Proinflammatory Polyphosphate Increases in Plasma of Obese Children with Insulin Resistance and Adults with Severe Type 2 Diabetes

Obesity increases the risk of insulin resistance and type 2 diabetes through increased inflammation at cellular and tissue levels. Therefore, study of the molecular elements involved in obesity-related inflammation may contribute to preventing and controlling it. Inorganic polyphosphate is a natural...

Full description

Autores:
Montilla Rodríguez, Liliana Marcela
Libetaro, Andrea
Ruiz-Ocaña, Pablo
Sáenz-Benito, Ana
Aguilar-Diosdado, Manuel
Lechuga-Sancho, Alfonso María
Ruiz, Felix A.
Tipo de recurso:
Article of investigation
Fecha de publicación:
2022
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/52571
Acceso en línea:
https://doi.org/10.3390/nu14214601
https://hdl.handle.net/20.500.12494/52571
Palabra clave:
Biomarcador
Niñas
Inflamación
Resistencia a la insulina
Obesidad
Polifosfato
Diabetes tipo 2
Biomarker
Children
Inflammation
Insulin resistance
Obesity
Polyphosphate
Type 2 diabetes
Rights
openAccess
License
Atribución
id COOPER2_8bb8383d5b82fd9db0bd38faf3e737ec
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/52571
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.none.fl_str_mv Proinflammatory Polyphosphate Increases in Plasma of Obese Children with Insulin Resistance and Adults with Severe Type 2 Diabetes
title Proinflammatory Polyphosphate Increases in Plasma of Obese Children with Insulin Resistance and Adults with Severe Type 2 Diabetes
spellingShingle Proinflammatory Polyphosphate Increases in Plasma of Obese Children with Insulin Resistance and Adults with Severe Type 2 Diabetes
Biomarcador
Niñas
Inflamación
Resistencia a la insulina
Obesidad
Polifosfato
Diabetes tipo 2
Biomarker
Children
Inflammation
Insulin resistance
Obesity
Polyphosphate
Type 2 diabetes
title_short Proinflammatory Polyphosphate Increases in Plasma of Obese Children with Insulin Resistance and Adults with Severe Type 2 Diabetes
title_full Proinflammatory Polyphosphate Increases in Plasma of Obese Children with Insulin Resistance and Adults with Severe Type 2 Diabetes
title_fullStr Proinflammatory Polyphosphate Increases in Plasma of Obese Children with Insulin Resistance and Adults with Severe Type 2 Diabetes
title_full_unstemmed Proinflammatory Polyphosphate Increases in Plasma of Obese Children with Insulin Resistance and Adults with Severe Type 2 Diabetes
title_sort Proinflammatory Polyphosphate Increases in Plasma of Obese Children with Insulin Resistance and Adults with Severe Type 2 Diabetes
dc.creator.fl_str_mv Montilla Rodríguez, Liliana Marcela
Libetaro, Andrea
Ruiz-Ocaña, Pablo
Sáenz-Benito, Ana
Aguilar-Diosdado, Manuel
Lechuga-Sancho, Alfonso María
Ruiz, Felix A.
dc.contributor.author.none.fl_str_mv Montilla Rodríguez, Liliana Marcela
Libetaro, Andrea
Ruiz-Ocaña, Pablo
Sáenz-Benito, Ana
Aguilar-Diosdado, Manuel
Lechuga-Sancho, Alfonso María
Ruiz, Felix A.
dc.subject.none.fl_str_mv Biomarcador
Niñas
Inflamación
Resistencia a la insulina
Obesidad
Polifosfato
Diabetes tipo 2
topic Biomarcador
Niñas
Inflamación
Resistencia a la insulina
Obesidad
Polifosfato
Diabetes tipo 2
Biomarker
Children
Inflammation
Insulin resistance
Obesity
Polyphosphate
Type 2 diabetes
dc.subject.other.none.fl_str_mv Biomarker
Children
Inflammation
Insulin resistance
Obesity
Polyphosphate
Type 2 diabetes
description Obesity increases the risk of insulin resistance and type 2 diabetes through increased inflammation at cellular and tissue levels. Therefore, study of the molecular elements involved in obesity-related inflammation may contribute to preventing and controlling it. Inorganic polyphosphate is a natural phosphate polymer that has recently been attracting more attention for its role in inflammation and hemostasis processes. Polyphosphates are one of the main constituents of human platelets, which are secreted after platelet activation. Among other roles, they interact with multiple proteins of the coagulation cascade, trigger bradykinin release, and inhibit the complement system. Despite its importance, determinations of polyphosphate levels in blood plasma had been elusive until recently, when we developed a method to detect these levels precisely. Here, we perform cross sectional studies to evaluate plasma polyphosphate in: 25 children, most of them with obesity and overweight, and 20 adults, half of them with severe type 2 diabetes. Our results show that polyphosphate increases, in a significant manner, in children with insulin resistance and in type 2 diabetes patients. As we demonstrated before that polyphosphate decreases in healthy overweight individuals, these results suggest that this polymer could be an inflammation biomarker in the metabolic disease onset before diabetes.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-11-29
dc.date.accessioned.none.fl_str_mv 2023-08-29T14:17:21Z
dc.date.available.none.fl_str_mv 2023-08-29T14:17:21Z
dc.type.none.fl_str_mv Artículos Científicos
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2072-6643
dc.identifier.uri.none.fl_str_mv https://doi.org/10.3390/nu14214601
https://hdl.handle.net/20.500.12494/52571
dc.identifier.bibliographicCitation.none.fl_str_mv Montilla M, Liberato A, Ruiz-Ocaña P, Sáez-Benito A, Aguilar-Diosdado M, Lechuga-Sancho AM, Ruiz FA. Proinflammatory Polyphosphate Increases in Plasma of Obese Children with Insulin Resistance and Adults with Severe Type 2 Diabetes. Nutrients. 2022 Nov 1;14(21):4601. doi: 10.3390/nu14214601. PMID: 36364861; PMCID: PMC9654964.
identifier_str_mv 2072-6643
Montilla M, Liberato A, Ruiz-Ocaña P, Sáez-Benito A, Aguilar-Diosdado M, Lechuga-Sancho AM, Ruiz FA. Proinflammatory Polyphosphate Increases in Plasma of Obese Children with Insulin Resistance and Adults with Severe Type 2 Diabetes. Nutrients. 2022 Nov 1;14(21):4601. doi: 10.3390/nu14214601. PMID: 36364861; PMCID: PMC9654964.
url https://doi.org/10.3390/nu14214601
https://hdl.handle.net/20.500.12494/52571
dc.relation.ispartofjournal.none.fl_str_mv Nutrients .
dc.relation.references.none.fl_str_mv Roberto, C.A.; Swinburn, B.; Hawkes, C.; Huang, T.T.; Costa, S.A.; Ashe, M.; Zwicker, L.; Cawley, J.H.; Brownell, K.D. Patchy progress on obesity prevention: Emerging examples, entrenched barriers, and new thinking. Lancet 2015, 385, 2400–2409.
Wu, H.; Ballantyne, C.M. Metabolic Inflammation and Insulin Resistance in Obesity. Circ. Res. 2020, 126, 1549–1564
Levy-Marchal, C.; Arslanian, S.; Cutfield, W.; Sinaiko, A.; Druet, C.; Marcovecchio, M.L.; Chiarelli, F. Insulin resistance in children: Consensus, perspective, and future directions. J. Clin. Endocrinol. Metab. 2010, 95, 5189–5198
Chiarelli, F.; Marcovecchio, M.L. Insulin resistance and obesity in childhood. Eur. J. Endocrinol. 2008, 159 (Suppl 1), S67–S74
Reaven, G.M. Insulin resistance: The link between obesity and cardiovascular disease. Med. Clin. N. Am. 2011, 95, 875–892
Cree-Green, M.; Triolo, T.M.; Nadeau, K.J. Etiology of insulin resistance in youth with type 2 diabetes. Curr. Diab. Rep. 2013, 13, 81–88
Calle, M.C.; Fernandez, M.L. Inflammation and type 2 diabetes. Diabetes Metab. 2012, 38, 183–191
de Luca, C.; Olefsky, J.M. Inflammation and insulin resistance. FEBS Lett. 2008, 582, 97–105.
Baker, C.J.; Smith, S.A.; Morrissey, J.H. Polyphosphate in thrombosis, hemostasis, and inflammation. Res. Pract. Thromb Haemost. 2019, 3, 18–25
Rao, N.N.; Gómez-García, M.R.; Kornberg, A. Inorganic polyphosphate: Essential for growth and survival. Annu. Rev. Biochem. 2009, 78, 605–647.
Ruiz, F.A.; Lea, C.R.; Oldfield, E.; Docampo, R. Human platelet dense granules contain polyphosphate and are similar to acidocalcisomes of bacteria and unicellular eukaryotes. J. Biol. Chem. 2004, 279, 44250–44257.
Smith, S.A.; Mutch, N.J.; Baskar, D.; Rohloff, P.; Docampo, R.; Morrissey, J.H. Polyphosphate modulates blood coagulation and fibrinolysis. Proc. Natl. Acad. Sci. USA 2006, 103, 903–908.
Choi, S.H.; Smith, S.A.; Morrissey, J.H. Polyphosphate is a cofactor for the activation of factor XI by thrombin. Blood 2011, 118, 6963–6970
Wat, J.M.; Foley, J.H.; Krisinger, M.J.; Ocariza, L.M.; Lei, V.; Wasney, G.A.; Lameignere, E.; Strynadka, N.C.; Smith, S.A.; Morrissey, J.H.; et al. Polyphosphate suppresses complement via the terminal pathway. Blood 2014, 123, 768–776
Biswas, I.; Panicker, S.R.; Cai, X.; Mehta-D’souza, P.; Rezaie, A.R. Inorganic Polyphosphate Amplifies High Mobility Group Box 1-Mediated Von Willebrand Factor Release and Platelet String Formation on Endothelial Cells. Arterioscler. Thromb Vasc. Biol. 2018, 38, 1868–1877.
Moreno-Sanchez, D.; Hernandez-Ruiz, L.; Ruiz, F.A.; Docampo, R. Polyphosphate is a novel pro-inflammatory regulator of mast cells and is located in acidocalcisomes. J. Biol. Chem. 2012, 287, 28435–28444
Jimenez-Nuñez, M.D.; Moreno-Sanchez, D.; Hernandez-Ruiz, L.; Benítez-Rondán, A.; Ramos-Amaya, A.; Rodríguez-Bayona, B.; Medina, F.; Brieva, J.A.; Ruiz, F.A. Myeloma cells contain high levels of inorganic polyphosphate which is associated with nucleolar transcription. Haematologica 2012, 97, 1264–1271.
Chrysanthopoulou, A.; Kambas, K.; Stakos, D.; Mitroulis, I.; Mitsios, A.; Vidali, V.; Angelidou, I.; Bochenek, M.; Arelaki, S.; Arampatzioglou, A.; et al. Interferon lambda1/IL-29 and inorganic polyphosphate are novel regulators of neutrophil-driven thromboinflammation. J. Pathol. 2017, 243, 111–122.
Santi, M.J.; Montilla, M.; Carroza, M.A.; Ruiz, F.A. Novel assay for prothrombotic polyphosphates in plasma reveals their correlation with obesity. Thromb. Res. 2016, 144, 53–55
González-Domínguez, Á.; Visiedo, F.; Domínguez-Riscart, J.; Durán-Ruiz, M.C.; Saez-Benito, A.; Lechuga-Sancho, A.M.; Mateos, R.M. Catalase post-translational modifications as key targets in the control of erythrocyte redox homeostasis in children with obesity and insulin resistance. Free Radic. Biol. Med. 2022, 191, 40–47.
Montilla, M.; Hernández-Ruiz, L.; García-Cozar, F.J.; Alvarez-Laderas, I.; Rodríguez-Martorell, J.; Ruiz, F.A. Polyphosphate binds to human von Willebrand factor in vivo and modulates its interaction with glycoprotein Ib. J. Thromb. Haemost. 2012, 10, 2315–2323
Wurst, H.; Kornberg, A. A soluble exopolyphosphatase of Saccharomyces cerevisiae. Purification and characterization. J. Biol. Chem. 1994, 269, 10996–11001.
Xiang, Y.; Hwa, J. Regulation of VWF expression, and secretion in health and disease. Curr. Opin. Hematol. 2016, 23, 288–293
Pottinger, B.E.; Read, R.C.; Paleolog, E.M.; Higgins, P.G.; Pearson, J.D. von Willebrand factor is an acute phase reactant in man. Thromb. Res. 1989, 53, 387–394.
Meigs, J.B.; Mittleman, M.A.; Nathan, D.M.; Tofler, G.H.; Singer, D.E.; Murphy-Sheehy, P.M.; Lipinska, I.; D’Agostino, R.B.; Wilson, P.W. Hyperinsulinemia, hyperglycemia, and impaired hemostasis: The Framingham Offspring Study. JAMA 2000, 283, 221–228.
Lim, H.S.; Lip, G.Y.; Blann, A.D. Plasma von Willebrand factor and the development of the metabolic syndrome in patients with hypertension. J. Clin. Endocrinol. Metab. 2004, 89, 5377–5381.
Wei, Y.; Liu, G.; Yang, J.; Zheng, R.; Jiang, L.; Bao, P. The association between metabolic syndrome and vascular endothelial dysfunction in adolescents. Exp. Ther. Med. 2013, 5, 1663–1666.
Kälsch, J.; Bechmann, L.P.; Heider, D.; Best, J.; Manka, P.; Kälsch, H.; Sowa, J.P.; Moebus, S.; Slomiany, U.; Jöckel, K.H.; et al. Normal liver enzymes are correlated with severity of metabolic syndrome in a large population based cohort. Sci. Rep. 2015, 5, 13058.
Rückert, I.M.; Heier, M.; Rathmann, W.; Baumeister, S.E.; Döring, A.; Meisinger, C. Association between markers of fatty liver disease and impaired glucose regulation in men and women from the general population: The KORA-F4-study. PLoS ONE 2011, 6, e22932.
Schulze, M.B. Metabolic health in normal-weight and obese individuals. Diabetologia 2019, 62, 558–566
Zembic, A.; Eckel, N.; Stefan, N.; Baudry, J.; Schulze, M.B. An Empirically Derived Definition of Metabolically Healthy Obesity Based on Risk of Cardiovascular and Total Mortality. JAMA Netw. Open 2021, 4, e218505
Abbasian, N.; Harper, M.T. High extracellular phosphate increases platelet polyphosphate content. Platelets 2021, 32, 992–994.
van der Vaart, A.; Yeung, S.M.H.; van Dijk, P.R.; Bakker, S.J.L.; de Borst, M.H. Phosphate and fibroblast growth factor 23 in diabetes. Clin. Sci. 2021, 135, 1669–1687.
van der Vaart, A.; Cai, Q.; Nolte, I.M.; van Beek, A.P.J.; Navis, G.; Bakker, S.J.L.; van Dijk, P.R.; de Borst, M.H. Plasma phosphate and all-cause mortality in individuals with and without type 2 diabetes: The Dutch population-based lifelines cohort study. Cardiovasc. Diabetol. 2022, 21, 61.
Shires, R.; Teitelbaum, S.L.; Bergfeld, M.A.; Fallon, M.D.; Slatopolsky, E.; Avioli, L.V. The effect of streptozotocin-induced chronic diabetes mellitus on bone and mineral homeostasis in the rat. J. Lab. Clin. Med. 1981, 97, 231–240.
Imtiaz, R.; Hawken, S.; McCormick, B.B.; Leung, S.; Hiremath, S.; Zimmerman, D.L. Diabetes Mellitus and Younger Age Are Risk Factors for Hyperphosphatemia in Peritoneal Dialysis Patients. Nutrients 2017, 9, 152
Mailer, R.K.W.; Hänel, L.; Allende, M.; Renné, T. Polyphosphate as a Target for Interference with Inflammation and Thrombosis. Front. Med. 2019, 6, 76.
Livermore, T.M.; Azevedo, C.; Kolozsvari, B.; Wilson, M.S.; Saiardi, A. Phosphate, inositol and polyphosphates. Biochem. Soc. Trans. 2016, 44, 253–259
Azevedo, C.; Saiardi, A. Eukaryotic Phosphate Homeostasis: The Inositol Pyrophosphate Perspective. Trends Biochem. Sci. 2017, 42, 219–231.
Ghosh, S.; Shukla, D.; Suman, K.; Lakshmi, B.J.; Manorama, R.; Kumar, S.; Bhandari, R. Inositol hexakisphosphate kinase 1 maintains hemostasis in mice by regulating platelet polyphosphate levels. Blood 2013, 122, 1478–1486.
Jung, I.R.; Anokye-Danso, F.; Jin, S.; Ahima, R.S.; Kim, S.F. IPMK modulates hepatic glucose production and insulin signaling. J. Cell. Physiol. 2022, 237, 3421–3432.
Zhang, M.; Ceyhan, Y.; Kaftanovskaya, E.M.; Vasquez, J.L.; Vacher, J.; Knop, F.K.; Nathanson, L.; Agoulnik, A.I.; Ittmann, M.M.; Agoulnik, I.U. INPP4B protects from metabolic syndrome and associated disorders. Commun. Biol. 2021, 4, 416.
dc.rights.license.none.fl_str_mv Atribución
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 1-10
dc.coverage.temporal.none.fl_str_mv 14(21)
dc.publisher.none.fl_str_mv Universidad Cooperativa de Colombia, Ciencias de la Salud, Medicina, Villavicencio
dc.publisher.program.none.fl_str_mv Medicina
dc.publisher.place.none.fl_str_mv Villavicencio
publisher.none.fl_str_mv Universidad Cooperativa de Colombia, Ciencias de la Salud, Medicina, Villavicencio
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/978b8be3-6b36-47f7-88ee-895712550528/download
bitstream.checksum.fl_str_mv 3bce4f7ab09dfc588f126e1e36e98a45
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1811565459937427456
spelling Montilla Rodríguez, Liliana MarcelaLibetaro, AndreaRuiz-Ocaña, PabloSáenz-Benito, AnaAguilar-Diosdado, ManuelLechuga-Sancho, Alfonso MaríaRuiz, Felix A.14(21)2023-08-29T14:17:21Z2023-08-29T14:17:21Z2022-11-292072-6643https://doi.org/10.3390/nu14214601https://hdl.handle.net/20.500.12494/52571Montilla M, Liberato A, Ruiz-Ocaña P, Sáez-Benito A, Aguilar-Diosdado M, Lechuga-Sancho AM, Ruiz FA. Proinflammatory Polyphosphate Increases in Plasma of Obese Children with Insulin Resistance and Adults with Severe Type 2 Diabetes. Nutrients. 2022 Nov 1;14(21):4601. doi: 10.3390/nu14214601. PMID: 36364861; PMCID: PMC9654964.Obesity increases the risk of insulin resistance and type 2 diabetes through increased inflammation at cellular and tissue levels. Therefore, study of the molecular elements involved in obesity-related inflammation may contribute to preventing and controlling it. Inorganic polyphosphate is a natural phosphate polymer that has recently been attracting more attention for its role in inflammation and hemostasis processes. Polyphosphates are one of the main constituents of human platelets, which are secreted after platelet activation. Among other roles, they interact with multiple proteins of the coagulation cascade, trigger bradykinin release, and inhibit the complement system. Despite its importance, determinations of polyphosphate levels in blood plasma had been elusive until recently, when we developed a method to detect these levels precisely. Here, we perform cross sectional studies to evaluate plasma polyphosphate in: 25 children, most of them