Automatic sleep stages classification using EEG entropy features and unsupervised pattern analysis techniques

Sleep is a growing area of research interest in medicine and neuroscience. Actually, one major concern is to find a correlation between several physiologic variables and sleep stages. There is a scientific agreement on the characteristics of the five stages of human sleep, based on EEG analysis. Nev...

Full description

Autores:
Rodríguez-Sotelo J.L.
Osorio-Forero A.
Jiménez-Rodríguez A.
Cuesta-Frau D.
Cirugeda-Roldán E.
Peluffo Ordoñez, Diego H.
Tipo de recurso:
Article of journal
Fecha de publicación:
2014
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/42807
Acceso en línea:
https://doi.org/10.5935/1678-9741.20140101
https://www.sciencedirect.com/science/article/abs/pii/S0109564112004034
https://hdl.handle.net/20.500.12494/42807
Palabra clave:
Clustering
Feature extraction
Feature selection
Q-a
Relevance analysis
Signal entropy
Sleep stages
Rights
closedAccess
License
http://purl.org/coar/access_right/c_14cb
id COOPER2_8bd10ff8719101edb3f1b30293d960e2
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/42807
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
spelling Rodríguez-Sotelo J.L.Osorio-Forero A.Jiménez-Rodríguez A.Cuesta-Frau D.Cirugeda-Roldán E.Peluffo Ordoñez, Diego H.2021-12-16T22:16:32Z2021-12-16T22:16:32Z2014https://doi.org/10.5935/1678-9741.20140101https://www.sciencedirect.com/science/article/abs/pii/S010956411200403410994300https://hdl.handle.net/20.500.12494/42807Rodríguez JL,Osorio A,Jiménez A,Cuesta D,Cirugeda E,Peluffo D. Automatic sleep stages classification using EEG entropy features and unsupervised pattern analysis techniques. Entropy (Basel). 2014. 16. (12):p. 6573-6589. .Sleep is a growing area of research interest in medicine and neuroscience. Actually, one major concern is to find a correlation between several physiologic variables and sleep stages. There is a scientific agreement on the characteristics of the five stages of human sleep, based on EEG analysis. Nevertheless, manual stage classification is still the most widely used approach. This work proposes a new automatic sleep classification method based on unsupervised feature classification algorithms recently developed, and on EEG entropy measures. This scheme extracts entropy metrics from EEG records to obtain a feature vector. Then, these features are optimized in terms of relevance using the Q-a algorithm. Finally, the resulting set of features is entered into a clustering procedure to obtain a final segmentation of the sleep stages. The proposed method reached up to an average of 80% correctly classified stages for each patient separately while keeping the computational cost low. © 2014 by the authors.6589-6573MDPI AGClusteringFeature extractionFeature selectionQ-aRelevance analysisSignal entropySleep stagesAutomatic sleep stages classification using EEG entropy features and unsupervised pattern analysis techniquesArtículohttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionENTROPY-SWITZinfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbPublication20.500.12494/42807oai:repository.ucc.edu.co:20.500.12494/428072024-08-20 16:17:48.014metadata.onlyhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.com
dc.title.spa.fl_str_mv Automatic sleep stages classification using EEG entropy features and unsupervised pattern analysis techniques
title Automatic sleep stages classification using EEG entropy features and unsupervised pattern analysis techniques
spellingShingle Automatic sleep stages classification using EEG entropy features and unsupervised pattern analysis techniques
Clustering
Feature extraction
Feature selection
Q-a
Relevance analysis
Signal entropy
Sleep stages
title_short Automatic sleep stages classification using EEG entropy features and unsupervised pattern analysis techniques
title_full Automatic sleep stages classification using EEG entropy features and unsupervised pattern analysis techniques
title_fullStr Automatic sleep stages classification using EEG entropy features and unsupervised pattern analysis techniques
title_full_unstemmed Automatic sleep stages classification using EEG entropy features and unsupervised pattern analysis techniques
title_sort Automatic sleep stages classification using EEG entropy features and unsupervised pattern analysis techniques
dc.creator.fl_str_mv Rodríguez-Sotelo J.L.
Osorio-Forero A.
Jiménez-Rodríguez A.
Cuesta-Frau D.
Cirugeda-Roldán E.
Peluffo Ordoñez, Diego H.
dc.contributor.author.none.fl_str_mv Rodríguez-Sotelo J.L.
Osorio-Forero A.
Jiménez-Rodríguez A.
Cuesta-Frau D.
Cirugeda-Roldán E.
Peluffo Ordoñez, Diego H.
dc.subject.spa.fl_str_mv Clustering
Feature extraction
Feature selection
Q-a
Relevance analysis
Signal entropy
Sleep stages
topic Clustering
Feature extraction
Feature selection
Q-a
Relevance analysis
Signal entropy
Sleep stages
description Sleep is a growing area of research interest in medicine and neuroscience. Actually, one major concern is to find a correlation between several physiologic variables and sleep stages. There is a scientific agreement on the characteristics of the five stages of human sleep, based on EEG analysis. Nevertheless, manual stage classification is still the most widely used approach. This work proposes a new automatic sleep classification method based on unsupervised feature classification algorithms recently developed, and on EEG entropy measures. This scheme extracts entropy metrics from EEG records to obtain a feature vector. Then, these features are optimized in terms of relevance using the Q-a algorithm. Finally, the resulting set of features is entered into a clustering procedure to obtain a final segmentation of the sleep stages. The proposed method reached up to an average of 80% correctly classified stages for each patient separately while keeping the computational cost low. © 2014 by the authors.
publishDate 2014
dc.date.issued.none.fl_str_mv 2014
dc.date.accessioned.none.fl_str_mv 2021-12-16T22:16:32Z
dc.date.available.none.fl_str_mv 2021-12-16T22:16:32Z
dc.type.none.fl_str_mv Artículo
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.none.fl_str_mv https://doi.org/10.5935/1678-9741.20140101
https://www.sciencedirect.com/science/article/abs/pii/S0109564112004034
dc.identifier.issn.spa.fl_str_mv 10994300
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12494/42807
dc.identifier.bibliographicCitation.spa.fl_str_mv Rodríguez JL,Osorio A,Jiménez A,Cuesta D,Cirugeda E,Peluffo D. Automatic sleep stages classification using EEG entropy features and unsupervised pattern analysis techniques. Entropy (Basel). 2014. 16. (12):p. 6573-6589. .
url https://doi.org/10.5935/1678-9741.20140101
https://www.sciencedirect.com/science/article/abs/pii/S0109564112004034
https://hdl.handle.net/20.500.12494/42807
identifier_str_mv 10994300
Rodríguez JL,Osorio A,Jiménez A,Cuesta D,Cirugeda E,Peluffo D. Automatic sleep stages classification using EEG entropy features and unsupervised pattern analysis techniques. Entropy (Basel). 2014. 16. (12):p. 6573-6589. .
dc.relation.ispartofjournal.spa.fl_str_mv ENTROPY-SWITZ
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/closedAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_14cb
eu_rights_str_mv closedAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_14cb
dc.format.extent.spa.fl_str_mv 6589-6573
dc.publisher.spa.fl_str_mv MDPI AG
institution Universidad Cooperativa de Colombia
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1814246792109228032