Nanocomposite additive of SiO2/TiO2/nanocellulose on waterborne coating formulations for mechanical and aesthetic properties stability on wood

La madera y los materiales a base de madera se consideran materiales de construcción sostenibles; sin embargo, como son propensos a la degradación por factores bióticos y abióticos, a menudo requerían la adición de recubrimientos protectores. En este contexto, las opciones preferidas son los recubri...

Full description

Autores:
Pacheco Pinilla, Claudia Marcela
Bustos A., Cecila
Reyes, Guillermo
Oviedo, Claudia
Fernández Pérez, A.
Elso, Mhartyn
Rojas, Orlando J.
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/46608
Acceso en línea:
https://doi.org/10.1016/j.mtcomm.2021.102990
https://hdl.handle.net/20.500.12494/46608
Palabra clave:
Recubrimientos de madera
Nanopartículas de sílice
Nanopartículas de Titania
Nanocelulosa
Revestimiento base agua
Madera estética
Wood coatings
Silica nanoparticle
Titania nanoparticles
Nanocellulose
Waterborne coating
Aesthetic wood
Rights
openAccess
License
Atribución
id COOPER2_8871230fce464c0de854f50db4f76a22
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/46608
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.spa.fl_str_mv Nanocomposite additive of SiO2/TiO2/nanocellulose on waterborne coating formulations for mechanical and aesthetic properties stability on wood
title Nanocomposite additive of SiO2/TiO2/nanocellulose on waterborne coating formulations for mechanical and aesthetic properties stability on wood
spellingShingle Nanocomposite additive of SiO2/TiO2/nanocellulose on waterborne coating formulations for mechanical and aesthetic properties stability on wood
Recubrimientos de madera
Nanopartículas de sílice
Nanopartículas de Titania
Nanocelulosa
Revestimiento base agua
Madera estética
Wood coatings
Silica nanoparticle
Titania nanoparticles
Nanocellulose
Waterborne coating
Aesthetic wood
title_short Nanocomposite additive of SiO2/TiO2/nanocellulose on waterborne coating formulations for mechanical and aesthetic properties stability on wood
title_full Nanocomposite additive of SiO2/TiO2/nanocellulose on waterborne coating formulations for mechanical and aesthetic properties stability on wood
title_fullStr Nanocomposite additive of SiO2/TiO2/nanocellulose on waterborne coating formulations for mechanical and aesthetic properties stability on wood
title_full_unstemmed Nanocomposite additive of SiO2/TiO2/nanocellulose on waterborne coating formulations for mechanical and aesthetic properties stability on wood
title_sort Nanocomposite additive of SiO2/TiO2/nanocellulose on waterborne coating formulations for mechanical and aesthetic properties stability on wood
dc.creator.fl_str_mv Pacheco Pinilla, Claudia Marcela
Bustos A., Cecila
Reyes, Guillermo
Oviedo, Claudia
Fernández Pérez, A.
Elso, Mhartyn
Rojas, Orlando J.
dc.contributor.author.none.fl_str_mv Pacheco Pinilla, Claudia Marcela
Bustos A., Cecila
Reyes, Guillermo
Oviedo, Claudia
Fernández Pérez, A.
Elso, Mhartyn
Rojas, Orlando J.
dc.subject.spa.fl_str_mv Recubrimientos de madera
Nanopartículas de sílice
Nanopartículas de Titania
Nanocelulosa
Revestimiento base agua
Madera estética
topic Recubrimientos de madera
Nanopartículas de sílice
Nanopartículas de Titania
Nanocelulosa
Revestimiento base agua
Madera estética
Wood coatings
Silica nanoparticle
Titania nanoparticles
Nanocellulose
Waterborne coating
Aesthetic wood
dc.subject.other.spa.fl_str_mv Wood coatings
Silica nanoparticle
Titania nanoparticles
Nanocellulose
Waterborne coating
Aesthetic wood
description La madera y los materiales a base de madera se consideran materiales de construcción sostenibles; sin embargo, como son propensos a la degradación por factores bióticos y abióticos, a menudo requerían la adición de recubrimientos protectores. En este contexto, las opciones preferidas son los recubrimientos a base de agua ya que son solventes no agresivos (olor, toxicidad, riesgo de incendio) y finalmente eliminan la emisión de Compuestos Orgánicos Volátiles (COV). No obstante, estas reducciones implican una menor durabilidad y protección en comparación con los recubrimientos orgánicos convencionales. Este estudio demuestra que la incorporación de nanocelulosa producida a partir de residuos de poda de arándanos y NP de dióxido de titanio y dióxido de sílice en barnices a base de agua puede mejorar el rendimiento mecánico y la estabilidad de las superficies de madera. En particular, se mejoran las propiedades de adhesión y abrasión sin cambios significativos en otras propiedades, como la transparencia óptica, el color y el brillo del recubrimiento. Estos resultados presentan un potencial prometedor para diferentes aplicaciones en el contexto del desarrollo de productos para una economía circular en muebles, pisos y paneles de madera.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-11-19
dc.date.accessioned.none.fl_str_mv 2022-10-05T13:24:59Z
dc.date.available.none.fl_str_mv 2022-10-05T13:24:59Z
dc.type.none.fl_str_mv Artículo
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 2352-4928
dc.identifier.uri.spa.fl_str_mv https://doi.org/10.1016/j.mtcomm.2021.102990
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12494/46608
dc.identifier.bibliographicCitation.spa.fl_str_mv Pacheco, C. M., Cecilia, B. A., Reyes, G., Oviedo, C., Fernández-Pérez, A., Elso, M., & Rojas, O. J. (2021). Nanocomposite additive of SiO2/TiO2/nanocellulose on waterborne coating formulations for mechanical and aesthetic properties stability on wood. Materials Today Communications, 29, 1-11. https://doi.org/10.1016/j.mtcomm.2021.102990
identifier_str_mv 2352-4928
Pacheco, C. M., Cecilia, B. A., Reyes, G., Oviedo, C., Fernández-Pérez, A., Elso, M., & Rojas, O. J. (2021). Nanocomposite additive of SiO2/TiO2/nanocellulose on waterborne coating formulations for mechanical and aesthetic properties stability on wood. Materials Today Communications, 29, 1-11. https://doi.org/10.1016/j.mtcomm.2021.102990
url https://doi.org/10.1016/j.mtcomm.2021.102990
https://hdl.handle.net/20.500.12494/46608
dc.relation.isversionof.spa.fl_str_mv https://www-sciencedirect-com.bbibliograficas.ucc.edu.co/science/article/pii/S2352492821009752
dc.relation.ispartofjournal.spa.fl_str_mv Materials Today Communications
dc.relation.references.spa.fl_str_mv S.M. Fufa, B.P. Jelle, P.J. Hovde, P.B. Jelle, J.P. Hovde Weathering performance of spruce coated with water based acrylic paint modified with TiO2 and clay nanoparticles, Prog Org. Coat., 76 (2013), pp. 1543-1548, 10.1016/j.porgcoat.2013.06.008
M. Broda, C. Popescu Natural decay of archaeological oak wood versus artificial degradation processes — An FT-IR spectroscopy and X-ray diffraction study
A. Bukauskas, P. Mayencourt, P. Shepherd, B. Sharma, C. Mueller, P. Walker, J. Bregulla Whole timber construction: a state of the art review Constr. Build. Mater., 213 (2019), pp. 748-769, 10.1016/j.conbuildmat.2019.03.043
S. Hardersen, L. Zapponi Wood degradation and the role of saproxylic insects for lignoforms Appl. Soil Ecol., 123 (2018), pp. 334-338, 10.1016/j.apsoil.2017.09.003
M. Nikolic, J.M. Lawther, A.R. Sanadi Use of nanofillers in wood coatings: a scientific review J. Coat. Technol. Res., 12 (2015), pp. 445-461, 10.1007/s11998-015-9659-2
M.H. Ramage, H. Burridge, M. Busse-Wicher, G. Fereday, T. Reynolds, D.U. Shah, G. Wu, L. Yu, P. Fleming, D. Densley-Tingley, J. Allwood, P. Dupree, P.F. Linden, O. Scherman The wood from the trees: the use of timber in construction Renew. Sustain. Energy Rev., 68 (2017), pp. 333-359, 10.1016/j.rser.2016.09.107
F. Grüneberger, T. Künniger, T. Zimmermann, M. Arnold Nanofibrillated cellulose in wood coatings: mechanical properties of free composite films J. Mater. Sci., 49 (2014), pp. 6437-6448, 10.1007/s10853-014-8373-2
S. Veigel, G. Grüll, S. Pinkl, M. Obersriebnig, U. Müller, W. Gindl-Altmutter Improving the mechanical resistance of waterborne wood coatings by adding cellulose nanofibres React. Funct. Polym., 85 (2014), pp. 214-220, 10.1016/j.reactfunctpolym.2014.07.020
M. Kluge, S. Veigel, S. Pinkl, U. Henniges, C. Zollfrank, A. Rössler, W. Gindl-Altmutter Nanocellulosic fillers for waterborne wood coatings: reinforcement effect on free-standing coating films Wood Sci. Technol., 51 (2017), pp. 601-613, 10.1007/s00226-017-0892-y
A. Kaboorani, N. Auclair, B. Riedl, V. Landry Mechanical properties of UV-cured cellulose nanocrystal (CNC) nanocomposite coating for wood furniture, Prog. Org Coatings, 104 (2017), pp. 91-96
F. Zafar, A. Ghosal, E. Sharmin, R. Chaturvedi, N. Nishat A review on cleaner production of polymeric and nanocomposite coatings based on waterborne polyurethane dispersions from seed oils, Prog Org. Coat., 131 (2019), pp. 259-275, 10.1016/j.porgcoat.2019.02.014
Consejo de la Unión Europea, Directiva 1999/13/CE del Consejo de 11 de marzo de 1999, Relativa a la limitación de las emisiones de compuestos orgánicos volátiles debidas al uso de disolventes orgánicos en determinadas actividades e instalaciones., 1999.
B. Poaty, V. Vardanyan, L. Wilczak, G. Chauve, B. Riedl Modification of cellulose nanocrystals as reinforcement derivatives for wood coatings, Prog Org. Coat., 77 (2014), pp. 813-820, 10.1016/j.porgcoat.2014.01.009
C. Sow, B. Riedl, P. Blanchet UV-waterborne polyurethane-acrylate nanocomposite coatings containing alumina and silica nanoparticles for wood: Mechanical, optical, and thermal properties assessment J. Coat. Technol. Res., 8 (2011), pp. 211-221, 10.1007/s11998-010-9298-6
D. Cheng, Y. Wen, X. An, X. Zhu, Y. Ni TEMPO-oxidized cellulose nanofibers (TOCNs) as a green reinforcement for waterborne polyurethane coating (WPU) on wood Carbohydr. Polym., 151 (2016), pp. 326-334, 10.1016/j.carbpol.2016.05.083
M. Vlad Cristea, B. Riedl, P. Blanchet Enhancing the performance of exterior waterborne coatings for wood by inorganic nanosized UV absorbers, Prog Org. Coat., 69 (2010), pp. 432-441, 10.1016/j.porgcoat.2010.08.006
T. Marzi Nanostructured materials for protection and reinforcement of timber structures: a review and future challenges Constr. Build. Mater., 97 (2015), pp. 119-130, 10.1016/j.conbuildmat.2015.07.016
Y. Wang, Y. He, Q. Lai, M. Fan Review of the progress in preparing nano TiO2: an important environmental engineering material J. Environ. Sci., 26 (2014), pp. 2139-2177, 10.1016/j.jes.2014.09.023
D.M. Mitrano, S. Motellier, S. Clavaguera, B. Nowack Review of nanomaterial aging and transformations through the life cycle of nano-enhanced products Environ. Int., 77 (2015), pp. 132-147, 10.1016/j.envint.2015.01.013
R. Pandiyan, S. Ayyaru, Y.H. Ahn Non-toxic properties of TiO2 and STiO2 nanocomposite PES ultrafiltration membranes for application in membrane-based environmental biotechnology Ecotoxicol. Environ. Saf., 158 (2018), pp. 248-255, 10.1016/j.ecoenv.2018.04.027
Z. Walsh-Korbs, L. Avérous Recent developments in the conservation of materials properties of historical wood Prog. Mater. Sci., 102 (2019), pp. 167-221, 10.1016/j.pmatsci.2018.12.001
F. Grüneberger, T. Künniger, A. Huch, T. Zimmermann, M. Arnold Nanofibrillated cellulose in wood coatings: dispersion and stabilization of ZnO as UV absorber, Prog Org. Coat., 87 (2015), pp. 112-121, 10.1016/j.porgcoat.2015.05.025
M.S. Lowry, D.R. Hubble, A.L. Wressell, M.S. Vratsanos, F.R. Pepe, C.R. Hegedus Assessment of UV-permeability in nano-ZnO filled coatings via high throughput experimentation J. Coat. Technol. Res., 5 (2008), pp. 233-239, 10.1007/s11998-007-9064-6
P.O. Vasiliev, B. Faure, J.B. Sing Ng, L. Bergström Colloidal aspects relating to direct incorporation of TiO 2 nanoparticles into mesoporous spheres by an aerosol-assisted process Colloids IIterface Sci., 319 (2008), pp. 144-151, 10.1016/j.jcis.2007.11.013
G.R. Tortella, O. Rubilar, N. Durán, M.C. Diez, M. Martínez, J. Parada, A.B. Seabra Silver nanoparticles: toxicity in model organisms as an overview of its hazard for human health and the environment J. Hazard. Mater., 390 (2020), Article 121974, 10.1016/j.jhazmat.2019.121974
L.F.O. Silva, M. Santosh, M. Schindler, J. Gasparotto, G.L. Dotto, M.L.S. Oliveira, M.F. Hochella Nanoparticles in fossil and mineral fuel sectors and their impact on environment and human health: a review and perspective Gondwana Res., 92 (2021), pp. 184-201, 10.1016/j.gr.2020.12.026
C. Guo, Y. Liu, Y. Li Adverse effects of amorphous silica nanoparticles: focus on human cardiovascular health J. Hazard. Mater., 406 (2021), Article 124626, 10.1016/j.jhazmat.2020.124626
E. Hafemann, R. Battisti, C. Marangoni, R.A.F. Machado Valorization of royal palm tree agroindustrial waste by isolating cellulose nanocrystals Carbohydr. Polym., 218 (2019), pp. 188-198, 10.1016/j.carbpol.2019.04.086
R.H.F. Faradilla, G. Lee, A. Rawal, T. Hutomo, M.H. Stenzel, J. Arcot Nanocellulose characteristics from the inner and outer layer of banana pseudo-stem prepared by TEMPO-mediated oxidation Cellulose, 23 (2016), pp. 3023-3037, 10.1007/s10570-016-1025-8
Y.C. Ching, M. Ershad Ali, L.C. Abdullah, K.W. Choo, Y.C. Kuan, S.J. Julaihi, C.H. Chuah, N.S. Liou Rheological properties of cellulose nanocrystal-embedded polymer composites: a review Cellulose, 23 (2016), pp. 1011-1030, 10.1007/s10570-016-0868-3
R. Kumar, A. Sabu, S.K. Tiwari Materials chemistry and the futurist eco-friendly applications of nanocellulose: status and prospect J. Saudi Chem. Soc., 22 (2018), pp. 949-978, 10.1016/j.jscs.2018.02.005
L. Brinchi, F. Cotana, E. Fortunati, J.M. Kenny Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications Carbohydr. Polym., 94 (2013), pp. 154-169, 10.1016/j.carbpol.2013.01.033
S. Naduparambath, J. T.V, S. V, S. M.P, A.K. Balan, P. E, V. Shaniba, S. M.P, A.K. Balan, E. Purushothaman Isolation and characterisation of cellulose nanocrystals from sago seed shells Carbohydr. Polym., 180 (2018), pp. 13-20, 10.1016/j.carbpol.2017.09.088
P. Criado, F.M.J. Hossain, S. Salmieri, M. Lacroix Nanocellulose in food packaging Compos. Mater. Food Packag. (2017), pp. 297-329, 10.1002/9781119160243.ch10
K. Liu, H. Liang, J. Nasrallah, L. Chen, L. Huang, Y. Ni Preparation of the CNC/Ag/beeswax composites for enhancing antibacterial and water resistance properties of paper Carbohydr. Polym., 142 (2016), pp. 183-188, 10.1016/j.carbpol.2016.01.044
N.A. El-Wakil, E.A. Hassan, R.E. Abou-Zeid, A. Dufresne Development of wheat gluten/nanocellulose/titanium dioxide nanocomposites for active food packaging Carbohydr. Polym., 124 (2015), pp. 337-346, 10.1016/j.carbpol.2015.01.076
K. Zhang, P. Sun, H. Liu, S. Shang, J. Song, D. Wang Extraction and comparison of carboxylated cellulose nanocrystals from bleached sugarcane bagasse pulp using two different oxidation methods Carbohydr. Polym., 138 (2016), pp. 237-243, 10.1016/j.carbpol.2015.11.038
M. Kaushik, A. Moores Review: nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis Green. Chem. (2016), pp. 622-637, 10.1039/c5gc02500a
K.S. Prado, M.A.S. Spinacé Isolation and characterization of cellulose nanocrystals from pineapple crown waste and their potential uses Int. J. Biol. Macromol., 122 (2019), pp. 410-416, 10.1016/j.ijbiomac.2018.10.187
C. Pacheco Pinilla, C. Avila, G. Reyes, M. Aguayo, O. Rojas, M. Aguayo Characterization of residues from chilean blueberry bushes: a potential source of cellulose BioResources, 13 (2018), pp. 7345-7359, 10.15376/biores.13.4.7345-7359
C.M. Pacheco, C.B. A, G. Reyes Cellulose nanocrystals from blueberry pruning residues isolated by ionic liquids and TEMPO-oxidation combined with mechanical disintegration J. Dispers. Sci. Technol., 41 (2020), pp. 1731-1741, 10.1080/01932691.2020.1775092
C. Schütz, J. Sort, Z. Bacsik, V. Oliynyk, E. Pellicer, A. Fall, L. Wågberg, L. Berglund, L. Bergström, G. Salazar-Alvarez Hard and transparent films formed by nanocellulose–TiO2 nanoparticle hybrids PLoS One, 7 (2012), Article e45828, 10.1371/journal.pone.0045828
F. Fan, M.S. Hamada, N. Li, G.Q. Li, C.X. Luo Multiple fungicide resistance in Botrytis cinerea from greenhouse strawberries in Hubei Province, China Plant Dis., 101 (2017), pp. 601-606, 10.1094/PDIS-09-16-1227-RE
D. Fernández-Ortuño, J.A. Torés, M. Chamorro, A. Pérez-García, A. de Vicente Characterization of resistance to six chemical classes of site-specific fungicides registered for gray mold control on strawberry in Spain Plant Dis., 100 (2016), pp. 2234-2239, 10.1094/PDIS-03-16-0280-RE
M. Kretschmer, M. Leroch, A. Mosbach, A.S. Walker, S. Fillinger, D. Mernke, H.J. Schoonbeek, J.M. Pradier, P. Leroux, M.A. De Waard, M. Hahn Fungicide-driven evolution and molecular basis of multidrug resistance in field populations of the grey mould fungus Botrytis cinerea PLoS Pathog., 5 (2009), 10.1371/journal.ppat.1000696
STATGRAPHICS Centurion XVII, Software STATGRAPHICS Centurion XVIII, (2010). https://statgraphics.net/.
ASTM D2244, Standar Practice for Calculation of Color Tolerances and Color differences from Instrumentally Measured Color Coordinates, 2016. 〈https://doi-org.bbibliograficas.ucc.edu.co/10.1520/D2244–16〉.
ASTM D523, Standar Test Method for Specular Gloss, 2014. 〈https://doi-org.bbibliograficas.ucc.edu.co/10.1520/D0523–14〉.
ASTM G154, Standard Practice for Operating Fluorescent Ultraviolet (UV) Lamp Apparatus for Exposure of Nonmetallic Materials, 2016. 〈https://doi-org.bbibliograficas.ucc.edu.co/10.1520/G0154–16〉.
ASTM D4541, Standar Test Method for Pull-Off Strength of Coatings Using Portable Adhesion Testers, United States, 2017. 〈https://doi-org.bbibliograficas.ucc.edu.co/10.1520/D4541–17〉.
ASTM D4060, Standard Test Method for Abrasion Resistance of Organic Coatings by the Taber Abraser, 2014. 〈https://doi-org.bbibliograficas.ucc.edu.co/10.1520/D4060–19〉.
ASTM D3363, Standar Test Method for Film Hardness by Pencil Test, United States, 2011. 〈https://doi-org.bbibliograficas.ucc.edu.co/10.1520/D3363–05R11E02〉.
UNE 48–027-80, Resistencia de los Recubrimientos Orgánicos a los Agentes Químicos de uso Doméstico, Norma Española, 1980.
V. Fuskele, R.M. Sarviya Recent developments in nanoparticles synthesis, preparation and stability of nanofluids Mater. Today Proc., 4 (2017), pp. 4049-4060, 10.1016/j.matpr.2017.02.307
Y.M. Zhou, S.Y. Fu, L.M. Zheng, H.Y. Zhan Effect of nanocellulose isolation techniques on the formation of reinforced poly(vinyl alcohol) nanocomposite films Express Polym. Lett., 6 (2012), pp. 794-804, 10.3144/expresspolymlett.2012.85
M. Markiewicz, W. Mrozik, K. Rezwan, J. Thöming, J. Hupka, C. Jungnickel Changes in zeta potential of imidazolium ionic liquids modified minerals - Implications for determining mechanism of adsorption Chemosphere, 90 (2013), pp. 706-712, 10.1016/j.chemosphere.2012.09.053
T. Angelova, N. Rangelova, N. Georgieva Antifungal properties of SiO2/hydroxypropyl cellulose hybrid materials doped with zinc ions against Candida albicans 74 Food Sci. Appl. Biotechnol., 2 (2018), pp. 104-107
F. Chen, X. Yang, Q. Wu Antifungal capability of TiO 2 coated film on moist wood Build. Environ., 44 (2009), pp. 1088-1093, 10.1016/j.buildenv.2008.07.018
F. Haghighi, S.R. Mohammadi, P. Mohammadi, S. Hosseinkhani, R. Shidpour Antifungal activity of TiO 2 nanoparticles and EDTA on Candida albicans Biofilms Orig. Artic. Infect. Epidemiol. Med., 1 (2013), pp. 33-38 https://pdfs.semanticscholar.org/d816/127a0b7d75797b3497f3009f690985932dbc.pdf
C. Maneerat, Y. Hayata Antifungal activity of TiO2 photocatalysis against Penicillium expansum in vitro and in fruit tests Int. J. Food Microbiol., 107 (2006), pp. 99-103, 10.1016/j.ijfoodmicro.2005.08.018
T.J. Battin, F.V.D. Kammer, A. Weilhartner, S. Ottofuelling, T. Hofmann Nanostructured TiO2: transport behavior and effects on aquatic microbial communities under environmental conditions Environ. Sci. Technol., 43 (2009), pp. 8098-8104, 10.1021/es9017046
H.A. Foster, I.B. Ditta, S. Varghese, A. Steele Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity Appl. Microbiol. Biotechnol., 90 (2011), pp. 1847-1868, 10.1007/s00253-011-3213-7
J.-C. Sigoillot, J.-G. Berrin, M. Bey, L. Lesage-Meessen, A. Levasseur, A. Lomascolo, E. Record, E. Uzan-Boukhris Fungal Strategies for Lignin Degradation L. Jouanin, C. Lapierre (Eds.), Adv. Bot. Res., Academic Press (2012), pp. 263-308, 10.1016/B978-0-12-416023-1.00008-2
A.A. Asanova, V.I. Polonskiy, N.S. Manukovsky, S.V. Khizhnyak Fungistatic activity of engineered nanoparticles Nanotechnologies Russ., 13 (2018), pp. 277-280, 10.1134/S1995078018030023
V. Vardanyan, B. Poaty, G. Chauve, V. Landry, T. Galstian, B. Riedl Mechanical properties of UV-waterborne varnishes reinforced by cellulose nanocrystals J. Coat. Technol. Res., 11 (2014), pp. 841-852, 10.1007/s11998-014-9598-3
P. Véronic, B. Blanchet Riedl Mechanical and optical properties of clay-based nanocomposites coatings for wood flooring Prog. Org. Coat., 67 (2010), pp. 381-388, 10.1016/j.porgcoat.2009.12.011
M.V. Cristea, B. Riedl, P. Blanchet Effect of addition of nanosized UV absorbers on the physico-mechanical and thermal properties of an exterior waterborne stain for wood Prog. Org. Coat., 72 (2011), pp. 755-762, 10.1016/j.porgcoat.2011.08.007
Raven Lining Systems, Adhesion Testing Pocket Guide, (2018). https://www.ravenlining.com/wp-content/uploads/2018/06/Adhesion-Testing-Pocket-Guide2.pdf (accessed November 7, 2019).
A. Pizzi, K.L. Mittal Handbook of Adhesive Technology, Second Edi, Taylor & Francis, (2003), 10.1201/9781315120942
S. Virtanen, S. Jämsä, R. Talja, H. Heikkinen, S. Vuoti Chemically modified cellulose nanofibril as an additive for two-component polyurethane coatings J. Appl. Polym. Sci., 134 (2017), pp. 1-14, 10.1002/app.44801
S. Veigel, G. Grull, S. Pinkl, M. Obersriebnig, U. Muller, W. Gindl-Altmutter, G. Grüll, S. Pinkl, M. Obersriebnig, U. Müller, W. Gindl-Altmutter Improving the mechanical resistance of waterborne wood coatings by adding cellulose nanofibres React. Funct. Polym., 85 (2014), pp. 214-220, 10.1016/j.reactfunctpolym.2014.07.020
N. Auclair, A. Kaboorani, B. Riedl, V. Landry, O. Hosseinaei, S. Wang Prog. Org. Coat., 123 (2018), pp. 27-34, 10.1016/j.porgcoat.2018.05.027
M.R. Islam, M.D.H. Beg, S.S. Jamari Dispersion of montmorillonite nanoclays and their effects on the thermomechanical, structural and drying properties of palm oil based coating Prog. Org. Coat., 91 (2016), pp. 17-24, 10.1016/j.porgcoat.2015.11.015
M. Vlad-Cristea, B. Riedl, P. Blanchet, E. Jimenez-Pique Nanocharacterization techniques for investigating the durability of wood coatings Eur. Polym. J., 48 (2012), pp. 441-453, 10.1016/j.eurpolymj.2011.12.002
Y. Yuan, T. Randall Lee B.H.G. Bracco (Ed.), Chapter 1. Contact Angle and Wetting Properties, Surf. Sci. Tech., Springer-V, Houston (2013), p. 33, 10.1007/978-3-642-34243-1
P. Samyn, G. Schoukens, P. Kiekens, P. Mast, H.V. van den Abbeele, D. Stanssens, L. Vonck Thermal resistance of organic nanoparticle coatings for hydrophobicity and water repellence of paper substrates Autex Res. J., 10 (2010), pp. 100-109
V. Landry, P. Blanchet Weathering resistance of opaque PVDF-acrylic coatings applied on wood substrates Prog. Org. Coat., 75 (2012), pp. 494-501, 10.1016/j.porgcoat.2012.06.004
X. Wang, S. Liu, H. Chang, J. Liu Sol-gel deposition Of TIO2 nanocoatings on wood surfaces with enhanced hydrophobicity and photostability Wood Fiber Sci., 46 (2014), pp. 109-117
J. Huang, S. Lyu, F. Fu, H. Chang, S. Wang Preparation of superhydrophobic coating with excellent abrasion resistance and durability using nanofibrillated cellulose RSC Adv., 6 (2016), pp. 1-7, 10.1039/c6ra23447j
V. Vardanyan, T. Galstian, B. Riedl Effect of addition of cellulose nanocrystals to wood coatings on color changes and surface roughness due to accelerated weathering J. Coat. Technol. Res., 12 (2015), pp. 247-258, 10.1007/s11998-014-9634-3
B.B. George, E. Suttie, A. Merlin, X. Deglise Photodegradation and photostabilisation of wood - The state of the art Polym. Degrad. Stab., 88 (2005), pp. 268-274, 10.1016/j.polymdegradstab.2004.10.018
dc.rights.license.none.fl_str_mv Atribución
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv p. 1-11
dc.coverage.temporal.spa.fl_str_mv Vol. 29
dc.publisher.spa.fl_str_mv Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Civil, Villavicencio
dc.publisher.program.spa.fl_str_mv Ingeniería Civil
dc.publisher.place.spa.fl_str_mv Villavicencio
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/a9a08a92-4c76-4ed3-a22a-2148fc913599/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808788856639586304
spelling Pacheco Pinilla, Claudia MarcelaBustos A., CecilaReyes, GuillermoOviedo, ClaudiaFernández Pérez, A.Elso, MhartynRojas, Orlando J.Vol. 292022-10-05T13:24:59Z2022-10-05T13:24:59Z2021-11-192352-4928https://doi.org/10.1016/j.mtcomm.2021.102990https://hdl.handle.net/20.500.12494/46608Pacheco, C. M., Cecilia, B. A., Reyes, G., Oviedo, C., Fernández-Pérez, A., Elso, M., & Rojas, O. J. (2021). Nanocomposite additive of SiO2/TiO2/nanocellulose on waterborne coating formulations for mechanical and aesthetic properties stability on wood. Materials Today Communications, 29, 1-11. https://doi.org/10.1016/j.mtcomm.2021.102990La madera y los materiales a base de madera se consideran materiales de construcción sostenibles; sin embargo, como son propensos a la degradación por factores bióticos y abióticos, a menudo requerían la adición de recubrimientos protectores. En este contexto, las opciones preferidas son los recubrimientos a base de agua ya que son solventes no agresivos (olor, toxicidad, riesgo de incendio) y finalmente eliminan la emisión de Compuestos Orgánicos Volátiles (COV). No obstante, estas reducciones implican una menor durabilidad y protección en comparación con los recubrimientos orgánicos convencionales. Este estudio demuestra que la incorporación de nanocelulosa producida a partir de residuos de poda de arándanos y NP de dióxido de titanio y dióxido de sílice en barnices a base de agua puede mejorar el rendimiento mecánico y la estabilidad de las superficies de madera. En particular, se mejoran las propiedades de adhesión y abrasión sin cambios significativos en otras propiedades, como la transparencia óptica, el color y el brillo del recubrimiento. Estos resultados presentan un potencial prometedor para diferentes aplicaciones en el contexto del desarrollo de productos para una economía circular en muebles, pisos y paneles de madera.Timber and wood-based materials are considered sustainable building materials; however, as they are prone to degradation by biotic and abiotic factors, they often required the addition of protecting coatings. In this context, the preferred options are waterborne coatings since they are non-aggressive solvents (odor, toxicity, fire risk) and ultimately eliminate the emission of Volatile Organic Compounds (VOCs). Notwithstanding, these reductions imply lower durability and protection as compared to conventional organic coatings. This study demonstrates that incorporating nanocellulose produced from blueberry pruning residues and titanium dioxide and silica dioxide NPs into waterborne varnishes can improve wooden surfaces' mechanical performance and stability. Particularly the adhesion and abrasion properties are enhanced without significant changes in other properties such as optical transparency, color, and coating gloss. These results present a promising potential for different applications in the context of developing products for a circular economy in furniture, floors, and wood paneling.Abstract -- Graphical Abstract -- Keywords -- 1. Introduction -- 2. Materials and methods -- 3. Results and discussion -- 4. Conclusion -- Declaration of Competing Interest -- Acknowledgments -- Appendix A. Supplementary material -- Referenceshttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=00014265750000-0003-3640-6363https://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000005897claudia.pacheco@campusucc.edu.cohttps://scholar.google.com/citations?user=l9eLAlcAAAAJ&hl=es&oi=aop. 1-11Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Civil, VillavicencioIngeniería CivilVillavicenciohttps://www-sciencedirect-com.bbibliograficas.ucc.edu.co/science/article/pii/S2352492821009752Materials Today CommunicationsS.M. Fufa, B.P. Jelle, P.J. Hovde, P.B. Jelle, J.P. Hovde Weathering performance of spruce coated with water based acrylic paint modified with TiO2 and clay nanoparticles, Prog Org. Coat., 76 (2013), pp. 1543-1548, 10.1016/j.porgcoat.2013.06.008M. Broda, C. Popescu Natural decay of archaeological oak wood versus artificial degradation processes — An FT-IR spectroscopy and X-ray diffraction studyA. Bukauskas, P. Mayencourt, P. Shepherd, B. Sharma, C. Mueller, P. Walker, J. Bregulla Whole timber construction: a state of the art review Constr. Build. Mater., 213 (2019), pp. 748-769, 10.1016/j.conbuildmat.2019.03.043S. Hardersen, L. Zapponi Wood degradation and the role of saproxylic insects for lignoforms Appl. Soil Ecol., 123 (2018), pp. 334-338, 10.1016/j.apsoil.2017.09.003M. Nikolic, J.M. Lawther, A.R. Sanadi Use of nanofillers in wood coatings: a scientific review J. Coat. Technol. Res., 12 (2015), pp. 445-461, 10.1007/s11998-015-9659-2M.H. Ramage, H. Burridge, M. Busse-Wicher, G. Fereday, T. Reynolds, D.U. Shah, G. Wu, L. Yu, P. Fleming, D. Densley-Tingley, J. Allwood, P. Dupree, P.F. Linden, O. Scherman The wood from the trees: the use of timber in construction Renew. Sustain. Energy Rev., 68 (2017), pp. 333-359, 10.1016/j.rser.2016.09.107F. Grüneberger, T. Künniger, T. Zimmermann, M. Arnold Nanofibrillated cellulose in wood coatings: mechanical properties of free composite films J. Mater. Sci., 49 (2014), pp. 6437-6448, 10.1007/s10853-014-8373-2S. Veigel, G. Grüll, S. Pinkl, M. Obersriebnig, U. Müller, W. Gindl-Altmutter Improving the mechanical resistance of waterborne wood coatings by adding cellulose nanofibres React. Funct. Polym., 85 (2014), pp. 214-220, 10.1016/j.reactfunctpolym.2014.07.020M. Kluge, S. Veigel, S. Pinkl, U. Henniges, C. Zollfrank, A. Rössler, W. Gindl-Altmutter Nanocellulosic fillers for waterborne wood coatings: reinforcement effect on free-standing coating films Wood Sci. Technol., 51 (2017), pp. 601-613, 10.1007/s00226-017-0892-yA. Kaboorani, N. Auclair, B. Riedl, V. Landry Mechanical properties of UV-cured cellulose nanocrystal (CNC) nanocomposite coating for wood furniture, Prog. Org Coatings, 104 (2017), pp. 91-96F. Zafar, A. Ghosal, E. Sharmin, R. Chaturvedi, N. Nishat A review on cleaner production of polymeric and nanocomposite coatings based on waterborne polyurethane dispersions from seed oils, Prog Org. Coat., 131 (2019), pp. 259-275, 10.1016/j.porgcoat.2019.02.014Consejo de la Unión Europea, Directiva 1999/13/CE del Consejo de 11 de marzo de 1999, Relativa a la limitación de las emisiones de compuestos orgánicos volátiles debidas al uso de disolventes orgánicos en determinadas actividades e instalaciones., 1999.B. Poaty, V. Vardanyan, L. Wilczak, G. Chauve, B. Riedl Modification of cellulose nanocrystals as reinforcement derivatives for wood coatings, Prog Org. Coat., 77 (2014), pp. 813-820, 10.1016/j.porgcoat.2014.01.009C. Sow, B. Riedl, P. Blanchet UV-waterborne polyurethane-acrylate nanocomposite coatings containing alumina and silica nanoparticles for wood: Mechanical, optical, and thermal properties assessment J. Coat. Technol. Res., 8 (2011), pp. 211-221, 10.1007/s11998-010-9298-6D. Cheng, Y. Wen, X. An, X. Zhu, Y. Ni TEMPO-oxidized cellulose nanofibers (TOCNs) as a green reinforcement for waterborne polyurethane coating (WPU) on wood Carbohydr. Polym., 151 (2016), pp. 326-334, 10.1016/j.carbpol.2016.05.083M. Vlad Cristea, B. Riedl, P. Blanchet Enhancing the performance of exterior waterborne coatings for wood by inorganic nanosized UV absorbers, Prog Org. Coat., 69 (2010), pp. 432-441, 10.1016/j.porgcoat.2010.08.006T. Marzi Nanostructured materials for protection and reinforcement of timber structures: a review and future challenges Constr. Build. Mater., 97 (2015), pp. 119-130, 10.1016/j.conbuildmat.2015.07.016Y. Wang, Y. He, Q. Lai, M. Fan Review of the progress in preparing nano TiO2: an important environmental engineering material J. Environ. Sci., 26 (2014), pp. 2139-2177, 10.1016/j.jes.2014.09.023D.M. Mitrano, S. Motellier, S. Clavaguera, B. Nowack Review of nanomaterial aging and transformations through the life cycle of nano-enhanced products Environ. Int., 77 (2015), pp. 132-147, 10.1016/j.envint.2015.01.013R. Pandiyan, S. Ayyaru, Y.H. Ahn Non-toxic properties of TiO2 and STiO2 nanocomposite PES ultrafiltration membranes for application in membrane-based environmental biotechnology Ecotoxicol. Environ. Saf., 158 (2018), pp. 248-255, 10.1016/j.ecoenv.2018.04.027Z. Walsh-Korbs, L. Avérous Recent developments in the conservation of materials properties of historical wood Prog. Mater. Sci., 102 (2019), pp. 167-221, 10.1016/j.pmatsci.2018.12.001F. Grüneberger, T. Künniger, A. Huch, T. Zimmermann, M. Arnold Nanofibrillated cellulose in wood coatings: dispersion and stabilization of ZnO as UV absorber, Prog Org. Coat., 87 (2015), pp. 112-121, 10.1016/j.porgcoat.2015.05.025M.S. Lowry, D.R. Hubble, A.L. Wressell, M.S. Vratsanos, F.R. Pepe, C.R. Hegedus Assessment of UV-permeability in nano-ZnO filled coatings via high throughput experimentation J. Coat. Technol. Res., 5 (2008), pp. 233-239, 10.1007/s11998-007-9064-6P.O. Vasiliev, B. Faure, J.B. Sing Ng, L. Bergström Colloidal aspects relating to direct incorporation of TiO 2 nanoparticles into mesoporous spheres by an aerosol-assisted process Colloids IIterface Sci., 319 (2008), pp. 144-151, 10.1016/j.jcis.2007.11.013G.R. Tortella, O. Rubilar, N. Durán, M.C. Diez, M. Martínez, J. Parada, A.B. Seabra Silver nanoparticles: toxicity in model organisms as an overview of its hazard for human health and the environment J. Hazard. Mater., 390 (2020), Article 121974, 10.1016/j.jhazmat.2019.121974L.F.O. Silva, M. Santosh, M. Schindler, J. Gasparotto, G.L. Dotto, M.L.S. Oliveira, M.F. Hochella Nanoparticles in fossil and mineral fuel sectors and their impact on environment and human health: a review and perspective Gondwana Res., 92 (2021), pp. 184-201, 10.1016/j.gr.2020.12.026C. Guo, Y. Liu, Y. Li Adverse effects of amorphous silica nanoparticles: focus on human cardiovascular health J. Hazard. Mater., 406 (2021), Article 124626, 10.1016/j.jhazmat.2020.124626E. Hafemann, R. Battisti, C. Marangoni, R.A.F. Machado Valorization of royal palm tree agroindustrial waste by isolating cellulose nanocrystals Carbohydr. Polym., 218 (2019), pp. 188-198, 10.1016/j.carbpol.2019.04.086R.H.F. Faradilla, G. Lee, A. Rawal, T. Hutomo, M.H. Stenzel, J. Arcot Nanocellulose characteristics from the inner and outer layer of banana pseudo-stem prepared by TEMPO-mediated oxidation Cellulose, 23 (2016), pp. 3023-3037, 10.1007/s10570-016-1025-8Y.C. Ching, M. Ershad Ali, L.C. Abdullah, K.W. Choo, Y.C. Kuan, S.J. Julaihi, C.H. Chuah, N.S. Liou Rheological properties of cellulose nanocrystal-embedded polymer composites: a review Cellulose, 23 (2016), pp. 1011-1030, 10.1007/s10570-016-0868-3R. Kumar, A. Sabu, S.K. Tiwari Materials chemistry and the futurist eco-friendly applications of nanocellulose: status and prospect J. Saudi Chem. Soc., 22 (2018), pp. 949-978, 10.1016/j.jscs.2018.02.005L. Brinchi, F. Cotana, E. Fortunati, J.M. Kenny Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications Carbohydr. Polym., 94 (2013), pp. 154-169, 10.1016/j.carbpol.2013.01.033S. Naduparambath, J. T.V, S. V, S. M.P, A.K. Balan, P. E, V. Shaniba, S. M.P, A.K. Balan, E. Purushothaman Isolation and characterisation of cellulose nanocrystals from sago seed shells Carbohydr. Polym., 180 (2018), pp. 13-20, 10.1016/j.carbpol.2017.09.088P. Criado, F.M.J. Hossain, S. Salmieri, M. Lacroix Nanocellulose in food packaging Compos. Mater. Food Packag. (2017), pp. 297-329, 10.1002/9781119160243.ch10K. Liu, H. Liang, J. Nasrallah, L. Chen, L. Huang, Y. Ni Preparation of the CNC/Ag/beeswax composites for enhancing antibacterial and water resistance properties of paper Carbohydr. Polym., 142 (2016), pp. 183-188, 10.1016/j.carbpol.2016.01.044N.A. El-Wakil, E.A. Hassan, R.E. Abou-Zeid, A. Dufresne Development of wheat gluten/nanocellulose/titanium dioxide nanocomposites for active food packaging Carbohydr. Polym., 124 (2015), pp. 337-346, 10.1016/j.carbpol.2015.01.076K. Zhang, P. Sun, H. Liu, S. Shang, J. Song, D. Wang Extraction and comparison of carboxylated cellulose nanocrystals from bleached sugarcane bagasse pulp using two different oxidation methods Carbohydr. Polym., 138 (2016), pp. 237-243, 10.1016/j.carbpol.2015.11.038M. Kaushik, A. Moores Review: nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis Green. Chem. (2016), pp. 622-637, 10.1039/c5gc02500aK.S. Prado, M.A.S. Spinacé Isolation and characterization of cellulose nanocrystals from pineapple crown waste and their potential uses Int. J. Biol. Macromol., 122 (2019), pp. 410-416, 10.1016/j.ijbiomac.2018.10.187C. Pacheco Pinilla, C. Avila, G. Reyes, M. Aguayo, O. Rojas, M. Aguayo Characterization of residues from chilean blueberry bushes: a potential source of cellulose BioResources, 13 (2018), pp. 7345-7359, 10.15376/biores.13.4.7345-7359C.M. Pacheco, C.B. A, G. Reyes Cellulose nanocrystals from blueberry pruning residues isolated by ionic liquids and TEMPO-oxidation combined with mechanical disintegration J. Dispers. Sci. Technol., 41 (2020), pp. 1731-1741, 10.1080/01932691.2020.1775092C. Schütz, J. Sort, Z. Bacsik, V. Oliynyk, E. Pellicer, A. Fall, L. Wågberg, L. Berglund, L. Bergström, G. Salazar-Alvarez Hard and transparent films formed by nanocellulose–TiO2 nanoparticle hybrids PLoS One, 7 (2012), Article e45828, 10.1371/journal.pone.0045828F. Fan, M.S. Hamada, N. Li, G.Q. Li, C.X. Luo Multiple fungicide resistance in Botrytis cinerea from greenhouse strawberries in Hubei Province, China Plant Dis., 101 (2017), pp. 601-606, 10.1094/PDIS-09-16-1227-RED. Fernández-Ortuño, J.A. Torés, M. Chamorro, A. Pérez-García, A. de Vicente Characterization of resistance to six chemical classes of site-specific fungicides registered for gray mold control on strawberry in Spain Plant Dis., 100 (2016), pp. 2234-2239, 10.1094/PDIS-03-16-0280-REM. Kretschmer, M. Leroch, A. Mosbach, A.S. Walker, S. Fillinger, D. Mernke, H.J. Schoonbeek, J.M. Pradier, P. Leroux, M.A. De Waard, M. Hahn Fungicide-driven evolution and molecular basis of multidrug resistance in field populations of the grey mould fungus Botrytis cinerea PLoS Pathog., 5 (2009), 10.1371/journal.ppat.1000696STATGRAPHICS Centurion XVII, Software STATGRAPHICS Centurion XVIII, (2010). https://statgraphics.net/.ASTM D2244, Standar Practice for Calculation of Color Tolerances and Color differences from Instrumentally Measured Color Coordinates, 2016. 〈https://doi-org.bbibliograficas.ucc.edu.co/10.1520/D2244–16〉.ASTM D523, Standar Test Method for Specular Gloss, 2014. 〈https://doi-org.bbibliograficas.ucc.edu.co/10.1520/D0523–14〉.ASTM G154, Standard Practice for Operating Fluorescent Ultraviolet (UV) Lamp Apparatus for Exposure of Nonmetallic Materials, 2016. 〈https://doi-org.bbibliograficas.ucc.edu.co/10.1520/G0154–16〉.ASTM D4541, Standar Test Method for Pull-Off Strength of Coatings Using Portable Adhesion Testers, United States, 2017. 〈https://doi-org.bbibliograficas.ucc.edu.co/10.1520/D4541–17〉.ASTM D4060, Standard Test Method for Abrasion Resistance of Organic Coatings by the Taber Abraser, 2014. 〈https://doi-org.bbibliograficas.ucc.edu.co/10.1520/D4060–19〉.ASTM D3363, Standar Test Method for Film Hardness by Pencil Test, United States, 2011. 〈https://doi-org.bbibliograficas.ucc.edu.co/10.1520/D3363–05R11E02〉.UNE 48–027-80, Resistencia de los Recubrimientos Orgánicos a los Agentes Químicos de uso Doméstico, Norma Española, 1980.V. Fuskele, R.M. Sarviya Recent developments in nanoparticles synthesis, preparation and stability of nanofluids Mater. Today Proc., 4 (2017), pp. 4049-4060, 10.1016/j.matpr.2017.02.307Y.M. Zhou, S.Y. Fu, L.M. Zheng, H.Y. Zhan Effect of nanocellulose isolation techniques on the formation of reinforced poly(vinyl alcohol) nanocomposite films Express Polym. Lett., 6 (2012), pp. 794-804, 10.3144/expresspolymlett.2012.85M. Markiewicz, W. Mrozik, K. Rezwan, J. Thöming, J. Hupka, C. Jungnickel Changes in zeta potential of imidazolium ionic liquids modified minerals - Implications for determining mechanism of adsorption Chemosphere, 90 (2013), pp. 706-712, 10.1016/j.chemosphere.2012.09.053T. Angelova, N. Rangelova, N. Georgieva Antifungal properties of SiO2/hydroxypropyl cellulose hybrid materials doped with zinc ions against Candida albicans 74 Food Sci. Appl. Biotechnol., 2 (2018), pp. 104-107F. Chen, X. Yang, Q. Wu Antifungal capability of TiO 2 coated film on moist wood Build. Environ., 44 (2009), pp. 1088-1093, 10.1016/j.buildenv.2008.07.018F. Haghighi, S.R. Mohammadi, P. Mohammadi, S. Hosseinkhani, R. Shidpour Antifungal activity of TiO 2 nanoparticles and EDTA on Candida albicans Biofilms Orig. Artic. Infect. Epidemiol. Med., 1 (2013), pp. 33-38 https://pdfs.semanticscholar.org/d816/127a0b7d75797b3497f3009f690985932dbc.pdfC. Maneerat, Y. Hayata Antifungal activity of TiO2 photocatalysis against Penicillium expansum in vitro and in fruit tests Int. J. Food Microbiol., 107 (2006), pp. 99-103, 10.1016/j.ijfoodmicro.2005.08.018T.J. Battin, F.V.D. Kammer, A. Weilhartner, S. Ottofuelling, T. Hofmann Nanostructured TiO2: transport behavior and effects on aquatic microbial communities under environmental conditions Environ. Sci. Technol., 43 (2009), pp. 8098-8104, 10.1021/es9017046H.A. Foster, I.B. Ditta, S. Varghese, A. Steele Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity Appl. Microbiol. Biotechnol., 90 (2011), pp. 1847-1868, 10.1007/s00253-011-3213-7J.-C. Sigoillot, J.-G. Berrin, M. Bey, L. Lesage-Meessen, A. Levasseur, A. Lomascolo, E. Record, E. Uzan-Boukhris Fungal Strategies for Lignin Degradation L. Jouanin, C. Lapierre (Eds.), Adv. Bot. Res., Academic Press (2012), pp. 263-308, 10.1016/B978-0-12-416023-1.00008-2A.A. Asanova, V.I. Polonskiy, N.S. Manukovsky, S.V. Khizhnyak Fungistatic activity of engineered nanoparticles Nanotechnologies Russ., 13 (2018), pp. 277-280, 10.1134/S1995078018030023V. Vardanyan, B. Poaty, G. Chauve, V. Landry, T. Galstian, B. Riedl Mechanical properties of UV-waterborne varnishes reinforced by cellulose nanocrystals J. Coat. Technol. Res., 11 (2014), pp. 841-852, 10.1007/s11998-014-9598-3P. Véronic, B. Blanchet Riedl Mechanical and optical properties of clay-based nanocomposites coatings for wood flooring Prog. Org. Coat., 67 (2010), pp. 381-388, 10.1016/j.porgcoat.2009.12.011M.V. Cristea, B. Riedl, P. Blanchet Effect of addition of nanosized UV absorbers on the physico-mechanical and thermal properties of an exterior waterborne stain for wood Prog. Org. Coat., 72 (2011), pp. 755-762, 10.1016/j.porgcoat.2011.08.007Raven Lining Systems, Adhesion Testing Pocket Guide, (2018). https://www.ravenlining.com/wp-content/uploads/2018/06/Adhesion-Testing-Pocket-Guide2.pdf (accessed November 7, 2019).A. Pizzi, K.L. Mittal Handbook of Adhesive Technology, Second Edi, Taylor & Francis, (2003), 10.1201/9781315120942S. Virtanen, S. Jämsä, R. Talja, H. Heikkinen, S. Vuoti Chemically modified cellulose nanofibril as an additive for two-component polyurethane coatings J. Appl. Polym. Sci., 134 (2017), pp. 1-14, 10.1002/app.44801S. Veigel, G. Grull, S. Pinkl, M. Obersriebnig, U. Muller, W. Gindl-Altmutter, G. Grüll, S. Pinkl, M. Obersriebnig, U. Müller, W. Gindl-Altmutter Improving the mechanical resistance of waterborne wood coatings by adding cellulose nanofibres React. Funct. Polym., 85 (2014), pp. 214-220, 10.1016/j.reactfunctpolym.2014.07.020N. Auclair, A. Kaboorani, B. Riedl, V. Landry, O. Hosseinaei, S. Wang Prog. Org. Coat., 123 (2018), pp. 27-34, 10.1016/j.porgcoat.2018.05.027M.R. Islam, M.D.H. Beg, S.S. Jamari Dispersion of montmorillonite nanoclays and their effects on the thermomechanical, structural and drying properties of palm oil based coating Prog. Org. Coat., 91 (2016), pp. 17-24, 10.1016/j.porgcoat.2015.11.015M. Vlad-Cristea, B. Riedl, P. Blanchet, E. Jimenez-Pique Nanocharacterization techniques for investigating the durability of wood coatings Eur. Polym. J., 48 (2012), pp. 441-453, 10.1016/j.eurpolymj.2011.12.002Y. Yuan, T. Randall Lee B.H.G. Bracco (Ed.), Chapter 1. Contact Angle and Wetting Properties, Surf. Sci. Tech., Springer-V, Houston (2013), p. 33, 10.1007/978-3-642-34243-1P. Samyn, G. Schoukens, P. Kiekens, P. Mast, H.V. van den Abbeele, D. Stanssens, L. Vonck Thermal resistance of organic nanoparticle coatings for hydrophobicity and water repellence of paper substrates Autex Res. J., 10 (2010), pp. 100-109V. Landry, P. Blanchet Weathering resistance of opaque PVDF-acrylic coatings applied on wood substrates Prog. Org. Coat., 75 (2012), pp. 494-501, 10.1016/j.porgcoat.2012.06.004X. Wang, S. Liu, H. Chang, J. Liu Sol-gel deposition Of TIO2 nanocoatings on wood surfaces with enhanced hydrophobicity and photostability Wood Fiber Sci., 46 (2014), pp. 109-117J. Huang, S. Lyu, F. Fu, H. Chang, S. Wang Preparation of superhydrophobic coating with excellent abrasion resistance and durability using nanofibrillated cellulose RSC Adv., 6 (2016), pp. 1-7, 10.1039/c6ra23447jV. Vardanyan, T. Galstian, B. Riedl Effect of addition of cellulose nanocrystals to wood coatings on color changes and surface roughness due to accelerated weathering J. Coat. Technol. Res., 12 (2015), pp. 247-258, 10.1007/s11998-014-9634-3B.B. George, E. Suttie, A. Merlin, X. Deglise Photodegradation and photostabilisation of wood - The state of the art Polym. Degrad. Stab., 88 (2005), pp. 268-274, 10.1016/j.polymdegradstab.2004.10.018Recubrimientos de maderaNanopartículas de síliceNanopartículas de TitaniaNanocelulosaRevestimiento base aguaMadera estéticaWood coatingsSilica nanoparticleTitania nanoparticlesNanocelluloseWaterborne coatingAesthetic woodNanocomposite additive of SiO2/TiO2/nanocellulose on waterborne coating formulations for mechanical and aesthetic properties stability on woodArtículohttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribucióninfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repository.ucc.edu.co/bitstreams/a9a08a92-4c76-4ed3-a22a-2148fc913599/download8a4605be74aa9ea9d79846c1fba20a33MD5120.500.12494/46608oai:repository.ucc.edu.co:20.500.12494/466082024-08-10 21:01:25.036metadata.onlyhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=