Determination of geometric factor for crack growing from a notch
This manuscript studies the behavior of an ASTM A 36 structural steel specimen with a circular stress concentrator of variable diameter and a notch using computational modeling of finite elements (Ansys) and fracture mechanics, the test specimen has a thickness of 5 mm and a notch of 30 mm with open...
- Autores:
-
Gallego Cossio, Laura Constanza
Araque De Los Rios, Oscar Javier
Pérez, Eduardo
Urrego, Luis Fabian
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2019
- Institución:
- Universidad Cooperativa de Colombia
- Repositorio:
- Repositorio UCC
- Idioma:
- OAI Identifier:
- oai:repository.ucc.edu.co:20.500.12494/17281
- Acceso en línea:
- https://hdl.handle.net/20.500.12494/17281
- Palabra clave:
- Stress intensity factor
Geometric factor
Crack growth
ANSYS
Structural steel
Regression
Kernels
- Rights
- closedAccess
- License
- Atribución
id |
COOPER2_9296d2c4ee0b29ff68ac2b98f297823c |
---|---|
oai_identifier_str |
oai:repository.ucc.edu.co:20.500.12494/17281 |
network_acronym_str |
COOPER2 |
network_name_str |
Repositorio UCC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Determination of geometric factor for crack growing from a notch |
title |
Determination of geometric factor for crack growing from a notch |
spellingShingle |
Determination of geometric factor for crack growing from a notch Stress intensity factor Geometric factor Crack growth ANSYS Structural steel Regression Kernels |
title_short |
Determination of geometric factor for crack growing from a notch |
title_full |
Determination of geometric factor for crack growing from a notch |
title_fullStr |
Determination of geometric factor for crack growing from a notch |
title_full_unstemmed |
Determination of geometric factor for crack growing from a notch |
title_sort |
Determination of geometric factor for crack growing from a notch |
dc.creator.fl_str_mv |
Gallego Cossio, Laura Constanza Araque De Los Rios, Oscar Javier Pérez, Eduardo Urrego, Luis Fabian |
dc.contributor.author.none.fl_str_mv |
Gallego Cossio, Laura Constanza Araque De Los Rios, Oscar Javier Pérez, Eduardo Urrego, Luis Fabian |
dc.subject.spa.fl_str_mv |
Stress intensity factor Geometric factor Crack growth ANSYS Structural steel Regression Kernels |
topic |
Stress intensity factor Geometric factor Crack growth ANSYS Structural steel Regression Kernels |
description |
This manuscript studies the behavior of an ASTM A 36 structural steel specimen with a circular stress concentrator of variable diameter and a notch using computational modeling of finite elements (Ansys) and fracture mechanics, the test specimen has a thickness of 5 mm and a notch of 30 mm with opening of 45° was subjected to cyclic axial load and the diameter of the concentrator varies from 5mm, 9mm, 13mm,17mm and 21 mm. This in order to establish the function that describes the behavior of the dimensionless geometrical factor (β) in the calculation of the Stress Intensity Factor (SIF). For each selected diameter, the characteristic equation is obtained using the Support Vector Machine algorithm based on the Kernel equations. These results were compared with other accepted modes, obtaining a high degree of correlation and an error percentage close to 1.7%. As a main contribution, a new general mathematical model is obtained for specimens of defined geometry and concentrator of circular stress. |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019-10-05 |
dc.date.accessioned.none.fl_str_mv |
2020-03-27T19:46:41Z |
dc.date.available.none.fl_str_mv |
2020-03-27T19:46:41Z |
dc.type.none.fl_str_mv |
Artículo |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
0974-3154 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12494/17281 |
dc.identifier.bibliographicCitation.spa.fl_str_mv |
Araque, O., Pérez, E., Urrego, L. y Gallego, L. (2019). Determination of geometric factor for crack growing from a notch. International Journal of Engineering Research and Technology, 12(9), 1541-1546. |
identifier_str_mv |
0974-3154 Araque, O., Pérez, E., Urrego, L. y Gallego, L. (2019). Determination of geometric factor for crack growing from a notch. International Journal of Engineering Research and Technology, 12(9), 1541-1546. |
url |
https://hdl.handle.net/20.500.12494/17281 |
dc.relation.isversionof.spa.fl_str_mv |
https://pure.unibague.edu.co/es/publications/determination-of-geometric-factor-for-crack-growing-from-a-notch |
dc.relation.ispartofjournal.spa.fl_str_mv |
International Journal of Engineering Research and Technology |
dc.relation.references.spa.fl_str_mv |
Nairn, J.A., “Direct comparison of anisotropic damage mechanics to fracture mechanics of explicit cracks”, Engineering Fracture Mechanics, No. 203, (2018), 197- 207 Mecholsky Jr, J., “Fracture mechanics principles”, Dental Materials, Vol. 11, No. 2, (1995), 111-112 Taylor, D., Cornetti, P., & Pugno, N., “The fracture mechanics of finite crack extension”, Engineering Fracture Mechanics, Vol. 72, No. 7, (2005), 1021-1038 Atzori, B., Lazzarin, P., & Meneghetti, G., “Fracture mechanics and notch sensitivity”, Fatigue & Fracture of Engineering Materials & Structures, Vol. 26, No. 3, (2003), 257-267. Smith, S. M., & Scattergood, R. O., “Crack‐shape effects for indentation fracture toughness measurements”, Journal of the American Ceramic Society, Vol. 75, No. 2, (1992), 305-315 Newman Jr, J. C., & Raju, I. S., “An empirical stressintensity factor equation for the surface crack”, Engineering fracture mechanics, Vol. 15, No. (1-2), (1981), 185-192. Nix, K. J., & Lindley, T. C., “The application of fracture mechanics to fretting fatigue”, Fatigue & Fracture of Engineering Materials & Structures, Vol. 8, No. 2, (1985), 143-160. Clarke, S. M., Griebsch, J. H., & Simpson, T. W., “Analysis of support vector regression for approximation of complex engineering analyses”, Journal of mechanical design, Vol. 127, No. 6, (2005), 1077-1087. Smola, A. J., & Schölkopf, B., “A tutorial on support vector regression”, Statistics and computing, Vol. 14, No. 3, (2004), 199-222. Heydari, M. H., & Choupani, N., “A new comparative method to evaluate the fracture properties of laminated composite”, International Journal of Engineering, Vol. 27, No. 6, (2014), 1025-2495. EL-Desouky, A. R., & El-Wazery, M. S., “Mixed mode crack propagation of zirconia/nickel functionally graded materials”, International Journal of Engineering (IJE), Vol. 26, No. 8, (2013), 885-894. Vapnik, V., "The Nature of Statistical Learning Theory", Springer, New York, (1995). Clarke, S. M., Griebsch, J. H., & Simpson, T. W., “Analysis of support vector regression for approximation of complex engineering analyses”, Journal of mechanical design, Vol. 127, No. 6, (2005), 1077-1087. MatWeb, L. L. C. Material property data. MatWeb,[Online]. Available: http://www. matweb. com. (2019) Ghafoori, E., Motavalli, M., Botsis, J., Herwig, A., & Galli, M., “Fatigue strengthening of damaged metallic beams using prestressed unbonded and bonded CFRP plates”, International Journal of Fatigue, No. 44, (2012), 303-315 Anderson, T. L., "Fracture mechanics: fundamentals and applications", CRC press, (2017). Araque, O., Arzola, N., & Varón, O., “Computational modeling of fatigue crack propagation in butt welded joints subjected to axial load”, PloS one, Vol. 14, No. 6, (2019), 1-17. Hernández Laguna, E., Arzola de la Peña, N., & Araque de los Ríos, O., Fracture mechanics assessment of fatigue semi-elliptical cracks in butt-welded joints. Ingeniare. Revista chilena de ingeniería, Vol. 26, Nº 4, (2018), 568- 576. Gallego Cossio, L., & Hernandez Aros, L., “Methods of Economic-Financial Valuation: Analysis from a Case of Study”, International Business Management, Vol. 12, Nº 2, (2018), 196-204. |
dc.rights.license.none.fl_str_mv |
Atribución |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/closedAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
rights_invalid_str_mv |
Atribución http://purl.org/coar/access_right/c_14cb |
eu_rights_str_mv |
closedAccess |
dc.format.extent.spa.fl_str_mv |
1538-1543 |
dc.coverage.temporal.spa.fl_str_mv |
12 |
dc.publisher.spa.fl_str_mv |
Universidad Cooperativa de Colombia, Facultad de Ciencias Económicas, Administrativas y Contables, Contaduría Pública, Ibagué |
dc.publisher.program.spa.fl_str_mv |
Contaduría Pública |
dc.publisher.place.spa.fl_str_mv |
Ibagué |
institution |
Universidad Cooperativa de Colombia |
bitstream.url.fl_str_mv |
https://repository.ucc.edu.co/bitstreams/3a2d0acc-ce9f-4dbb-a37f-833646e1829c/download |
bitstream.checksum.fl_str_mv |
3bce4f7ab09dfc588f126e1e36e98a45 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Cooperativa de Colombia |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1814247234514976768 |
spelling |
Gallego Cossio, Laura ConstanzaAraque De Los Rios, Oscar JavierPérez, EduardoUrrego, Luis Fabian122020-03-27T19:46:41Z2020-03-27T19:46:41Z2019-10-050974-3154https://hdl.handle.net/20.500.12494/17281Araque, O., Pérez, E., Urrego, L. y Gallego, L. (2019). Determination of geometric factor for crack growing from a notch. International Journal of Engineering Research and Technology, 12(9), 1541-1546.This manuscript studies the behavior of an ASTM A 36 structural steel specimen with a circular stress concentrator of variable diameter and a notch using computational modeling of finite elements (Ansys) and fracture mechanics, the test specimen has a thickness of 5 mm and a notch of 30 mm with opening of 45° was subjected to cyclic axial load and the diameter of the concentrator varies from 5mm, 9mm, 13mm,17mm and 21 mm. This in order to establish the function that describes the behavior of the dimensionless geometrical factor (β) in the calculation of the Stress Intensity Factor (SIF). For each selected diameter, the characteristic equation is obtained using the Support Vector Machine algorithm based on the Kernel equations. These results were compared with other accepted modes, obtaining a high degree of correlation and an error percentage close to 1.7%. As a main contribution, a new general mathematical model is obtained for specimens of defined geometry and concentrator of circular stress.https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001431144https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000440566https://orcid.org/0000-0003-3131-235Xhttps://orcid.org/0000-0001-9400-1140laura.gallego@campusucc.edu.cohttps://scholar.google.com/citations?user=SjHqGSYAAAAJ&hl=es&oi=aohttps://scholar.google.com/citations?user=bHXhFM0AAAAJ&hl=es&oi=ao1538-1543Universidad Cooperativa de Colombia, Facultad de Ciencias Económicas, Administrativas y Contables, Contaduría Pública, IbaguéContaduría PúblicaIbaguéhttps://pure.unibague.edu.co/es/publications/determination-of-geometric-factor-for-crack-growing-from-a-notchInternational Journal of Engineering Research and TechnologyNairn, J.A., “Direct comparison of anisotropic damage mechanics to fracture mechanics of explicit cracks”, Engineering Fracture Mechanics, No. 203, (2018), 197- 207Mecholsky Jr, J., “Fracture mechanics principles”, Dental Materials, Vol. 11, No. 2, (1995), 111-112Taylor, D., Cornetti, P., & Pugno, N., “The fracture mechanics of finite crack extension”, Engineering Fracture Mechanics, Vol. 72, No. 7, (2005), 1021-1038Atzori, B., Lazzarin, P., & Meneghetti, G., “Fracture mechanics and notch sensitivity”, Fatigue & Fracture of Engineering Materials & Structures, Vol. 26, No. 3, (2003), 257-267.Smith, S. M., & Scattergood, R. O., “Crack‐shape effects for indentation fracture toughness measurements”, Journal of the American Ceramic Society, Vol. 75, No. 2, (1992), 305-315Newman Jr, J. C., & Raju, I. S., “An empirical stressintensity factor equation for the surface crack”, Engineering fracture mechanics, Vol. 15, No. (1-2), (1981), 185-192.Nix, K. J., & Lindley, T. C., “The application of fracture mechanics to fretting fatigue”, Fatigue & Fracture of Engineering Materials & Structures, Vol. 8, No. 2, (1985), 143-160.Clarke, S. M., Griebsch, J. H., & Simpson, T. W., “Analysis of support vector regression for approximation of complex engineering analyses”, Journal of mechanical design, Vol. 127, No. 6, (2005), 1077-1087.Smola, A. J., & Schölkopf, B., “A tutorial on support vector regression”, Statistics and computing, Vol. 14, No. 3, (2004), 199-222.Heydari, M. H., & Choupani, N., “A new comparative method to evaluate the fracture properties of laminated composite”, International Journal of Engineering, Vol. 27, No. 6, (2014), 1025-2495.EL-Desouky, A. R., & El-Wazery, M. S., “Mixed mode crack propagation of zirconia/nickel functionally graded materials”, International Journal of Engineering (IJE), Vol. 26, No. 8, (2013), 885-894.Vapnik, V., "The Nature of Statistical Learning Theory", Springer, New York, (1995).Clarke, S. M., Griebsch, J. H., & Simpson, T. W., “Analysis of support vector regression for approximation of complex engineering analyses”, Journal of mechanical design, Vol. 127, No. 6, (2005), 1077-1087.MatWeb, L. L. C. Material property data. MatWeb,[Online]. Available: http://www. matweb. com. (2019)Ghafoori, E., Motavalli, M., Botsis, J., Herwig, A., & Galli, M., “Fatigue strengthening of damaged metallic beams using prestressed unbonded and bonded CFRP plates”, International Journal of Fatigue, No. 44, (2012), 303-315Anderson, T. L., "Fracture mechanics: fundamentals and applications", CRC press, (2017).Araque, O., Arzola, N., & Varón, O., “Computational modeling of fatigue crack propagation in butt welded joints subjected to axial load”, PloS one, Vol. 14, No. 6, (2019), 1-17.Hernández Laguna, E., Arzola de la Peña, N., & Araque de los Ríos, O., Fracture mechanics assessment of fatigue semi-elliptical cracks in butt-welded joints. Ingeniare. Revista chilena de ingeniería, Vol. 26, Nº 4, (2018), 568- 576.Gallego Cossio, L., & Hernandez Aros, L., “Methods of Economic-Financial Valuation: Analysis from a Case of Study”, International Business Management, Vol. 12, Nº 2, (2018), 196-204.Stress intensity factorGeometric factorCrack growthANSYSStructural steelRegressionKernelsDetermination of geometric factor for crack growing from a notchArtículohttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribucióninfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/3a2d0acc-ce9f-4dbb-a37f-833646e1829c/download3bce4f7ab09dfc588f126e1e36e98a45MD5220.500.12494/17281oai:repository.ucc.edu.co:20.500.12494/172812024-08-10 17:55:03.492metadata.onlyhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo= |