Automatic sleep stages classification using EEG entropy features and unsupervised pattern analysis techniques
Sleep is a growing area of research interest in medicine and neuroscience. Actually, one major concern is to find a correlation between several physiologic variables and sleep stages. There is a scientific agreement on the characteristics of the five stages of human sleep, based on EEG analysis. Nev...
- Autores:
-
Rodríguez-Sotelo J.L.
Osorio-Forero A.
Jiménez-Rodríguez A.
Cuesta-Frau D.
Cirugeda-Roldán E.
Peluffo Ordoñez, Diego H.
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2014
- Institución:
- Universidad Cooperativa de Colombia
- Repositorio:
- Repositorio UCC
- Idioma:
- OAI Identifier:
- oai:repository.ucc.edu.co:20.500.12494/42807
- Acceso en línea:
- https://doi.org/10.5935/1678-9741.20140101
https://www.sciencedirect.com/science/article/abs/pii/S0109564112004034
https://hdl.handle.net/20.500.12494/42807
- Palabra clave:
- Clustering
Feature extraction
Feature selection
Q-a
Relevance analysis
Signal entropy
Sleep stages
- Rights
- closedAccess
- License
- http://purl.org/coar/access_right/c_14cb
id |
COOPER2_8bd10ff8719101edb3f1b30293d960e2 |
---|---|
oai_identifier_str |
oai:repository.ucc.edu.co:20.500.12494/42807 |
network_acronym_str |
COOPER2 |
network_name_str |
Repositorio UCC |
repository_id_str |
|
spelling |
Rodríguez-Sotelo J.L.Osorio-Forero A.Jiménez-Rodríguez A.Cuesta-Frau D.Cirugeda-Roldán E.Peluffo Ordoñez, Diego H.2021-12-16T22:16:32Z2021-12-16T22:16:32Z2014https://doi.org/10.5935/1678-9741.20140101https://www.sciencedirect.com/science/article/abs/pii/S010956411200403410994300https://hdl.handle.net/20.500.12494/42807Rodríguez JL,Osorio A,Jiménez A,Cuesta D,Cirugeda E,Peluffo D. Automatic sleep stages classification using EEG entropy features and unsupervised pattern analysis techniques. Entropy (Basel). 2014. 16. (12):p. 6573-6589. .Sleep is a growing area of research interest in medicine and neuroscience. Actually, one major concern is to find a correlation between several physiologic variables and sleep stages. There is a scientific agreement on the characteristics of the five stages of human sleep, based on EEG analysis. Nevertheless, manual stage classification is still the most widely used approach. This work proposes a new automatic sleep classification method based on unsupervised feature classification algorithms recently developed, and on EEG entropy measures. This scheme extracts entropy metrics from EEG records to obtain a feature vector. Then, these features are optimized in terms of relevance using the Q-a algorithm. Finally, the resulting set of features is entered into a clustering procedure to obtain a final segmentation of the sleep stages. The proposed method reached up to an average of 80% correctly classified stages for each patient separately while keeping the computational cost low. © 2014 by the authors.6589-6573MDPI AGClusteringFeature extractionFeature selectionQ-aRelevance analysisSignal entropySleep stagesAutomatic sleep stages classification using EEG entropy features and unsupervised pattern analysis techniquesArtículohttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionENTROPY-SWITZinfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbPublication20.500.12494/42807oai:repository.ucc.edu.co:20.500.12494/428072024-08-20 16:17:48.014metadata.onlyhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.com |
dc.title.spa.fl_str_mv |
Automatic sleep stages classification using EEG entropy features and unsupervised pattern analysis techniques |
title |
Automatic sleep stages classification using EEG entropy features and unsupervised pattern analysis techniques |
spellingShingle |
Automatic sleep stages classification using EEG entropy features and unsupervised pattern analysis techniques Clustering Feature extraction Feature selection Q-a Relevance analysis Signal entropy Sleep stages |
title_short |
Automatic sleep stages classification using EEG entropy features and unsupervised pattern analysis techniques |
title_full |
Automatic sleep stages classification using EEG entropy features and unsupervised pattern analysis techniques |
title_fullStr |
Automatic sleep stages classification using EEG entropy features and unsupervised pattern analysis techniques |
title_full_unstemmed |
Automatic sleep stages classification using EEG entropy features and unsupervised pattern analysis techniques |
title_sort |
Automatic sleep stages classification using EEG entropy features and unsupervised pattern analysis techniques |
dc.creator.fl_str_mv |
Rodríguez-Sotelo J.L. Osorio-Forero A. Jiménez-Rodríguez A. Cuesta-Frau D. Cirugeda-Roldán E. Peluffo Ordoñez, Diego H. |
dc.contributor.author.none.fl_str_mv |
Rodríguez-Sotelo J.L. Osorio-Forero A. Jiménez-Rodríguez A. Cuesta-Frau D. Cirugeda-Roldán E. Peluffo Ordoñez, Diego H. |
dc.subject.spa.fl_str_mv |
Clustering Feature extraction Feature selection Q-a Relevance analysis Signal entropy Sleep stages |
topic |
Clustering Feature extraction Feature selection Q-a Relevance analysis Signal entropy Sleep stages |
description |
Sleep is a growing area of research interest in medicine and neuroscience. Actually, one major concern is to find a correlation between several physiologic variables and sleep stages. There is a scientific agreement on the characteristics of the five stages of human sleep, based on EEG analysis. Nevertheless, manual stage classification is still the most widely used approach. This work proposes a new automatic sleep classification method based on unsupervised feature classification algorithms recently developed, and on EEG entropy measures. This scheme extracts entropy metrics from EEG records to obtain a feature vector. Then, these features are optimized in terms of relevance using the Q-a algorithm. Finally, the resulting set of features is entered into a clustering procedure to obtain a final segmentation of the sleep stages. The proposed method reached up to an average of 80% correctly classified stages for each patient separately while keeping the computational cost low. © 2014 by the authors. |
publishDate |
2014 |
dc.date.issued.none.fl_str_mv |
2014 |
dc.date.accessioned.none.fl_str_mv |
2021-12-16T22:16:32Z |
dc.date.available.none.fl_str_mv |
2021-12-16T22:16:32Z |
dc.type.none.fl_str_mv |
Artículo |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://doi.org/10.5935/1678-9741.20140101 https://www.sciencedirect.com/science/article/abs/pii/S0109564112004034 |
dc.identifier.issn.spa.fl_str_mv |
10994300 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12494/42807 |
dc.identifier.bibliographicCitation.spa.fl_str_mv |
Rodríguez JL,Osorio A,Jiménez A,Cuesta D,Cirugeda E,Peluffo D. Automatic sleep stages classification using EEG entropy features and unsupervised pattern analysis techniques. Entropy (Basel). 2014. 16. (12):p. 6573-6589. . |
url |
https://doi.org/10.5935/1678-9741.20140101 https://www.sciencedirect.com/science/article/abs/pii/S0109564112004034 https://hdl.handle.net/20.500.12494/42807 |
identifier_str_mv |
10994300 Rodríguez JL,Osorio A,Jiménez A,Cuesta D,Cirugeda E,Peluffo D. Automatic sleep stages classification using EEG entropy features and unsupervised pattern analysis techniques. Entropy (Basel). 2014. 16. (12):p. 6573-6589. . |
dc.relation.ispartofjournal.spa.fl_str_mv |
ENTROPY-SWITZ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/closedAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
eu_rights_str_mv |
closedAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_14cb |
dc.format.extent.spa.fl_str_mv |
6589-6573 |
dc.publisher.spa.fl_str_mv |
MDPI AG |
institution |
Universidad Cooperativa de Colombia |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Cooperativa de Colombia |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1814246792109228032 |