with obesity and overweight, and 20 adults, half of them with severe type 2 diabetes. Our results show that polyphosphate increases, in a significant manner, in children with insulin resistance and in type 2 diabetes patients. As we demonstrated before that polyphosphate decreases in healthy overweight individuals, these results suggest that this polymer could be an inflammation biomarker in the metabolic disease onset before diabetes.https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001570468https://orcid.org/0000-0003-0917-4288https://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000009671felix.ruiz@uca.eshttps://scholar.google.com/citations?hl=es&user=68eHCisAAAAJ1-10Universidad Cooperativa de Colombia, Ciencias de la Salud, Medicina, VillavicencioMedicinaVillavicencioBiomarcadorNiñasInflamaciónResistencia a la insulinaObesidadPolifosfatoDiabetes tipo 2BiomarkerChildrenInflammationInsulin resistanceObesityPolyphosphateType 2 diabetesProinflammatory Polyphosphate Increases in Plasma of Obese Children with Insulin Resistance and Adults with Severe Type 2 DiabetesArtículos Científicoshttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionAtribucióninfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Nutrients .Roberto, C.A.; Swinburn, B.; Hawkes, C.; Huang, T.T.; Costa, S.A.; Ashe, M.; Zwicker, L.; Cawley, J.H.; Brownell, K.D. Patchy progress on obesity prevention: Emerging examples, entrenched barriers, and new thinking. Lancet 2015, 385, 2400–2409.Wu, H.; Ballantyne, C.M. Metabolic Inflammation and Insulin Resistance in Obesity. Circ. Res. 2020, 126, 1549–1564Levy-Marchal, C.; Arslanian, S.; Cutfield, W.; Sinaiko, A.; Druet, C.; Marcovecchio, M.L.; Chiarelli, F. Insulin resistance in children: Consensus, perspective, and future directions. J. Clin. Endocrinol. Metab. 2010, 95, 5189–5198Chiarelli, F.; Marcovecchio, M.L. Insulin resistance and obesity in childhood. Eur. J. Endocrinol. 2008, 159 (Suppl 1), S67–S74Reaven, G.M. Insulin resistance: The link between obesity and cardiovascular disease. Med. Clin. N. Am. 2011, 95, 875–892Cree-Green, M.; Triolo, T.M.; Nadeau, K.J. Etiology of insulin resistance in youth with type 2 diabetes. Curr. Diab. Rep. 2013, 13, 81–88Calle, M.C.; Fernandez, M.L. Inflammation and type 2 diabetes. Diabetes Metab. 2012, 38, 183–191de Luca, C.; Olefsky, J.M. Inflammation and insulin resistance. FEBS Lett. 2008, 582, 97–105.Baker, C.J.; Smith, S.A.; Morrissey, J.H. Polyphosphate in thrombosis, hemostasis, and inflammation. Res. Pract. Thromb Haemost. 2019, 3, 18–25Rao, N.N.; Gómez-García, M.R.; Kornberg, A. Inorganic polyphosphate: Essential for growth and survival. Annu. Rev. Biochem. 2009, 78, 605–647.Ruiz, F.A.; Lea, C.R.; Oldfield, E.; Docampo, R. Human platelet dense granules contain polyphosphate and are similar to acidocalcisomes of bacteria and unicellular eukaryotes. J. Biol. Chem. 2004, 279, 44250–44257.Smith, S.A.; Mutch, N.J.; Baskar, D.; Rohloff, P.; Docampo, R.; Morrissey, J.H. Polyphosphate modulates blood coagulation and fibrinolysis. Proc. Natl. Acad. Sci. USA 2006, 103, 903–908.Choi, S.H.; Smith, S.A.; Morrissey, J.H. Polyphosphate is a cofactor for the activation of factor XI by thrombin. Blood 2011, 118, 6963–6970Wat, J.M.; Foley, J.H.; Krisinger, M.J.; Ocariza, L.M.; Lei, V.; Wasney, G.A.; Lameignere, E.; Strynadka, N.C.; Smith, S.A.; Morrissey, J.H.; et al. Polyphosphate suppresses complement via the terminal pathway. Blood 2014, 123, 768–776Biswas, I.; Panicker, S.R.; Cai, X.; Mehta-D’souza, P.; Rezaie, A.R. Inorganic Polyphosphate Amplifies High Mobility Group Box 1-Mediated Von Willebrand Factor Release and Platelet String Formation on Endothelial Cells. Arterioscler. Thromb Vasc. Biol. 2018, 38, 1868–1877.Moreno-Sanchez, D.; Hernandez-Ruiz, L.; Ruiz, F.A.; Docampo, R. Polyphosphate is a novel pro-inflammatory regulator of mast cells and is located in acidocalcisomes. J. Biol. Chem. 2012, 287, 28435–28444Jimenez-Nuñez, M.D.; Moreno-Sanchez, D.; Hernandez-Ruiz, L.; Benítez-Rondán, A.; Ramos-Amaya, A.; Rodríguez-Bayona, B.; Medina, F.; Brieva, J.A.; Ruiz, F.A. Myeloma cells contain high levels of inorganic polyphosphate which is associated with nucleolar transcription. Haematologica 2012, 97, 1264–1271.Chrysanthopoulou, A.; Kambas, K.; Stakos, D.; Mitroulis, I.; Mitsios, A.; Vidali, V.; Angelidou, I.; Bochenek, M.; Arelaki, S.; Arampatzioglou, A.; et al. Interferon lambda1/IL-29 and inorganic polyphosphate are novel regulators of neutrophil-driven thromboinflammation. J. Pathol. 2017, 243, 111–122.Santi, M.J.; Montilla, M.; Carroza, M.A.; Ruiz, F.A. Novel assay for prothrombotic polyphosphates in plasma reveals their correlation with obesity. Thromb. Res. 2016, 144, 53–55González-Domínguez, Á.; Visiedo, F.; Domínguez-Riscart, J.; Durán-Ruiz, M.C.; Saez-Benito, A.; Lechuga-Sancho, A.M.; Mateos, R.M. Catalase post-translational modifications as key targets in the control of erythrocyte redox homeostasis in children with obesity and insulin resistance. Free Radic. Biol. Med. 2022, 191, 40–47.Montilla, M.; Hernández-Ruiz, L.; García-Cozar, F.J.; Alvarez-Laderas, I.; Rodríguez-Martorell, J.; Ruiz, F.A. Polyphosphate binds to human von Willebrand factor in vivo and modulates its interaction with glycoprotein Ib. J. Thromb. Haemost. 2012, 10, 2315–2323Wurst, H.; Kornberg, A. A soluble exopolyphosphatase of Saccharomyces cerevisiae. Purification and characterization. J. Biol. Chem. 1994, 269, 10996–11001.Xiang, Y.; Hwa, J. Regulation of VWF expression, and secretion in health and disease. Curr. Opin. Hematol. 2016, 23, 288–293Pottinger, B.E.; Read, R.C.; Paleolog, E.M.; Higgins, P.G.; Pearson, J.D. von Willebrand factor is an acute phase reactant in man. Thromb. Res. 1989, 53, 387–394.Meigs, J.B.; Mittleman, M.A.; Nathan, D.M.; Tofler, G.H.; Singer, D.E.; Murphy-Sheehy, P.M.; Lipinska, I.; D’Agostino, R.B.; Wilson, P.W. Hyperinsulinemia, hyperglycemia, and impaired hemostasis: The Framingham Offspring Study. JAMA 2000, 283, 221–228.Lim, H.S.; Lip, G.Y.; Blann, A.D. Plasma von Willebrand factor and the development of the metabolic syndrome in patients with hypertension. J. Clin. Endocrinol. Metab. 2004, 89, 5377–5381.Wei, Y.; Liu, G.; Yang, J.; Zheng, R.; Jiang, L.; Bao, P. The association between metabolic syndrome and vascular endothelial dysfunction in adolescents. Exp. Ther. Med. 2013, 5, 1663–1666.Kälsch, J.; Bechmann, L.P.; Heider, D.; Best, J.; Manka, P.; Kälsch, H.; Sowa, J.P.; Moebus, S.; Slomiany, U.; Jöckel, K.H.; et al. Normal liver enzymes are correlated with severity of metabolic syndrome in a large population based cohort. Sci. Rep. 2015, 5, 13058.Rückert, I.M.; Heier, M.; Rathmann, W.; Baumeister, S.E.; Döring, A.; Meisinger, C. Association between markers of fatty liver disease and impaired glucose regulation in men and women from the general population: The KORA-F4-study. PLoS ONE 2011, 6, e22932.Schulze, M.B. Metabolic health in normal-weight and obese individuals. Diabetologia 2019, 62, 558–566Zembic, A.; Eckel, N.; Stefan, N.; Baudry, J.; Schulze, M.B. An Empirically Derived Definition of Metabolically Healthy Obesity Based on Risk of Cardiovascular and Total Mortality. JAMA Netw. Open 2021, 4, e218505Abbasian, N.; Harper, M.T. High extracellular phosphate increases platelet polyphosphate content. Platelets 2021, 32, 992–994.van der Vaart, A.; Yeung, S.M.H.; van Dijk, P.R.; Bakker, S.J.L.; de Borst, M.H. Phosphate and fibroblast growth factor 23 in diabetes. Clin. Sci. 2021, 135, 1669–1687.van der Vaart, A.; Cai, Q.; Nolte, I.M.; van Beek, A.P.J.; Navis, G.; Bakker, S.J.L.; van Dijk, P.R.; de Borst, M.H. Plasma phosphate and all-cause mortality in individuals with and without type 2 diabetes: The Dutch population-based lifelines cohort study. Cardiovasc. Diabetol. 2022, 21, 61.Shires, R.; Teitelbaum, S.L.; Bergfeld, M.A.; Fallon, M.D.; Slatopolsky, E.; Avioli, L.V. The effect of streptozotocin-induced chronic diabetes mellitus on bone and mineral homeostasis in the rat. J. Lab. Clin. Med. 1981, 97, 231–240.Imtiaz, R.; Hawken, S.; McCormick, B.B.; Leung, S.; Hiremath, S.; Zimmerman, D.L. Diabetes Mellitus and Younger Age Are Risk Factors for Hyperphosphatemia in Peritoneal Dialysis Patients. Nutrients 2017, 9, 152Mailer, R.K.W.; Hänel, L.; Allende, M.; Renné, T. Polyphosphate as a Target for Interference with Inflammation and Thrombosis. Front. Med. 2019, 6, 76.Livermore, T.M.; Azevedo, C.; Kolozsvari, B.; Wilson, M.S.; Saiardi, A. Phosphate, inositol and polyphosphates. Biochem. Soc. Trans. 2016, 44, 253–259Azevedo, C.; Saiardi, A. Eukaryotic Phosphate Homeostasis: The Inositol Pyrophosphate Perspective. Trends Biochem. Sci. 2017, 42, 219–231.Ghosh, S.; Shukla, D.; Suman, K.; Lakshmi, B.J.; Manorama, R.; Kumar, S.; Bhandari, R. Inositol hexakisphosphate kinase 1 maintains hemostasis in mice by regulating platelet polyphosphate levels. Blood 2013, 122, 1478–1486.Jung, I.R.; Anokye-Danso, F.; Jin, S.; Ahima, R.S.; Kim, S.F. IPMK modulates hepatic glucose production and insulin signaling. J. Cell. Physiol. 2022, 237, 3421–3432.Zhang, M.; Ceyhan, Y.; Kaftanovskaya, E.M.; Vasquez, J.L.; Vacher, J.; Knop, F.K.; Nathanson, L.; Agoulnik, A.I.; Ittmann, M.M.; Agoulnik, I.U. INPP4B protects from metabolic syndrome and associated disorders. Commun. Biol. 2021, 4, 416.PublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/978b8be3-6b36-47f7-88ee-895712550528/download3bce4f7ab09dfc588f126e1e36e98a45MD5120.500.12494/52571oai:repository.ucc.edu.co:20.500.12494/525712024-08-20 16:24:08.22metadata.onlyhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo=