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/3a2d0acc-ce9f-4dbb-a37f-833646e1829c/download
bitstream.checksum.fl_str_mv 3bce4f7ab09dfc588f126e1e36e98a45
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1814247234514976768
spelling Gallego Cossio, Laura ConstanzaAraque De Los Rios, Oscar JavierPérez, EduardoUrrego, Luis Fabian122020-03-27T19:46:41Z2020-03-27T19:46:41Z2019-10-050974-3154https://hdl.handle.net/20.500.12494/17281Araque, O., Pérez, E., Urrego, L. y Gallego, L. (2019). Determination of geometric factor for crack growing from a notch. International Journal of Engineering Research and Technology, 12(9), 1541-1546.This manuscript studies the behavior of an ASTM A 36 structural steel specimen with a circular stress concentrator of variable diameter and a notch using computational modeling of finite elements (Ansys) and fracture mechanics, the test specimen has a thickness of 5 mm and a notch of 30 mm with opening of 45° was subjected to cyclic axial load and the diameter of the concentrator varies from 5mm, 9mm, 13mm,17mm and 21 mm. This in order to establish the function that describes the behavior of the dimensionless geometrical factor (β) in the calculation of the Stress Intensity Factor (SIF). For each selected diameter, the characteristic equation is obtained using the Support Vector Machine algorithm based on the Kernel equations. These results were compared with other accepted modes, obtaining a high degree of correlation and an error percentage close to 1.7%. As a main contribution, a new general mathematical model is obtained for specimens of defined geometry and concentrator of circular stress.https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001431144https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000440566https://orcid.org/0000-0003-3131-235Xhttps://orcid.org/0000-0001-9400-1140laura.gallego@campusucc.edu.cohttps://scholar.google.com/citations?user=SjHqGSYAAAAJ&hl=es&oi=aohttps://scholar.google.com/citations?user=bHXhFM0AAAAJ&hl=es&oi=ao1538-1543Universidad Cooperativa de Colombia, Facultad de Ciencias Económicas, Administrativas y Contables, Contaduría Pública, IbaguéContaduría PúblicaIbaguéhttps://pure.unibague.edu.co/es/publications/determination-of-geometric-factor-for-crack-growing-from-a-notchInternational Journal of Engineering Research and TechnologyNairn, J.A., “Direct comparison of anisotropic damage mechanics to fracture mechanics of explicit cracks”, Engineering Fracture Mechanics, No. 203, (2018), 197- 207Mecholsky Jr, J., “Fracture mechanics principles”, Dental Materials, Vol. 11, No. 2, (1995), 111-112Taylor, D., Cornetti, P., & Pugno, N., “The fracture mechanics of finite crack extension”, Engineering Fracture Mechanics, Vol. 72, No. 7, (2005), 1021-1038Atzori, B., Lazzarin, P., & Meneghetti, G., “Fracture mechanics and notch sensitivity”, Fatigue & Fracture of Engineering Materials & Structures, Vol. 26, No. 3, (2003), 257-267.Smith, S. M., & Scattergood, R. O., “Crack‐shape effects for indentation fracture toughness measurements”, Journal of the American Ceramic Society, Vol. 75, No. 2, (1992), 305-315Newman Jr, J. C., & Raju, I. S., “An empirical stressintensity factor equation for the surface crack”, Engineering fracture mechanics, Vol. 15, No. (1-2), (1981), 185-192.Nix, K. J., & Lindley, T. C., “The application of fracture mechanics to fretting fatigue”, Fatigue & Fracture of Engineering Materials & Structures, Vol. 8, No. 2, (1985), 143-160.Clarke, S. M., Griebsch, J. H., & Simpson, T. W., “Analysis of support vector regression for approximation of complex engineering analyses”, Journal of mechanical design, Vol. 127, No. 6, (2005), 1077-1087.Smola, A. J., & Schölkopf, B., “A tutorial on support vector regression”, Statistics and computing, Vol. 14, No. 3, (2004), 199-222.Heydari, M. H., & Choupani, N., “A new comparative method to evaluate the fracture properties of laminated composite”, International Journal of Engineering, Vol. 27, No. 6, (2014), 1025-2495.EL-Desouky, A. R., & El-Wazery, M. S., “Mixed mode crack propagation of zirconia/nickel functionally graded materials”, International Journal of Engineering (IJE), Vol. 26, No. 8, (2013), 885-894.Vapnik, V., "The Nature of Statistical Learning Theory", Springer, New York, (1995).Clarke, S. M., Griebsch, J. H., & Simpson, T. W., “Analysis of support vector regression for approximation of complex engineering analyses”, Journal of mechanical design, Vol. 127, No. 6, (2005), 1077-1087.MatWeb, L. L. C. Material property data. MatWeb,[Online]. Available: http://www. matweb. com. (2019)Ghafoori, E., Motavalli, M., Botsis, J., Herwig, A., & Galli, M., “Fatigue strengthening of damaged metallic beams using prestressed unbonded and bonded CFRP plates”, International Journal of Fatigue, No. 44, (2012), 303-315Anderson, T. L., "Fracture mechanics: fundamentals and applications", CRC press, (2017).Araque, O., Arzola, N., & Varón, O., “Computational modeling of fatigue crack propagation in butt welded joints subjected to axial load”, PloS one, Vol. 14, No. 6, (2019), 1-17.Hernández Laguna, E., Arzola de la Peña, N., & Araque de los Ríos, O., Fracture mechanics assessment of fatigue semi-elliptical cracks in butt-welded joints. Ingeniare. Revista chilena de ingeniería, Vol. 26, Nº 4, (2018), 568- 576.Gallego Cossio, L., & Hernandez Aros, L., “Methods of Economic-Financial Valuation: Analysis from a Case of Study”, International Business Management, Vol. 12, Nº 2, (2018), 196-204.Stress intensity factorGeometric factorCrack growthANSYSStructural steelRegressionKernelsDetermination of geometric factor for crack growing from a notchArtículohttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribucióninfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/3a2d0acc-ce9f-4dbb-a37f-833646e1829c/download3bce4f7ab09dfc588f126e1e36e98a45MD5220.500.12494/17281oai:repository.ucc.edu.co:20.500.12494/172812024-08-10 17:55:03.492metadata.onlyhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo=