Measurement and correlation of solubility of ethylparaben in pure and binary solvents and thermodynamic properties of solution

La solubilidad de compuestos bioactivos como el etilparabeno (EtP) es importante para la comunidad científica. Por lo tanto, en el presente estudio se reportan la solubilidad, termodinámica de solución e interacciones soluto-solvente (a nivel molecular) del EtP en nueve mezclas de cosolventes {1-pro...

Full description

Autores:
Romero Nieto, Alba Miledy
Cerquera, Néstor Enrique
Delgado, Daniel Ricardo
Tipo de recurso:
Article of journal
Fecha de publicación:
2019
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/15547
Acceso en línea:
https://hdl.handle.net/20.500.12494/15547
Palabra clave:
Etilparabeno
solubilidad
van’t Hoff
Yalkowsky-Roseman
cosolvente
Ethylparaben
solubility
van’t Hoff
Yalkowsky-Roseman
cosolvent
Rights
openAccess
License
Atribución – No comercial – Compartir igual
id COOPER2_87b0e999ac194a7e2ac140ec52119914
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/15547
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.spa.fl_str_mv Measurement and correlation of solubility of ethylparaben in pure and binary solvents and thermodynamic properties of solution
title Measurement and correlation of solubility of ethylparaben in pure and binary solvents and thermodynamic properties of solution
spellingShingle Measurement and correlation of solubility of ethylparaben in pure and binary solvents and thermodynamic properties of solution
Etilparabeno
solubilidad
van’t Hoff
Yalkowsky-Roseman
cosolvente
Ethylparaben
solubility
van’t Hoff
Yalkowsky-Roseman
cosolvent
title_short Measurement and correlation of solubility of ethylparaben in pure and binary solvents and thermodynamic properties of solution
title_full Measurement and correlation of solubility of ethylparaben in pure and binary solvents and thermodynamic properties of solution
title_fullStr Measurement and correlation of solubility of ethylparaben in pure and binary solvents and thermodynamic properties of solution
title_full_unstemmed Measurement and correlation of solubility of ethylparaben in pure and binary solvents and thermodynamic properties of solution
title_sort Measurement and correlation of solubility of ethylparaben in pure and binary solvents and thermodynamic properties of solution
dc.creator.fl_str_mv Romero Nieto, Alba Miledy
Cerquera, Néstor Enrique
Delgado, Daniel Ricardo
dc.contributor.author.none.fl_str_mv Romero Nieto, Alba Miledy
Cerquera, Néstor Enrique
Delgado, Daniel Ricardo
dc.subject.spa.fl_str_mv Etilparabeno
solubilidad
van’t Hoff
Yalkowsky-Roseman
cosolvente
topic Etilparabeno
solubilidad
van’t Hoff
Yalkowsky-Roseman
cosolvente
Ethylparaben
solubility
van’t Hoff
Yalkowsky-Roseman
cosolvent
dc.subject.other.spa.fl_str_mv Ethylparaben
solubility
van’t Hoff
Yalkowsky-Roseman
cosolvent
description La solubilidad de compuestos bioactivos como el etilparabeno (EtP) es importante para la comunidad científica. Por lo tanto, en el presente estudio se reportan la solubilidad, termodinámica de solución e interacciones soluto-solvente (a nivel molecular) del EtP en nueve mezclas de cosolventes {1-propanol (n-PrOH) (1) + metanol (MeOH) (2)} incluyendo los solventes puros (metanol y 1-propanol) a tres temperaturas diferentes, (T = 283,2 K, 298,15 K y 313,2 K) y a presión constante (p = 0,1 MPa). La solubilidad experimental más alta del EtP (expresadas en fracción molar) se registró en n-PrOH a 313,15 K, así, la solubilidad en fracción molar de EtP aumenta cuando la temperatura aumenta y la proporción de n-PrOH aumentan. Las solubilidades ideales de EtP se estimaron utilizando los parámetros térmicos a tres temperaturas diferentes. Las solubilidades ideales de EtPa son similares a las solubilidades experimentales de EtP a cada temperatura. A partir de las solubilidades ideales de EtP se estimaron los coeficientes de actividad y sobre la base de los valores estimados de los coeficientes de actividad, se define que las interacciones más altas a nivel molecular se registraron en mezclas ricas en MeOH. Los datos aparentes del análisis termodinámico mostraron un proceso endotérmico con conducción entálpica para el EtP cada uno de los solventes y mezclas de solventes estudiados. El comportamiento de solubilidad se correlacionó adecuadamente mediante los modelos de van’t Hoff y Yalkowsky-Roseman combinados.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-12-11T15:33:39Z
dc.date.available.none.fl_str_mv 2019-12-11T15:33:39Z
dc.date.issued.none.fl_str_mv 2019-07-02
dc.type.none.fl_str_mv Artículo
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 00347418
dc.identifier.uri.spa.fl_str_mv 10.15446/rcciquifa.v48n2.82702
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12494/15547
dc.identifier.bibliographicCitation.spa.fl_str_mv Romero Nieto, A., Cerquera, N., & Delgado, D. (2019). Determinación y correlación de la solubilidad del etilparabeno en disolventes puros y binarios y propiedades termodinámicas de solución. Revista Colombiana de Ciencias Químico-Farmacéuticas, 48(2), 332-347. doi:https://doi.org/10.15446/rcciquifa.v48n2.82702
