Surface Modification by Combination of Dip-Pen Nanolithography and Soft Lithography for Reduction of Bacterial Adhesion
Dip-pen nanolithography (DPN) and soft lithography are techniques suitable to modify the surface of biomaterials. Modified surfaces might play a role in modulating cells and reducing bacterial adhesion and biofilm formation. The main objective of this study was threefold: first, to create patterns a...
- Autores:
-
Arango Santander, Santiago
Da Cunha Freitas, Sidónio Ricardo
Peláez Vargas, Alejandro
García, Claudia
- Tipo de recurso:
- http://purl.org/coar/resource_type/c_f744
- Fecha de publicación:
- 2018
- Institución:
- Universidad Cooperativa de Colombia
- Repositorio:
- Repositorio UCC
- Idioma:
- OAI Identifier:
- oai:repository.ucc.edu.co:20.500.12494/15129
- Palabra clave:
- Modificación superficial
Nanolitografía dip-pen
Litografía blanda
Adhesión bacteriana
Surface modification
Dip-pen nanolithography
Soft lithography
Bacterial adhesion
- Rights
- openAccess
- License
- Atribución – Sin Derivar
id |
COOPER2_9223df9f6432c039ae9a4fc9f25ad30d |
---|---|
oai_identifier_str |
oai:repository.ucc.edu.co:20.500.12494/15129 |
network_acronym_str |
COOPER2 |
network_name_str |
Repositorio UCC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Surface Modification by Combination of Dip-Pen Nanolithography and Soft Lithography for Reduction of Bacterial Adhesion |
title |
Surface Modification by Combination of Dip-Pen Nanolithography and Soft Lithography for Reduction of Bacterial Adhesion |
spellingShingle |
Surface Modification by Combination of Dip-Pen Nanolithography and Soft Lithography for Reduction of Bacterial Adhesion Modificación superficial Nanolitografía dip-pen Litografía blanda Adhesión bacteriana Surface modification Dip-pen nanolithography Soft lithography Bacterial adhesion |
title_short |
Surface Modification by Combination of Dip-Pen Nanolithography and Soft Lithography for Reduction of Bacterial Adhesion |
title_full |
Surface Modification by Combination of Dip-Pen Nanolithography and Soft Lithography for Reduction of Bacterial Adhesion |
title_fullStr |
Surface Modification by Combination of Dip-Pen Nanolithography and Soft Lithography for Reduction of Bacterial Adhesion |
title_full_unstemmed |
Surface Modification by Combination of Dip-Pen Nanolithography and Soft Lithography for Reduction of Bacterial Adhesion |
title_sort |
Surface Modification by Combination of Dip-Pen Nanolithography and Soft Lithography for Reduction of Bacterial Adhesion |
dc.creator.fl_str_mv |
Arango Santander, Santiago Da Cunha Freitas, Sidónio Ricardo Peláez Vargas, Alejandro García, Claudia |
dc.contributor.advisor.none.fl_str_mv |
Arango Santander, Santiago |
dc.contributor.author.none.fl_str_mv |
Arango Santander, Santiago Da Cunha Freitas, Sidónio Ricardo Peláez Vargas, Alejandro García, Claudia |
dc.subject.spa.fl_str_mv |
Modificación superficial Nanolitografía dip-pen Litografía blanda Adhesión bacteriana |
topic |
Modificación superficial Nanolitografía dip-pen Litografía blanda Adhesión bacteriana Surface modification Dip-pen nanolithography Soft lithography Bacterial adhesion |
dc.subject.other.spa.fl_str_mv |
Surface modification Dip-pen nanolithography Soft lithography Bacterial adhesion |
description |
Dip-pen nanolithography (DPN) and soft lithography are techniques suitable to modify the surface of biomaterials. Modified surfaces might play a role in modulating cells and reducing bacterial adhesion and biofilm formation. The main objective of this study was threefold: first, to create patterns at microscale on model surfaces using DPN; second, to duplicate and transfer these patterns to a real biomaterial surface using a microstamping technique; and finally, to assess bacterial adhesion to these developed patterned surfaces using the cariogenic species Streptococcus mutans. DPN was used with a polymeric adhesive to create dot patterns on model surfaces. Elastomeric polydimethylsiloxane was used to duplicate the patterns and silica sol to transfer them to the medical grade stainless steel 316L surface by microstamping. Optical microscopy and atomic force microscopy (AFM) were used to characterize the patterns. S. mutans adhesion was assessed by colony-forming units (CFUs), MTTviability assay, and scanning electron microscopy (SEM). DPN allowed creating microarrays from 1 to 5 μm in diameter on model surfaces that were successfully transferred to the stainless steel 316L surface via microstamping. A significant reduction up to one order of magnitude in bacterial adhesion to micropatterned surfaces was observed. ,e presented experimental approach may be used to create patterns at microscale on a surface and transfer them to other surfaces of interest. A reduction in bacterial adhesion to patterned surfaces might have a major impact since adhesion is a key step in biofilm formation and development of biomaterial-related infections. |
publishDate |
2018 |
dc.date.issued.none.fl_str_mv |
2018-11-21 |
dc.date.accessioned.none.fl_str_mv |
2019-11-19T17:22:04Z |
dc.date.available.none.fl_str_mv |
2019-11-19T17:22:04Z |
dc.type.none.fl_str_mv |
Acta de memorias |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_8042 |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_f744 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/workingPaper |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_f744 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
1687-9511 |
dc.identifier.uri.spa.fl_str_mv |
https://doi.org/10.1155/2018/8624735 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12494/15129 |
dc.identifier.bibliographicCitation.spa.fl_str_mv |
Arango-Santander, S., Pelaez-Vargas, A., Freitas, S. y García C. (2018). Surface Modification by Combination of Dip-Pen Nanolithography and Soft Lithography for Reduction of Bacterial Adhesion. Journal of Nanotechnology, 2018:10 pages. Recuperado de: |
identifier_str_mv |
1687-9511 Arango-Santander, S., Pelaez-Vargas, A., Freitas, S. y García C. (2018). Surface Modification by Combination of Dip-Pen Nanolithography and Soft Lithography for Reduction of Bacterial Adhesion. Journal of Nanotechnology, 2018:10 pages. Recuperado de: |
url |
https://doi.org/10.1155/2018/8624735 https://hdl.handle.net/20.500.12494/15129 |
dc.relation.isversionof.spa.fl_str_mv |
https://www.hindawi.com/journals/jnt/2018/8624735/ |
dc.relation.ispartofjournal.spa.fl_str_mv |
Journal of Nanotechnology |
dc.relation.references.spa.fl_str_mv |
B. Bhushan, “Biomimetics: lessons from nature-an overview,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 367, no. 1893, pp. 1445–1486, 2009 M. B. Rahmany and M. Van Dyke, “Biomimetic approaches to modulate cellular adhesion in biomaterials: a review,” Acta Biomaterialia, vol. 9, no. 3, pp. 5431–5437, 2013 K. K. Chung, J. F. Schumacher, E. M. Sampson, R. A. Burne, P. J. Antonelli, and A. B. Brennan, “Impact of engineered surface microtopography on biofilm formation of Staphylococcus aureus,” Biointerphases, vol. 2, no. 2, pp. 89–94, 2007 R. M. May, M. G. Hoffman, M. J. Sogo et al., “Micro-patterned surfaces reduce bacterial colonization and biofilm formation in vitro: potential for enhancing endotracheal tube designs,” Clinical and Translational Medicine, vol. 3, no. 1, p. 8, 2014 A. I. Hochbaum and J. Aizenberg, “Bacteria pattern spontaneously on periodic nanostructure arrays,” Nano Letters, vol. 10, no. 9, pp. 3717–3721, 2010 K. Glinel, P. ,ebault, V. Humblot, C. M. Pradier, and T. Jouenne, “Antibacterial surfaces developed from bioinspired approaches,” Acta Biomaterialia, vol. 8, no. 5, pp. 1670–1684, 2012 A. Pelaez-Vargas, D. Gallego-Perez, A. Carvalho, M. H. Fernandes, D. J. Hansford, and F. J. Monteiro, “Effects of density of anisotropic microstamped silica thin films on guided bone tissue regeneration-in vitro study,” Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol. 101B, no. 5, pp. 762–769, 2013 A. Carvalho, A. Pelaez-Vargas, D. Gallego-Perez et al., “Micropatterned silica thin films with nanohydroxyapatite micro-aggregates for guided tissue regeneration,” Dental Materials, vol. 28, no. 12, pp. 1250–1260, 2012 Y. Xia and G. M. Whitesides, “Soft lithography,” Angewandte Chemie International Edition, vol. 37, no. 5, pp. 550–575, 1998 A. Pelaez-Vargas, D. Gallego-Perez, N. Ferrell, M. H. Fernandes, D. Hansford, and F. J. Monteiro, “Early spreading and propagation of human bone marrow stem cells on isotropic and anisotropic topographies of silica thin films produced via microstamping,” Microscopy and Microanalysis, vol. 16, no. 6, pp. 670–676, 2010 A. Pelaez-Vargas, D. Gallego-Perez, M. Magallanes-Perdomo et al., “Isotropic micropatterned silica coatings on zirconia induce guided cell growth for dental implants,” Dental Materials, vol. 27, no. 6, pp. 581–589, 2011 R. D. Piner, J. Zhu, F. Xu, S. Hong, and C. A. Mirkin, ““Dip- Pen” nanolithography,” Science, vol. 283, no. 5402, pp. 661–663, 1999 X. Hou, S. Mankoci, N. Walters et al., “Hierarchical structures on nickel-titanium fabricated by ultrasonic nanocrystal surface modification,” Materials Science and Engineering: C, vol. 93, pp. 12–20, 2018 E. Miliutina, O. Guselnikova, V. Marchuk et al., “Vapor annealing and colloid lithography—an effective tool to control spatial resolution of surface modification,” Langmuir, vol. 34, no. 43, pp. 12861–12869, 2018 L. C. Pires, F. P. S. Guastaldi, A. V. B. Nogueira, N. T. C. Oliveira, A. C. Guastaldi, and J. A. Cirelli, “Physicochemical, morphological, and biological analyses of Ti- 15Mo alloy surface modified by laser beam irradiation,” Lasers in Medical Science, pp. 1–10, 2018 A. Pelaez-Vargas, N. Ferrel, M. H. Fernandes, D. Hansford, and F. J. Monteiro, “Cells spreading on micro-fabricated silica thin film coatings,” Microscopy and Microanalysis, vol. 15, no. 3, pp. 77-78, 2009 A. Pelaez-Vargas, N. Ferrel, M. H. Fernandes, D. J. Hansford, and F. J. Monteiro, “Cellular alignment induction during early in vitro culture stages using micropatterned glass coatings produced by sol-gel process,” Key Engineering Materials, vol. 396-398, pp. 303–306, 2009 R. Vasudevan, A. J. Kennedy, M. Merritt, F. H. Crocker, and R. H. Baney, “Microscale patterned surfaces reduce bacterial fouling-microscopic and theoretical analysis,” Colloids and Surfaces B: Biointerfaces, vol. 117, pp. 225–232, 2014 L. C. Xu and C. A. Siedlecki, “Submicron-textured biomaterial surface reduces staphylococcal bacterial adhesion and biofilm formation,” Acta Biomaterialia, vol. 8, no. 1, pp. 72–81, 2012 K. T. M. Tran and T. D. Nguyen, “Lithography-based methods to manufacture materials at small scales,” Journal of Science: Advanced Materials and Devices, vol. 2, no. 1, pp. 1–14, 2017 D. B. Weibel, W. R. DiLuzio, and G. M. Whitesides, “Microfabrication meets microbiology,” Nature, vol. 5, no. 3, pp. 209–218, 2007 J. H. Lim, D. S. Ginger, K. B. Lee, J. Heo, J. M. Nam, and C. A. Mirkin, “Direct-write dip-pen nanolithography of proteins on modified silicon oxide surfaces,” Angewandte Journal of Nanotechnology Chemie International Edition, vol. 42, no. 20, pp. 2309–2312, 2003 D. L. Wilson, R. Martin, S. Hong, M. Cronin-Golomb, C. A. Mirkin, and D. L. Kaplan, “Surface organization and nanopatterning of collagen by dip-pen nanolithography,” Proceedings of the National Academy of Sciences, vol. 98, no. 24, pp. 13660–13664, 2001 K. B. Lee, J. H. Lim, and C. A. Mirkin, “Protein nanostructures formed via direct-write dip-pen nanolithography,” Journal of the American Chemical Society, vol. 125, no. 19, pp. 5588-5589, 2003 K. B. Lee, S. J. Park, C. A. Mirkin, J. C. Smith, and M. Mrksich, “Protein nanoarrays generated by dip-pen nanolithography,” Science, vol. 295, no. 5560, pp. 1702–1705, 2002 S. Gilles, A. Tuchscherer, H. Lang, and U. Simon, “Dip-penbased direct writing of conducting silver dots,” Journal of Colloid and Interface Science, vol. 406, pp. 256–262, 2013 H. T. Wang, O. A. Nafday, J. R. Haaheim et al., “Toward conductive traces: dip-pen nanolithography of silver nanoparticle-based inks,” Applied Physics Letters, vol. 93, no. 14, p. 143105, 2008 K. Anselme, P. Davidson, A. M. Popa, M. Giazzon, M. Liley, and L. Ploux, “,e interaction of cells and bacteria with surfaces structured at the nanometre scale,” Acta Biomaterialia, vol. 6, no. 10, pp. 3824–3846, 2010 Z. Zheng, W. J. Jang, G. Zheng, and C. A. Mirkin, “Topographically flat, chemically patterned PDMS stamps made by dip-pen nanolithography,” Angewandte Chemie International Edition, vol. 47, no. 51, pp. 9951–9954, 2008 J. W. Jang, R. G. Sanedrin, A. J. Senesi et al., “Generation of metal photomasks by dip-pen nanolithography,” Small, vol. 5, no. 16, pp. 1850–1853, 2009 C. García, S. Cer´e, and A. Dur´an, “Bioactive coatings prepared by sol-gel on stainless steel 316L,” Journal of Non-Crystalline Solids, vol. 348, pp. 218–224, 2004 C. García, S. Cer´e, and A. Dur´an, “Bioactive coatings deposited on titanium alloys,” Journal of Non-Crystalline Solids, vol. 352, no. 32–35, pp. 3488–3495, 2006 C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nature Methods, vol. 9, no. 7, pp. 671–675, 2012 I. Horcas, R. Fernandez, J. M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Review of Scientific Instruments, vol. 78, no. 1, article 013705, 2007 H. Naghili, H. Tajik, K. Mardani, S. M. Razavi Rouhani, A. Ehsani, and P. Zare, “Validation of drop plate technique for bacterial enumeration by parametric and nonparametric tests,” Veterinary Research Forum, vol. 4, no. 3, pp. 179–183, 2013 D. S. Ginger, H. Zhang, and C. A. Mirkin, “,e evolution of dip-pen nanolithography,” Angewandte Chemie International Edition, vol. 43, no. 1, pp. 30–45, 2004 G. Csucs, T. K¨unzler, K. Feldman, F. Robin, and N. D. Spencer, “Microcontact printing of macromolecules with submicrometer resolution by means of polyolefin stamps,” Langmuir, vol. 19, no. 15, pp. 6104–6109, 2003 M. Hosseinalipour, A. Ershad-langroudi, A. N. Hayati, and A. M. Nabizade-Haghighi, “Characterization of sol–gel coated 316L stainless steel for biomedical applications,” Progress in Organic Coatings, vol. 67, no. 4, pp. 371–374, 2010 O. Santos, T. Nylander, R. Rosmaninho et al., “Modified stainless steel surfaces targeted to reduce fouling—surface characterization,” Journal of Food Engineering, vol. 64, no. 1, pp. 63–79, 2004 M. Wang, Y. Wang, Y. Chen, and H. Gu, “Improving endothelialization on 316L stainless steel through wettability controllable coating by sol-gel technology,” Applied Surface Science, vol. 268, pp. 73–78, 2013 H. Yang, P. Pi, Z. Q. Cai et al., “Facile preparation of superhydrophobic and super-oleophilic silica film on stainless steel mesh via sol–gel process,” Applied Surface Science, vol. 256, no. 13, pp. 4095–4102, 2010 J. Satou, A. Fukunaga, N. Satou, H. Shintani, and K. Okuda, “Streptococcal adherence on various restorative materials,” Journal of Dental Research, vol. 67, no. 3, pp. 588–591, 1988 M. Katsikogianni and Y. F. Missirlis, “Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions,” European Cells and Materials, vol. 8, pp. 37–57, 2004 |
dc.rights.license.none.fl_str_mv |
Atribución – Sin Derivar |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución – Sin Derivar http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
10 |
dc.coverage.temporal.spa.fl_str_mv |
2018 |
dc.publisher.spa.fl_str_mv |
Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Odontología, Medellín y Envigado |
dc.publisher.program.spa.fl_str_mv |
Odontología |
dc.publisher.place.spa.fl_str_mv |
Medellín |
institution |
Universidad Cooperativa de Colombia |
bitstream.url.fl_str_mv |
https://repository.ucc.edu.co/bitstreams/05c68cc8-9b3d-430e-a68c-106e7a76f1a5/download https://repository.ucc.edu.co/bitstreams/c1695882-5815-4c64-bad4-d9a53412a2ff/download https://repository.ucc.edu.co/bitstreams/a13f8cc5-503b-4d98-bc8a-14b6ec484a54/download https://repository.ucc.edu.co/bitstreams/e1c0d622-9cf9-4eab-b844-66d88aea4cea/download https://repository.ucc.edu.co/bitstreams/84fe62e1-1dcc-4e96-b84e-5f9564230a2e/download https://repository.ucc.edu.co/bitstreams/5fbe6013-ddc4-4cc3-a104-33401e12774d/download https://repository.ucc.edu.co/bitstreams/153fbc95-79c4-45c0-a970-e67d8a3e2ceb/download |
bitstream.checksum.fl_str_mv |
9d9f1031a6386c6516c2b3e02051e99b dedd6b0d21ffdf7ad3f9998f2621e298 3bce4f7ab09dfc588f126e1e36e98a45 d1337dc5ff957dc40c7a6b6794dd5d11 e2bc452fc12c96b0e62548636e20474a f576e8a5fafe9250d94859fca821a01d 7cfdb14fd6aa869951e3d8fa99b8ffec |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Cooperativa de Colombia |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1814246572280512512 |
spelling |
Arango Santander, SantiagoArango Santander, SantiagoDa Cunha Freitas, Sidónio RicardoPeláez Vargas, AlejandroGarcía, Claudia20182019-11-19T17:22:04Z2019-11-19T17:22:04Z2018-11-211687-9511https://doi.org/10.1155/2018/8624735https://hdl.handle.net/20.500.12494/15129Arango-Santander, S., Pelaez-Vargas, A., Freitas, S. y García C. (2018). Surface Modification by Combination of Dip-Pen Nanolithography and Soft Lithography for Reduction of Bacterial Adhesion. Journal of Nanotechnology, 2018:10 pages. Recuperado de:Dip-pen nanolithography (DPN) and soft lithography are techniques suitable to modify the surface of biomaterials. Modified surfaces might play a role in modulating cells and reducing bacterial adhesion and biofilm formation. The main objective of this study was threefold: first, to create patterns at microscale on model surfaces using DPN; second, to duplicate and transfer these patterns to a real biomaterial surface using a microstamping technique; and finally, to assess bacterial adhesion to these developed patterned surfaces using the cariogenic species Streptococcus mutans. DPN was used with a polymeric adhesive to create dot patterns on model surfaces. Elastomeric polydimethylsiloxane was used to duplicate the patterns and silica sol to transfer them to the medical grade stainless steel 316L surface by microstamping. Optical microscopy and atomic force microscopy (AFM) were used to characterize the patterns. S. mutans adhesion was assessed by colony-forming units (CFUs), MTTviability assay, and scanning electron microscopy (SEM). DPN allowed creating microarrays from 1 to 5 μm in diameter on model surfaces that were successfully transferred to the stainless steel 316L surface via microstamping. A significant reduction up to one order of magnitude in bacterial adhesion to micropatterned surfaces was observed. ,e presented experimental approach may be used to create patterns at microscale on a surface and transfer them to other surfaces of interest. A reduction in bacterial adhesion to patterned surfaces might have a major impact since adhesion is a key step in biofilm formation and development of biomaterial-related infections.https://scienti.colciencias.gov.co/cvlac/EnRecursoHumano/inicio.do0000-0002-3113-9895GIOMsantiago.arango@campusucc.edu.cosidonio.freitas@campusucc.edu.coalejandro.pelaezv@campusucc.edu.cocpgarcia@unal.edu.co10Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Odontología, Medellín y EnvigadoOdontologíaMedellínhttps://www.hindawi.com/journals/jnt/2018/8624735/Journal of NanotechnologyB. Bhushan, “Biomimetics: lessons from nature-an overview,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 367, no. 1893, pp. 1445–1486, 2009M. B. Rahmany and M. Van Dyke, “Biomimetic approaches to modulate cellular adhesion in biomaterials: a review,” Acta Biomaterialia, vol. 9, no. 3, pp. 5431–5437, 2013K. K. Chung, J. F. Schumacher, E. M. Sampson, R. A. Burne, P. J. Antonelli, and A. B. Brennan, “Impact of engineered surface microtopography on biofilm formation of Staphylococcus aureus,” Biointerphases, vol. 2, no. 2, pp. 89–94, 2007R. M. May, M. G. Hoffman, M. J. Sogo et al., “Micro-patterned surfaces reduce bacterial colonization and biofilm formation in vitro: potential for enhancing endotracheal tube designs,” Clinical and Translational Medicine, vol. 3, no. 1, p. 8, 2014A. I. Hochbaum and J. Aizenberg, “Bacteria pattern spontaneously on periodic nanostructure arrays,” Nano Letters, vol. 10, no. 9, pp. 3717–3721, 2010K. Glinel, P. ,ebault, V. Humblot, C. M. Pradier, and T. Jouenne, “Antibacterial surfaces developed from bioinspired approaches,” Acta Biomaterialia, vol. 8, no. 5, pp. 1670–1684, 2012A. Pelaez-Vargas, D. Gallego-Perez, A. Carvalho, M. H. Fernandes, D. J. Hansford, and F. J. Monteiro, “Effects of density of anisotropic microstamped silica thin films on guided bone tissue regeneration-in vitro study,” Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol. 101B, no. 5, pp. 762–769, 2013A. Carvalho, A. Pelaez-Vargas, D. Gallego-Perez et al., “Micropatterned silica thin films with nanohydroxyapatite micro-aggregates for guided tissue regeneration,” Dental Materials, vol. 28, no. 12, pp. 1250–1260, 2012Y. Xia and G. M. Whitesides, “Soft lithography,” Angewandte Chemie International Edition, vol. 37, no. 5, pp. 550–575, 1998A. Pelaez-Vargas, D. Gallego-Perez, N. Ferrell, M. H. Fernandes, D. Hansford, and F. J. Monteiro, “Early spreading and propagation of human bone marrow stem cells on isotropic and anisotropic topographies of silica thin films produced via microstamping,” Microscopy and Microanalysis, vol. 16, no. 6, pp. 670–676, 2010A. Pelaez-Vargas, D. Gallego-Perez, M. Magallanes-Perdomo et al., “Isotropic micropatterned silica coatings on zirconia induce guided cell growth for dental implants,” Dental Materials, vol. 27, no. 6, pp. 581–589, 2011R. D. Piner, J. Zhu, F. Xu, S. Hong, and C. A. Mirkin, ““Dip- Pen” nanolithography,” Science, vol. 283, no. 5402, pp. 661–663, 1999X. Hou, S. Mankoci, N. Walters et al., “Hierarchical structures on nickel-titanium fabricated by ultrasonic nanocrystal surface modification,” Materials Science and Engineering: C, vol. 93, pp. 12–20, 2018E. Miliutina, O. Guselnikova, V. Marchuk et al., “Vapor annealing and colloid lithography—an effective tool to control spatial resolution of surface modification,” Langmuir, vol. 34, no. 43, pp. 12861–12869, 2018L. C. Pires, F. P. S. Guastaldi, A. V. B. Nogueira, N. T. C. Oliveira, A. C. Guastaldi, and J. A. Cirelli, “Physicochemical, morphological, and biological analyses of Ti- 15Mo alloy surface modified by laser beam irradiation,” Lasers in Medical Science, pp. 1–10, 2018A. Pelaez-Vargas, N. Ferrel, M. H. Fernandes, D. Hansford, and F. J. Monteiro, “Cells spreading on micro-fabricated silica thin film coatings,” Microscopy and Microanalysis, vol. 15, no. 3, pp. 77-78, 2009A. Pelaez-Vargas, N. Ferrel, M. H. Fernandes, D. J. Hansford, and F. J. Monteiro, “Cellular alignment induction during early in vitro culture stages using micropatterned glass coatings produced by sol-gel process,” Key Engineering Materials, vol. 396-398, pp. 303–306, 2009R. Vasudevan, A. J. Kennedy, M. Merritt, F. H. Crocker, and R. H. Baney, “Microscale patterned surfaces reduce bacterial fouling-microscopic and theoretical analysis,” Colloids and Surfaces B: Biointerfaces, vol. 117, pp. 225–232, 2014L. C. Xu and C. A. Siedlecki, “Submicron-textured biomaterial surface reduces staphylococcal bacterial adhesion and biofilm formation,” Acta Biomaterialia, vol. 8, no. 1, pp. 72–81, 2012K. T. M. Tran and T. D. Nguyen, “Lithography-based methods to manufacture materials at small scales,” Journal of Science: Advanced Materials and Devices, vol. 2, no. 1, pp. 1–14, 2017D. B. Weibel, W. R. DiLuzio, and G. M. Whitesides, “Microfabrication meets microbiology,” Nature, vol. 5, no. 3, pp. 209–218, 2007J. H. Lim, D. S. Ginger, K. B. Lee, J. Heo, J. M. Nam, and C. A. Mirkin, “Direct-write dip-pen nanolithography of proteins on modified silicon oxide surfaces,” Angewandte Journal of Nanotechnology Chemie International Edition, vol. 42, no. 20, pp. 2309–2312, 2003D. L. Wilson, R. Martin, S. Hong, M. Cronin-Golomb, C. A. Mirkin, and D. L. Kaplan, “Surface organization and nanopatterning of collagen by dip-pen nanolithography,” Proceedings of the National Academy of Sciences, vol. 98, no. 24, pp. 13660–13664, 2001K. B. Lee, J. H. Lim, and C. A. Mirkin, “Protein nanostructures formed via direct-write dip-pen nanolithography,” Journal of the American Chemical Society, vol. 125, no. 19, pp. 5588-5589, 2003K. B. Lee, S. J. Park, C. A. Mirkin, J. C. Smith, and M. Mrksich, “Protein nanoarrays generated by dip-pen nanolithography,” Science, vol. 295, no. 5560, pp. 1702–1705, 2002S. Gilles, A. Tuchscherer, H. Lang, and U. Simon, “Dip-penbased direct writing of conducting silver dots,” Journal of Colloid and Interface Science, vol. 406, pp. 256–262, 2013H. T. Wang, O. A. Nafday, J. R. Haaheim et al., “Toward conductive traces: dip-pen nanolithography of silver nanoparticle-based inks,” Applied Physics Letters, vol. 93, no. 14, p. 143105, 2008K. Anselme, P. Davidson, A. M. Popa, M. Giazzon, M. Liley, and L. Ploux, “,e interaction of cells and bacteria with surfaces structured at the nanometre scale,” Acta Biomaterialia, vol. 6, no. 10, pp. 3824–3846, 2010Z. Zheng, W. J. Jang, G. Zheng, and C. A. Mirkin, “Topographically flat, chemically patterned PDMS stamps made by dip-pen nanolithography,” Angewandte Chemie International Edition, vol. 47, no. 51, pp. 9951–9954, 2008J. W. Jang, R. G. Sanedrin, A. J. Senesi et al., “Generation of metal photomasks by dip-pen nanolithography,” Small, vol. 5, no. 16, pp. 1850–1853, 2009C. García, S. Cer´e, and A. Dur´an, “Bioactive coatings prepared by sol-gel on stainless steel 316L,” Journal of Non-Crystalline Solids, vol. 348, pp. 218–224, 2004C. García, S. Cer´e, and A. Dur´an, “Bioactive coatings deposited on titanium alloys,” Journal of Non-Crystalline Solids, vol. 352, no. 32–35, pp. 3488–3495, 2006C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nature Methods, vol. 9, no. 7, pp. 671–675, 2012I. Horcas, R. Fernandez, J. M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Review of Scientific Instruments, vol. 78, no. 1, article 013705, 2007H. Naghili, H. Tajik, K. Mardani, S. M. Razavi Rouhani, A. Ehsani, and P. Zare, “Validation of drop plate technique for bacterial enumeration by parametric and nonparametric tests,” Veterinary Research Forum, vol. 4, no. 3, pp. 179–183, 2013D. S. Ginger, H. Zhang, and C. A. Mirkin, “,e evolution of dip-pen nanolithography,” Angewandte Chemie International Edition, vol. 43, no. 1, pp. 30–45, 2004G. Csucs, T. K¨unzler, K. Feldman, F. Robin, and N. D. Spencer, “Microcontact printing of macromolecules with submicrometer resolution by means of polyolefin stamps,” Langmuir, vol. 19, no. 15, pp. 6104–6109, 2003M. Hosseinalipour, A. Ershad-langroudi, A. N. Hayati, and A. M. Nabizade-Haghighi, “Characterization of sol–gel coated 316L stainless steel for biomedical applications,” Progress in Organic Coatings, vol. 67, no. 4, pp. 371–374, 2010O. Santos, T. Nylander, R. Rosmaninho et al., “Modified stainless steel surfaces targeted to reduce fouling—surface characterization,” Journal of Food Engineering, vol. 64, no. 1, pp. 63–79, 2004M. Wang, Y. Wang, Y. Chen, and H. Gu, “Improving endothelialization on 316L stainless steel through wettability controllable coating by sol-gel technology,” Applied Surface Science, vol. 268, pp. 73–78, 2013H. Yang, P. Pi, Z. Q. Cai et al., “Facile preparation of superhydrophobic and super-oleophilic silica film on stainless steel mesh via sol–gel process,” Applied Surface Science, vol. 256, no. 13, pp. 4095–4102, 2010J. Satou, A. Fukunaga, N. Satou, H. Shintani, and K. Okuda, “Streptococcal adherence on various restorative materials,” Journal of Dental Research, vol. 67, no. 3, pp. 588–591, 1988M. Katsikogianni and Y. F. Missirlis, “Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions,” European Cells and Materials, vol. 8, pp. 37–57, 2004Modificación superficialNanolitografía dip-penLitografía blandaAdhesión bacterianaSurface modificationDip-pen nanolithographySoft lithographyBacterial adhesionSurface Modification by Combination of Dip-Pen Nanolithography and Soft Lithography for Reduction of Bacterial AdhesionActa de memoriashttp://purl.org/coar/resource_type/c_f744http://purl.org/coar/resource_type/c_8042info:eu-repo/semantics/workingPaperinfo:eu-repo/semantics/acceptedVersionAtribución – Sin Derivarinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationORIGINAL2018_surface_modification_by_combination-Formatolicenciadeuso.pdf2018_surface_modification_by_combination-Formatolicenciadeuso.pdfLicencia de usoapplication/pdf505345https://repository.ucc.edu.co/bitstreams/05c68cc8-9b3d-430e-a68c-106e7a76f1a5/download9d9f1031a6386c6516c2b3e02051e99bMD532018_surface_modification_by_combination_of_dip-pen_nanolithography.pdf2018_surface_modification_by_combination_of_dip-pen_nanolithography.pdfArticuloapplication/pdf3072837https://repository.ucc.edu.co/bitstreams/c1695882-5815-4c64-bad4-d9a53412a2ff/downloaddedd6b0d21ffdf7ad3f9998f2621e298MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/a13f8cc5-503b-4d98-bc8a-14b6ec484a54/download3bce4f7ab09dfc588f126e1e36e98a45MD55THUMBNAIL2018_surface_modification_by_combination-Formatolicenciadeuso.pdf.jpg2018_surface_modification_by_combination-Formatolicenciadeuso.pdf.jpgGenerated Thumbnailimage/jpeg5243https://repository.ucc.edu.co/bitstreams/e1c0d622-9cf9-4eab-b844-66d88aea4cea/downloadd1337dc5ff957dc40c7a6b6794dd5d11MD562018_surface_modification_by_combination_of_dip-pen_nanolithography.pdf.jpg2018_surface_modification_by_combination_of_dip-pen_nanolithography.pdf.jpgGenerated Thumbnailimage/jpeg5288https://repository.ucc.edu.co/bitstreams/84fe62e1-1dcc-4e96-b84e-5f9564230a2e/downloade2bc452fc12c96b0e62548636e20474aMD57TEXT2018_surface_modification_by_combination-Formatolicenciadeuso.pdf.txt2018_surface_modification_by_combination-Formatolicenciadeuso.pdf.txtExtracted texttext/plain5552https://repository.ucc.edu.co/bitstreams/5fbe6013-ddc4-4cc3-a104-33401e12774d/downloadf576e8a5fafe9250d94859fca821a01dMD582018_surface_modification_by_combination_of_dip-pen_nanolithography.pdf.txt2018_surface_modification_by_combination_of_dip-pen_nanolithography.pdf.txtExtracted texttext/plain44473https://repository.ucc.edu.co/bitstreams/153fbc95-79c4-45c0-a970-e67d8a3e2ceb/download7cfdb14fd6aa869951e3d8fa99b8ffecMD5920.500.12494/15129oai:repository.ucc.edu.co:20.500.12494/151292024-08-10 22:39:57.256restrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.com |