identifier_str_mv 00347418
10.15446/rcciquifa.v48n2.82702
Romero Nieto, A., Cerquera, N., & Delgado, D. (2019). Determinación y correlación de la solubilidad del etilparabeno en disolventes puros y binarios y propiedades termodinámicas de solución. Revista Colombiana de Ciencias Químico-Farmacéuticas, 48(2), 332-347. doi:https://doi.org/10.15446/rcciquifa.v48n2.82702
url https://hdl.handle.net/20.500.12494/15547
dc.relation.isversionof.spa.fl_str_mv https://revistas.unal.edu.co/index.php/rccquifa/article/view/82702
dc.relation.ispartofjournal.spa.fl_str_mv Revista Colombiana de Ciencias Químico-Farmacéuticas
dc.relation.references.spa.fl_str_mv H.P. Kohli, S. Gupta, M. Chakraborty, Extraction of Ethylparaben by emulsion liquid membrane: Statistical analysis of operating parameters, Colloids Surf. A., 539, 371-381 (2018). D. Błędzka, J. Gromadzińska, W. Wąsowicz, Parabens from environmental studies to human health, Environ. Int., 67, 27-42 (2014). Y.P. Chin, S. Mohamad, M.R.B. Abas, Removal of parabens from aqueous solution using β-cyclodextrin cross-linked polymer, Int. J. Mol. Sci., 11, 3459-3471 (2010). Z.J. Cárdenas, D.M. Jiménez, D.R. Delgado, O.A. Almanza, A. Jouyban, F. Martínez, W.E. Acree Jr, Solubility and preferential solvation of some n-alkylparabens in methanol + water mixtures at 298.15 K, J. Chem. Thermodyn., 108, 26-37 (2017). A.C. Gaviria-Castillo, J.D. Artunduaga-Tole, J.D. Rodríguez-Rubiano, J.A. Zuñiga-Andrade, D.R. Delgado, A. Jouyban, F. Martínez, Solution thermodynamics and preferential solvation of triclocarban in {1, 4-dioxane (1)+ water (2)} mixtures at 298.15 K, Phys. Chem. Liq., 57, 55-66 (2019). D.R. Delgado, E.M. Mogollon-Waltero, C.P. Ortiz, M.Á. Peña, O.A. Almanza, F. Martinez, A. Jouyban, Enthalpy-entropy compensation analysis of the triclocarban dissolution process in some {1, 4-dioxane (1)+ water (2)} mixtures, J. Mol. Liq., 271, 522-529 (2018). M. Barzegar-Jalali, E. Rahimpour, F. Martinez, A. Jouyban, Generally trained models to predict drug solubility in methanol + water mixtures, J. Mol. Liq., 264, 631-644 (2018). M.A. Ruidiaz, D.R. Delgado, C.P. Mora, A. Yurquina, F. Martínez, Estimation of the indomethacin solubility in ethanol+ water mixtures by the extended Hildebrand solubility approach, Rev. Colomb. Cienc. Quím. Farm., 39(1), 79-95 (2010). R.G. Sotomayor, A.R. Holguín, D.M. Cristancho, D.R. Delgado, F. Martínez, Extended Hildebrand Solubility Approach applied to piroxicam in ethanol+ water mixtures, J. Mol. Liq., 180, 34-38 (2013) D.R. Delgado, E.F. Vargas, F. Martínez, Thermodynamic study of the solubility of procaine HCl in some ethanol+ water cosolvent mixtures, J. Chem. Eng. Data, 55, 2900-2904 (2010). D.M. Jiménez, Z.J. Cardenas, D.R. Delgado, M.Á. Peña, F. Martínez, Solubility temperature dependence and preferential solvation of sulfadiazine in 1, 4-dioxane+ water cosolvent mixtures, Fluid Phase Equilib., 397, 26-36 (2015). D.R. Delgado, F. Martínez, Solubility and preferential solvation of sulfadiazine in methanol+ water mixtures at several temperatures, Fluid Phase Equilib., 379, 128-138 (2015). D.R. Delgado, M.A. Peña, F. Martínez, Preferential solvation of some sulfonamides in propylene glycol + water solvent mixtures according to the IKBI and QLQC methods, J. Solution Chem., 43, 360-374 (2014). D.R. Delgado, M.Á Peña, F. Martínez, Preferential solvation of acetaminophen in ethanol+ water solvent mixtures according to the inverse Kirkwood-Buff integrals method, Rev. Colomb. Cienc. Quím. Farm., 42, 298-314 (2013). A. Jouyban, Handbook of Solubility Data for Pharmaceuticals, CRC Press, Boca Raton, FL (2010). S.A. Kenneth, J.W. Mauger, H. Petersen, Jr, A.N. Paruta, Solubility profiles and thermodynamics of parabens in aliphatic alcohols, J. Pharm. Sci., 66, 42-48 (1977). R.R. Krug, W.G. Hunter, R.A. Grieger, Enthalpy-entropy compensation. 1. Some fundamental statistical problems associated with the analysis of van’t Hoff and Arrhenius data, J. Phys. Chem., 80, 2335-2341 (1976). R.R. Krug, W.G. Hunter, R.A. Grieger, Enthalpy-entropy compensation. 2. Separation of the chemical from the statistical effect, J. Phys. Chem., 80, 2341-2351 (1976). D.R. Delgado, O.A. Almanza, F. Martínez, M.A. Peña, A. Jouyban, W.E. Acree Jr., Solution thermodynamics and preferential solvation of sulfamethazine in (methanol+ water) mixtures, J. Chem. Thermodyn., 97, 264–276 (2016). E.A. Cantillo, D.R. Delgado, F. Martinez, Solution thermodynamics of indomethacin in ethanol+ propylene glycol mixtures, J. Mol. Liq., 181, 62-67 (2013). D.M. Jiménez, Z.J. Cárdenas, D.R. Delgado, A. Jouyban, F. Martínez, Solubility and solution thermodynamics of meloxicam in 1, 4-dioxane and water mixtures, Ind. Eng. Chem. Res., 53(42), 16550-16558 (2014). D.R. Delgado, M.A. Ruidiaz, S.M. Gómez, M. Gantiva, F. Martínez, Thermodynamic study of the solubility of sodium naproxen in some ethanol+ water mixtures, Quím. Nova, 33(9), 1923-1927 (2010). G.L. Perlovich, S.V. Kurkov, A.N. Kinchin, A. Bauer-Brandl, Thermodynamics of solutions III: Comparison of the solvation of (+)-naproxen with other NSAIDs, Eur. J. Pharm. Biopharm., 57, 411-420 (2004). P. Bustamante, S. Romero, M.A. Peña, M. Escalera, A. Reillo, Nonlinear enthalpy-entropy compensation for the solubility of drugs in solvent mixtures: Paracetamol, acetanilide and nalidixic acid in dioxane-water, J. Pharm. Sci., 87, 1590-1596 (1998). D.R. Delgado, A. Jouyban, F. Martínez, Solubility and preferential solvation of meloxicam in methanol+ water mixtures at 298.15 K, J. Mol. Liq., 197, 368-373 (2014). A. Fathi-Azarbayjani, M. Abbasi, J. Vaez-Gharamaleki, A. Jouyban, Measurement and correlation of deferiprone solubility: Investigation of solubility parameter and application of van’t Hoff equation and Jouyban-Acree model, J. Mol. Liq., 215, 339-344 (2016). E. Mohammadian, E. Rahimpour, F. Martinez, A. Jouyban, Budesonide solubility in polyethylene glycol 400 + water at different temperatures: Experimental measurement and mathematical modelling, J. Mol. Liq., 274, 418-425 (2019). M.A. Ruidiaz, D.R. Delgado, F. Martínez, Performance of the Jouyban-Acree and Yalkowsky-Roseman models for estimating the solubility of indomethacin in ethanol + water mixtures, Rev. Acad. Colomb. Cienc. Exact. Fis. Nat., 35, 329-336 (2011). S.H. Yalkowsky, T.J. Roseman, Solubilization of drugs by cosolvents. In Techniques of Solubilization of Drugs, edited by S.H. Yalkowsky, Marcel Dekker, Inc., New York, 1981, pp. 91-134. S.H. Yalkowsky, S.C. Valvani, Solubility and partitioning I: Solubility of nonelectrolytes in water, J. Pharm. Sci., 69, 912-922 (1980). E.A. Ahumada, D.R. Delgado, F. Martínez, Solubility of acetaminophen in polyethylene glycol400+ water mixtures according to the extended Hildebrand solubility approach, Rev. Colomb. Quim. 41(3), 433-477 (2012). M.A. Ruidiaz, D.R. Delgado, F. Martínez, Correlating the solubility of indomethacin in 1, 4-dioxane+ water mixtures by means of the Jouyban-Acree model, Rev. Colomb. Cienc. Quim. Farm., 39 (2), 211-226 (2010). S.H. Yalkowsky, Solubility and Solubilization in Aqueous Media, American Chemical Society and Oxford University Press, New York, 1999, pp. 180-235. A. Beerbower, P.L. Wu, A. Martin, Expanded solubility parameter approach 1. Naphthalene and benzoic acid in individual solvents, J. Pharm. Sci., 73, 179-188 (1984). M.A.A. Fakhree, D.R. Delgado, F. Martínez, A. Jouyban, The importance of dielectric constant for drug solubility prediction in binary solvent mixtures: electrolytes and zwitterions in water+ ethanol, AAPS PharmSciTech., 11(4), 1726- 1729 (2010). A. Reillo, M. Cordoba, B. Escalera, E. Selles, M. Cordoba Jr., Prediction of sulfamethiazole solubility in dioxane-water mixtures, Pharmazie, 50, 472-475 (1995).
D. Błędzka, J. Gromadzińska, W. Wąsowicz, Parabens from environmental studies to human health, Environ. Int., 67, 27-42 (2014).
Y.P. Chin, S. Mohamad, M.R.B. Abas, Removal of parabens from aqueous solution using β-cyclodextrin cross-linked polymer, Int. J. Mol. Sci., 11, 3459-3471 (2010).
Z.J. Cárdenas, D.M. Jiménez, D.R. Delgado, O.A. Almanza, A. Jouyban, F. Martínez, W.E. Acree Jr, Solubility and preferential solvation of some n-alkylparabens in methanol + water mixtures at 298.15 K, J. Chem. Thermodyn., 108, 26-37 (2017).
A.C. Gaviria-Castillo, J.D. Artunduaga-Tole, J.D. Rodríguez-Rubiano, J.A. Zuñiga-Andrade, D.R. Delgado, A. Jouyban, F. Martínez, Solution thermodynamics and preferential solvation of triclocarban in {1, 4-dioxane (1)+ water (2)} mixtures at 298.15 K, Phys. Chem. Liq., 57, 55-66 (2019).
D.R. Delgado, E.M. Mogollon-Waltero, C.P. Ortiz, M.Á. Peña, O.A. Almanza, F. Martinez, A. Jouyban, Enthalpy-entropy compensation analysis of the triclocarban dissolution process in some {1, 4-dioxane (1)+ water (2)} mixtures, J. Mol. Liq., 271, 522-529 (2018).
M. Barzegar-Jalali, E. Rahimpour, F. Martinez, A. Jouyban, Generally trained models to predict drug solubility in methanol + water mixtures, J. Mol. Liq., 264, 631-644 (2018).
M.A. Ruidiaz, D.R. Delgado, C.P. Mora, A. Yurquina, F. Martínez, Estimation of the indomethacin solubility in ethanol+ water mixtures by the extended Hildebrand solubility approach, Rev. Colomb. Cienc. Quím. Farm., 39(1), 79-95 (2010).
R.G. Sotomayor, A.R. Holguín, D.M. Cristancho, D.R. Delgado, F. Martínez, Extended Hildebrand Solubility Approach applied to piroxicam in ethanol+ water mixtures, J. Mol. Liq., 180, 34-38 (2013)
D.R. Delgado, E.F. Vargas, F. Martínez, Thermodynamic study of the solubility of procaine HCl in some ethanol+ water cosolvent mixtures, J. Chem. Eng. Data, 55, 2900-2904 (2010).
D.M. Jiménez, Z.J. Cardenas, D.R. Delgado, M.Á. Peña, F. Martínez, Solubility temperature dependence and preferential solvation of sulfadiazine in 1, 4-dioxane+ water cosolvent mixtures, Fluid Phase Equilib., 397, 26-36 (2015)
D.R. Delgado, F. Martínez, Solubility and preferential solvation of sulfadiazine in methanol+ water mixtures at several temperatures, Fluid Phase Equilib., 379, 128-138 (2015).
D.R. Delgado, M.A. Peña, F. Martínez, Preferential solvation of some sulfonamides in propylene glycol + water solvent mixtures according to the IKBI and QLQC methods, J. Solution Chem., 43, 360-374 (2014).
D.R. Delgado, M.Á Peña, F. Martínez, Preferential solvation of acetaminophen in ethanol+ water solvent mixtures according to the inverse Kirkwood-Buff integrals method, Rev. Colomb. Cienc. Quím. Farm., 42, 298-314 (2013).
A. Jouyban, Handbook of Solubility Data for Pharmaceuticals, CRC Press, Boca Raton, FL (2010).
S.A. Kenneth, J.W. Mauger, H. Petersen, Jr, A.N. Paruta, Solubility profiles and thermodynamics of parabens in aliphatic alcohols, J. Pharm. Sci., 66, 42-48 (1977).
R.R. Krug, W.G. Hunter, R.A. Grieger, Enthalpy-entropy compensation. 1. Some fundamental statistical problems associated with the analysis of van’t Hoff and Arrhenius data, J. Phys. Chem., 80, 2335-2341 (1976).
R.R. Krug, W.G. Hunter, R.A. Grieger, Enthalpy-entropy compensation. 2. Separation of the chemical from the statistical effect, J. Phys. Chem., 80, 2341-2351 (1976).
D.R. Delgado, O.A. Almanza, F. Martínez, M.A. Peña, A. Jouyban, W.E. Acree Jr., Solution thermodynamics and preferential solvation of sulfamethazine in (methanol+ water) mixtures, J. Chem. Thermodyn., 97, 264–276 (2016).
E.A. Cantillo, D.R. Delgado, F. Martinez, Solution thermodynamics of indomethacin in ethanol+ propylene glycol mixtures, J. Mol. Liq., 181, 62-67 (2013).
D.M. Jiménez, Z.J. Cárdenas, D.R. Delgado, A. Jouyban, F. Martínez, Solubility and solution thermodynamics of meloxicam in 1, 4-dioxane and water mixtures, Ind. Eng. Chem. Res., 53(42), 16550-16558 (2014).
D.R. Delgado, M.A. Ruidiaz, S.M. Gómez, M. Gantiva, F. Martínez, Thermodynamic study of the solubility of sodium naproxen in some ethanol+ water mixtures, Quím. Nova, 33(9), 1923-1927 (2010).
G.L. Perlovich, S.V. Kurkov, A.N. Kinchin, A. Bauer-Brandl, Thermodynamics of solutions III: Comparison of the solvation of (+)-naproxen with other NSAIDs, Eur. J. Pharm. Biopharm., 57, 411-420 (2004).
P. Bustamante, S. Romero, M.A. Peña, M. Escalera, A. Reillo, Nonlinear enthalpy-entropy compensation for the solubility of drugs in solvent mixtures: Paracetamol, acetanilide and nalidixic acid in dioxane-water, J. Pharm. Sci., 87, 1590-1596 (1998).
D.R. Delgado, A. Jouyban, F. Martínez, Solubility and preferential solvation of meloxicam in methanol+ water mixtures at 298.15 K, J. Mol. Liq., 197, 368-373 (2014).
A. Fathi-Azarbayjani, M. Abbasi, J. Vaez-Gharamaleki, A. Jouyban, Measurement and correlation of deferiprone solubility: Investigation of solubility parameter and application of van’t Hoff equation and Jouyban-Acree model, J. Mol. Liq., 215, 339-344 (2016).
E. Mohammadian, E. Rahimpour, F. Martinez, A. Jouyban, Budesonide solubility in polyethylene glycol 400 + water at different temperatures: Experimental measurement and mathematical modelling, J. Mol. Liq., 274, 418-425 (2019).
M.A. Ruidiaz, D.R. Delgado, F. Martínez, Performance of the Jouyban-Acree and Yalkowsky-Roseman models for estimating the solubility of indomethacin in ethanol + water mixtures, Rev. Acad. Colomb. Cienc. Exact. Fis. Nat., 35, 329-336 (2011).
S.H. Yalkowsky, T.J. Roseman, Solubilization of drugs by cosolvents. In Techniques of Solubilization of Drugs, edited by S.H. Yalkowsky, Marcel Dekker, Inc., New York, 1981, pp. 91-134.
S.H. Yalkowsky, S.C. Valvani, Solubility and partitioning I: Solubility of nonelectrolytes in water, J. Pharm. Sci., 69, 912-922 (1980).
E.A. Ahumada, D.R. Delgado, F. Martínez, Solubility of acetaminophen in polyethylene glycol400+ water mixtures according to the extended Hildebrand solubility approach, Rev. Colomb. Quim. 41(3), 433-477 (2012).
M.A. Ruidiaz, D.R. Delgado, F. Martínez, Correlating the solubility of indomethacin in 1, 4-dioxane+ water mixtures by means of the Jouyban-Acree model, Rev. Colomb. Cienc. Quim. Farm., 39 (2), 211-226 (2010).
S.H. Yalkowsky, Solubility and Solubilization in Aqueous Media, American Chemical Society and Oxford University Press, New York, 1999, pp. 180-235.
A. Beerbower, P.L. Wu, A. Martin, Expanded solubility parameter approach 1. Naphthalene and benzoic acid in individual solvents, J. Pharm. Sci., 73, 179-188 (1984).
M.A.A. Fakhree, D.R. Delgado, F. Martínez, A. Jouyban, The importance of dielectric constant for drug solubility prediction in binary solvent mixtures: electrolytes and zwitterions in water+ ethanol, AAPS PharmSciTech., 11(4), 1726- 1729 (2010).
dc.rights.license.none.fl_str_mv Atribución – No comercial – Compartir igual
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución – No comercial – Compartir igual
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv p. 332-347
dc.coverage.temporal.spa.fl_str_mv Vol. 48, No. 2
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Industrial, Neiva
dc.publisher.program.spa.fl_str_mv Ingeniería Industrial
dc.publisher.place.spa.fl_str_mv Neiva
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/4a9cab34-e682-47bc-b921-14b5c424b10d/download
https://repository.ucc.edu.co/bitstreams/909fd66e-9ed0-456c-af59-ca303db1b335/download
https://repository.ucc.edu.co/bitstreams/adc05520-a5f7-409c-be9f-6318422186fe/download
https://repository.ucc.edu.co/bitstreams/a8dd48ee-9219-4c43-a570-dd8f9205587b/download
bitstream.checksum.fl_str_mv 9f88f299960f3f10054ca4ca359d5c09
3bce4f7ab09dfc588f126e1e36e98a45
6056ac65494ecf419c7837c8948e5f31
ada92db309b17b28bcad6779432d9ad8
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1814247155743850496
spelling Romero Nieto, Alba MiledyCerquera, Néstor EnriqueDelgado, Daniel RicardoVol. 48, No. 22019-12-11T15:33:39Z2019-12-11T15:33:39Z2019-07-020034741810.15446/rcciquifa.v48n2.82702https://hdl.handle.net/20.500.12494/15547Romero Nieto, A., Cerquera, N., & Delgado, D. (2019). Determinación y correlación de la solubilidad del etilparabeno en disolventes puros y binarios y propiedades termodinámicas de solución. Revista Colombiana de Ciencias Químico-Farmacéuticas, 48(2), 332-347. doi:https://doi.org/10.15446/rcciquifa.v48n2.82702La solubilidad de compuestos bioactivos como el etilparabeno (EtP) es importante para la comunidad científica. Por lo tanto, en el presente estudio se reportan la solubilidad, termodinámica de solución e interacciones soluto-solvente (a nivel molecular) del EtP en nueve mezclas de cosolventes {1-propanol (n-PrOH) (1) + metanol (MeOH) (2)} incluyendo los solventes puros (metanol y 1-propanol) a tres temperaturas diferentes, (T = 283,2 K, 298,15 K y 313,2 K) y a presión constante (p = 0,1 MPa). La solubilidad experimental más alta del EtP (expresadas en fracción molar) se registró en n-PrOH a 313,15 K, así, la solubilidad en fracción molar de EtP aumenta cuando la temperatura aumenta y la proporción de n-PrOH aumentan. Las solubilidades ideales de EtP se estimaron utilizando los parámetros térmicos a tres temperaturas diferentes. Las solubilidades ideales de EtPa son similares a las solubilidades experimentales de EtP a cada temperatura. A partir de las solubilidades ideales de EtP se estimaron los coeficientes de actividad y sobre la base de los valores estimados de los coeficientes de actividad, se define que las interacciones más altas a nivel molecular se registraron en mezclas ricas en MeOH. Los datos aparentes del análisis termodinámico mostraron un proceso endotérmico con conducción entálpica para el EtP cada uno de los solventes y mezclas de solventes estudiados. El comportamiento de solubilidad se correlacionó adecuadamente mediante los modelos de van’t Hoff y Yalkowsky-Roseman combinados.Solubility data of bioactive compound such as ethylparaben (EtP) are important for the scientific and community. Therefore, in present study, solubility, solution thermodynamics and solute-solvent interactions (at molecular level) of EtP in nine cosolvent mixtures (1-propanol {n-PrOH) (1) + methanol (MeOH) (2)} including pure solvent (methanol and 1-propanol) at three different temperatures, i.e. (T =283.2 K, 298.2 K, and 313.2 K) and constant pressure (p = 0.1 MPa) were studied. Experimental solubility of EtP (expressed in mole fraction) was observed highest in n-PrOH at 313.2 K, so, mole fraction solubility of EtP (x3) increases when temperature arises and increases with n-PrOH proportion increasing. Ideal solubilities of EtP were estimated using their thermal parameters at three different temperatures. Ideal solubilities of EtP were observed similar to experimental solubilities of EtP at each temperature. With the help of ideal solubilities of EtP, activity coefficients were estimated. Based on estimated values of activity coefficients, highest interactions at molecular level were observed in rich-MeOH mixtures. Apparent thermodynamic analysis data showed endothermic and enthalpy-driven dissolution of EtP in each solvent and mixture studied. Solubility behavior was adequately correlated by means of the van’t Hoff and Yalkowsky-Roseman models combined.http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001402116https://orcid.org/0000-0002-4835-9739https://scienti.colciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000004151danielr.delgado@campusucc.edu.cohttps://scholar.google.com/citations?hl=es&user=OW0mejcAAAAJ&view_op=list_worksp. 332-347Universidad Nacional de ColombiaUniversidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Industrial, NeivaIngeniería IndustrialNeivahttps://revistas.unal.edu.co/index.php/rccquifa/article/view/82702Revista Colombiana de Ciencias Químico-FarmacéuticasH.P. Kohli, S. Gupta, M. Chakraborty, Extraction of Ethylparaben by emulsion liquid membrane: Statistical analysis of operating parameters, Colloids Surf. A., 539, 371-381 (2018). D. Błędzka, J. Gromadzińska, W. Wąsowicz, Parabens from environmental studies to human health, Environ. Int., 67, 27-42 (2014). Y.P. Chin, S. Mohamad, M.R.B. Abas, Removal of parabens from aqueous solution using β-cyclodextrin cross-linked polymer, Int. J. Mol. Sci., 11, 3459-3471 (2010). Z.J. Cárdenas, D.M. Jiménez, D.R. Delgado, O.A. Almanza, A. Jouyban, F. Martínez, W.E. Acree Jr, Solubility and preferential solvation of some n-alkylparabens in methanol + water mixtures at 298.15 K, J. Chem. Thermodyn., 108, 26-37 (2017). A.C. Gaviria-Castillo, J.D. Artunduaga-Tole, J.D. Rodríguez-Rubiano, J.A. Zuñiga-Andrade, D.R. Delgado, A. Jouyban, F. Martínez, Solution thermodynamics and preferential solvation of triclocarban in {1, 4-dioxane (1)+ water (2)} mixtures at 298.15 K, Phys. Chem. Liq., 57, 55-66 (2019). D.R. Delgado, E.M. Mogollon-Waltero, C.P. Ortiz, M.Á. Peña, O.A. Almanza, F. Martinez, A. Jouyban, Enthalpy-entropy compensation analysis of the triclocarban dissolution process in some {1, 4-dioxane (1)+ water (2)} mixtures, J. Mol. Liq., 271, 522-529 (2018). M. Barzegar-Jalali, E. Rahimpour, F. Martinez, A. Jouyban, Generally trained models to predict drug solubility in methanol + water mixtures, J. Mol. Liq., 264, 631-644 (2018). M.A. Ruidiaz, D.R. Delgado, C.P. Mora, A. Yurquina, F. Martínez, Estimation of the indomethacin solubility in ethanol+ water mixtures by the extended Hildebrand solubility approach, Rev. Colomb. Cienc. Quím. Farm., 39(1), 79-95 (2010). R.G. Sotomayor, A.R. Holguín, D.M. Cristancho, D.R. Delgado, F. Martínez, Extended Hildebrand Solubility Approach applied to piroxicam in ethanol+ water mixtures, J. Mol. Liq., 180, 34-38 (2013) D.R. Delgado, E.F. Vargas, F. Martínez, Thermodynamic study of the solubility of procaine HCl in some ethanol+ water cosolvent mixtures, J. Chem. Eng. Data, 55, 2900-2904 (2010). D.M. Jiménez, Z.J. Cardenas, D.R. Delgado, M.Á. Peña, F. Martínez, Solubility temperature dependence and preferential solvation of sulfadiazine in 1, 4-dioxane+ water cosolvent mixtures, Fluid Phase Equilib., 397, 26-36 (2015). D.R. Delgado, F. Martínez, Solubility and preferential solvation of sulfadiazine in methanol+ water mixtures at several temperatures, Fluid Phase Equilib., 379, 128-138 (2015). D.R. Delgado, M.A. Peña, F. Martínez, Preferential solvation of some sulfonamides in propylene glycol + water solvent mixtures according to the IKBI and QLQC methods, J. Solution Chem., 43, 360-374 (2014). D.R. Delgado, M.Á Peña, F. Martínez, Preferential solvation of acetaminophen in ethanol+ water solvent mixtures according to the inverse Kirkwood-Buff integrals method, Rev. Colomb. Cienc. Quím. Farm., 42, 298-314 (2013). A. Jouyban, Handbook of Solubility Data for Pharmaceuticals, CRC Press, Boca Raton, FL (2010). S.A. Kenneth, J.W. Mauger, H. Petersen, Jr, A.N. Paruta, Solubility profiles and thermodynamics of parabens in aliphatic alcohols, J. Pharm. Sci., 66, 42-48 (1977). R.R. Krug, W.G. Hunter, R.A. Grieger, Enthalpy-entropy compensation. 1. Some fundamental statistical problems associated with the analysis of van’t Hoff and Arrhenius data, J. Phys. Chem., 80, 2335-2341 (1976). R.R. Krug, W.G. Hunter, R.A. Grieger, Enthalpy-entropy compensation. 2. Separation of the chemical from the statistical effect, J. Phys. Chem., 80, 2341-2351 (1976). D.R. Delgado, O.A. Almanza, F. Martínez, M.A. Peña, A. Jouyban, W.E. Acree Jr., Solution thermodynamics and preferential solvation of sulfamethazine in (methanol+ water) mixtures, J. Chem. Thermodyn., 97, 264–276 (2016). E.A. Cantillo, D.R. Delgado, F. Martinez, Solution thermodynamics of indomethacin in ethanol+ propylene glycol mixtures, J. Mol. Liq., 181, 62-67 (2013). D.M. Jiménez, Z.J. Cárdenas, D.R. Delgado, A. Jouyban, F. Martínez, Solubility and solution thermodynamics of meloxicam in 1, 4-dioxane and water mixtures, Ind. Eng. Chem. Res., 53(42), 16550-16558 (2014). D.R. Delgado, M.A. Ruidiaz, S.M. Gómez, M. Gantiva, F. Martínez, Thermodynamic study of the solubility of sodium naproxen in some ethanol+ water mixtures, Quím. Nova, 33(9), 1923-1927 (2010). G.L. Perlovich, S.V. Kurkov, A.N. Kinchin, A. Bauer-Brandl, Thermodynamics of solutions III: Comparison of the solvation of (+)-naproxen with other NSAIDs, Eur. J. Pharm. Biopharm., 57, 411-420 (2004). P. Bustamante, S. Romero, M.A. Peña, M. Escalera, A. Reillo, Nonlinear enthalpy-entropy compensation for the solubility of drugs in solvent mixtures: Paracetamol, acetanilide and nalidixic acid in dioxane-water, J. Pharm. Sci., 87, 1590-1596 (1998). D.R. Delgado, A. Jouyban, F. Martínez, Solubility and preferential solvation of meloxicam in methanol+ water mixtures at 298.15 K, J. Mol. Liq., 197, 368-373 (2014). A. Fathi-Azarbayjani, M. Abbasi, J. Vaez-Gharamaleki, A. Jouyban, Measurement and correlation of deferiprone solubility: Investigation of solubility parameter and application of van’t Hoff equation and Jouyban-Acree model, J. Mol. Liq., 215, 339-344 (2016). E. Mohammadian, E. Rahimpour, F. Martinez, A. Jouyban, Budesonide solubility in polyethylene glycol 400 + water at different temperatures: Experimental measurement and mathematical modelling, J. Mol. Liq., 274, 418-425 (2019). M.A. Ruidiaz, D.R. Delgado, F. Martínez, Performance of the Jouyban-Acree and Yalkowsky-Roseman models for estimating the solubility of indomethacin in ethanol + water mixtures, Rev. Acad. Colomb. Cienc. Exact. Fis. Nat., 35, 329-336 (2011). S.H. Yalkowsky, T.J. Roseman, Solubilization of drugs by cosolvents. In Techniques of Solubilization of Drugs, edited by S.H. Yalkowsky, Marcel Dekker, Inc., New York, 1981, pp. 91-134. S.H. Yalkowsky, S.C. Valvani, Solubility and partitioning I: Solubility of nonelectrolytes in water, J. Pharm. Sci., 69, 912-922 (1980). E.A. Ahumada, D.R. Delgado, F. Martínez, Solubility of acetaminophen in polyethylene glycol400+ water mixtures according to the extended Hildebrand solubility approach, Rev. Colomb. Quim. 41(3), 433-477 (2012). M.A. Ruidiaz, D.R. Delgado, F. Martínez, Correlating the solubility of indomethacin in 1, 4-dioxane+ water mixtures by means of the Jouyban-Acree model, Rev. Colomb. Cienc. Quim. Farm., 39 (2), 211-226 (2010). S.H. Yalkowsky, Solubility and Solubilization in Aqueous Media, American Chemical Society and Oxford University Press, New York, 1999, pp. 180-235. A. Beerbower, P.L. Wu, A. Martin, Expanded solubility parameter approach 1. Naphthalene and benzoic acid in individual solvents, J. Pharm. Sci., 73, 179-188 (1984). M.A.A. Fakhree, D.R. Delgado, F. Martínez, A. Jouyban, The importance of dielectric constant for drug solubility prediction in binary solvent mixtures: electrolytes and zwitterions in water+ ethanol, AAPS PharmSciTech., 11(4), 1726- 1729 (2010). A. Reillo, M. Cordoba, B. Escalera, E. Selles, M. Cordoba Jr., Prediction of sulfamethiazole solubility in dioxane-water mixtures, Pharmazie, 50, 472-475 (1995).D. Błędzka, J. Gromadzińska, W. Wąsowicz, Parabens from environmental studies to human health, Environ. Int., 67, 27-42 (2014).Y.P. Chin, S. Mohamad, M.R.B. Abas, Removal of parabens from aqueous solution using β-cyclodextrin cross-linked polymer, Int. J. Mol. Sci., 11, 3459-3471 (2010).Z.J. Cárdenas, D.M. Jiménez, D.R. Delgado, O.A. Almanza, A. Jouyban, F. Martínez, W.E. Acree Jr, Solubility and preferential solvation of some n-alkylparabens in methanol + water mixtures at 298.15 K, J. Chem. Thermodyn., 108, 26-37 (2017).A.C. Gaviria-Castillo, J.D. Artunduaga-Tole, J.D. Rodríguez-Rubiano, J.A. Zuñiga-Andrade, D.R. Delgado, A. Jouyban, F. Martínez, Solution thermodynamics and preferential solvation of triclocarban in {1, 4-dioxane (1)+ water (2)} mixtures at 298.15 K, Phys. Chem. Liq., 57, 55-66 (2019).D.R. Delgado, E.M. Mogollon-Waltero, C.P. Ortiz, M.Á. Peña, O.A. Almanza, F. Martinez, A. Jouyban, Enthalpy-entropy compensation analysis of the triclocarban dissolution process in some {1, 4-dioxane (1)+ water (2)} mixtures, J. Mol. Liq., 271, 522-529 (2018).M. Barzegar-Jalali, E. Rahimpour, F. Martinez, A. Jouyban, Generally trained models to predict drug solubility in methanol + water mixtures, J. Mol. Liq., 264, 631-644 (2018).M.A. Ruidiaz, D.R. Delgado, C.P. Mora, A. Yurquina, F. Martínez, Estimation of the indomethacin solubility in ethanol+ water mixtures by the extended Hildebrand solubility approach, Rev. Colomb. Cienc. Quím. Farm., 39(1), 79-95 (2010).R.G. Sotomayor, A.R. Holguín, D.M. Cristancho, D.R. Delgado, F. Martínez, Extended Hildebrand Solubility Approach applied to piroxicam in ethanol+ water mixtures, J. Mol. Liq., 180, 34-38 (2013)D.R. Delgado, E.F. Vargas, F. Martínez, Thermodynamic study of the solubility of procaine HCl in some ethanol+ water cosolvent mixtures, J. Chem. Eng. Data, 55, 2900-2904 (2010).D.M. Jiménez, Z.J. Cardenas, D.R. Delgado, M.Á. Peña, F. Martínez, Solubility temperature dependence and preferential solvation of sulfadiazine in 1, 4-dioxane+ water cosolvent mixtures, Fluid Phase Equilib., 397, 26-36 (2015)D.R. Delgado, F. Martínez, Solubility and preferential solvation of sulfadiazine in methanol+ water mixtures at several temperatures, Fluid Phase Equilib., 379, 128-138 (2015).D.R. Delgado, M.A. Peña, F. Martínez, Preferential solvation of some sulfonamides in propylene glycol + water solvent mixtures according to the IKBI and QLQC methods, J. Solution Chem., 43, 360-374 (2014).D.R. Delgado, M.Á Peña, F. Martínez, Preferential solvation of acetaminophen in ethanol+ water solvent mixtures according to the inverse Kirkwood-Buff integrals method, Rev. Colomb. Cienc. Quím. Farm., 42, 298-314 (2013).A. Jouyban, Handbook of Solubility Data for Pharmaceuticals, CRC Press, Boca Raton, FL (2010).S.A. Kenneth, J.W. Mauger, H. Petersen, Jr, A.N. Paruta, Solubility profiles and thermodynamics of parabens in aliphatic alcohols, J. Pharm. Sci., 66, 42-48 (1977).R.R. Krug, W.G. Hunter, R.A. Grieger, Enthalpy-entropy compensation. 1. Some fundamental statistical problems associated with the analysis of van’t Hoff and Arrhenius data, J. Phys. Chem., 80, 2335-2341 (1976).R.R. Krug, W.G. Hunter, R.A. Grieger, Enthalpy-entropy compensation. 2. Separation of the chemical from the statistical effect, J. Phys. Chem., 80, 2341-2351 (1976).D.R. Delgado, O.A. Almanza, F. Martínez, M.A. Peña, A. Jouyban, W.E. Acree Jr., Solution thermodynamics and preferential solvation of sulfamethazine in (methanol+ water) mixtures, J. Chem. Thermodyn., 97, 264–276 (2016).E.A. Cantillo, D.R. Delgado, F. Martinez, Solution thermodynamics of indomethacin in ethanol+ propylene glycol mixtures, J. Mol. Liq., 181, 62-67 (2013).D.M. Jiménez, Z.J. Cárdenas, D.R. Delgado, A. Jouyban, F. Martínez, Solubility and solution thermodynamics of meloxicam in 1, 4-dioxane and water mixtures, Ind. Eng. Chem. Res., 53(42), 16550-16558 (2014).D.R. Delgado, M.A. Ruidiaz, S.M. Gómez, M. Gantiva, F. Martínez, Thermodynamic study of the solubility of sodium naproxen in some ethanol+ water mixtures, Quím. Nova, 33(9), 1923-1927 (2010).G.L. Perlovich, S.V. Kurkov, A.N. Kinchin, A. Bauer-Brandl, Thermodynamics of solutions III: Comparison of the solvation of (+)-naproxen with other NSAIDs, Eur. J. Pharm. Biopharm., 57, 411-420 (2004).P. Bustamante, S. Romero, M.A. Peña, M. Escalera, A. Reillo, Nonlinear enthalpy-entropy compensation for the solubility of drugs in solvent mixtures: Paracetamol, acetanilide and nalidixic acid in dioxane-water, J. Pharm. Sci., 87, 1590-1596 (1998).D.R. Delgado, A. Jouyban, F. Martínez, Solubility and preferential solvation of meloxicam in methanol+ water mixtures at 298.15 K, J. Mol. Liq., 197, 368-373 (2014).A. Fathi-Azarbayjani, M. Abbasi, J. Vaez-Gharamaleki, A. Jouyban, Measurement and correlation of deferiprone solubility: Investigation of solubility parameter and application of van’t Hoff equation and Jouyban-Acree model, J. Mol. Liq., 215, 339-344 (2016).E. Mohammadian, E. Rahimpour, F. Martinez, A. Jouyban, Budesonide solubility in polyethylene glycol 400 + water at different temperatures: Experimental measurement and mathematical modelling, J. Mol. Liq., 274, 418-425 (2019).M.A. Ruidiaz, D.R. Delgado, F. Martínez, Performance of the Jouyban-Acree and Yalkowsky-Roseman models for estimating the solubility of indomethacin in ethanol + water mixtures, Rev. Acad. Colomb. Cienc. Exact. Fis. Nat., 35, 329-336 (2011).S.H. Yalkowsky, T.J. Roseman, Solubilization of drugs by cosolvents. In Techniques of Solubilization of Drugs, edited by S.H. Yalkowsky, Marcel Dekker, Inc., New York, 1981, pp. 91-134.S.H. Yalkowsky, S.C. Valvani, Solubility and partitioning I: Solubility of nonelectrolytes in water, J. Pharm. Sci., 69, 912-922 (1980).E.A. Ahumada, D.R. Delgado, F. Martínez, Solubility of acetaminophen in polyethylene glycol400+ water mixtures according to the extended Hildebrand solubility approach, Rev. Colomb. Quim. 41(3), 433-477 (2012).M.A. Ruidiaz, D.R. Delgado, F. Martínez, Correlating the solubility of indomethacin in 1, 4-dioxane+ water mixtures by means of the Jouyban-Acree model, Rev. Colomb. Cienc. Quim. Farm., 39 (2), 211-226 (2010).S.H. Yalkowsky, Solubility and Solubilization in Aqueous Media, American Chemical Society and Oxford University Press, New York, 1999, pp. 180-235.A. Beerbower, P.L. Wu, A. Martin, Expanded solubility parameter approach 1. Naphthalene and benzoic acid in individual solvents, J. Pharm. Sci., 73, 179-188 (1984).M.A.A. Fakhree, D.R. Delgado, F. Martínez, A. Jouyban, The importance of dielectric constant for drug solubility prediction in binary solvent mixtures: electrolytes and zwitterions in water+ ethanol, AAPS PharmSciTech., 11(4), 1726- 1729 (2010).Etilparabenosolubilidadvan’t HoffYalkowsky-RosemancosolventeEthylparabensolubilityvan’t HoffYalkowsky-RosemancosolventMeasurement and correlation of solubility of ethylparaben in pure and binary solvents and thermodynamic properties of solutionArtículohttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribución – No comercial – Compartir igualinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationORIGINALMeasurement and correlation of solubility of ethylparaben in pure and binary solvents and thermodynamic properties of solution.pdfMeasurement and correlation of solubility of ethylparaben in pure and binary solvents and thermodynamic properties of solution.pdfArtículo Científicoapplication/pdf422202https://repository.ucc.edu.co/bitstreams/4a9cab34-e682-47bc-b921-14b5c424b10d/download9f88f299960f3f10054ca4ca359d5c09MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/909fd66e-9ed0-456c-af59-ca303db1b335/download3bce4f7ab09dfc588f126e1e36e98a45MD52TEXTMeasurement and correlation of solubility of ethylparaben in pure and binary solvents and thermodynamic properties of solution.pdf.txtMeasurement and correlation of solubility of ethylparaben in pure and binary solvents and thermodynamic properties of solution.pdf.txtExtracted texttext/plain31459https://repository.ucc.edu.co/bitstreams/adc05520-a5f7-409c-be9f-6318422186fe/download6056ac65494ecf419c7837c8948e5f31MD53THUMBNAILMeasurement and correlation of solubility of ethylparaben in pure and binary solvents and thermodynamic properties of solution.pdf.jpgMeasurement and correlation of solubility of ethylparaben in pure and binary solvents and thermodynamic properties of solution.pdf.jpgGenerated Thumbnailimage/jpeg5048https://repository.ucc.edu.co/bitstreams/a8dd48ee-9219-4c43-a570-dd8f9205587b/downloadada92db309b17b28bcad6779432d9ad8MD5420.500.12494/15547oai:repository.ucc.edu.co:20.500.12494/155472024-08-10 21:00:48.379restrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo=