Formulations to overcome the divergence of iterative method of fixed-point in nonlinear equations solution

When we need to determine the solution of a nonlinear equation there are two options: closed-methods which use intervals that contain the root and during the iterative process reduce the size of natural way, and, open-methods that represent an attractive

Autores:
Rodríguez Calderón, Wilson
Pallares Muñoz, Myriam Rocío
Tipo de recurso:
Article of journal
Fecha de publicación:
2015
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/42693
Acceso en línea:
https://doi.org/10.4995/redu.2015.5468
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84904391902&doi=10.3390%2ftoxins6072082&partnerID=40&md5=fc34c264a4474416a7481900443d5aa9
https://hdl.handle.net/20.500.12494/42693
Palabra clave:
divergence
fixed point
linear convergence
open methods
quadratic convergence
root equations
Rights
closedAccess
License
http://purl.org/coar/access_right/c_14cb
id COOPER2_87a8eaf1ba8dfbedf7cbf5a76c3f21eb
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/42693
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
spelling Rodríguez Calderón, WilsonPallares Muñoz, Myriam Rocío2021-12-16T22:16:27Z2021-12-16T22:16:27Z2015https://doi.org/10.4995/redu.2015.5468https://www.scopus.com/inward/record.uri?eid=2-s2.0-84904391902&doi=10.3390%2ftoxins6072082&partnerID=40&md5=fc34c264a4474416a7481900443d5aa90123921Xhttps://hdl.handle.net/20.500.12494/42693RODRÍGUEZ W,Pallares MR. Formulations to overcome the divergence of iterative method of fixed-point in nonlinear equations solution. Tecnura. 2015. 19. (44):p. 191-199. .When we need to determine the solution of a nonlinear equation there are two options: closed-methods which use intervals that contain the root and during the iterative process reduce the size of natural way, and, open-methods that represent an attractive0000-0001-9016-433Xwilson.rodriguezca@campusucc.edu.co199-191Universidad Distrital Francisco José de Caldas, Facultad Tecnológicadivergencefixed pointlinear convergenceopen methodsquadratic convergenceroot equationsFormulations to overcome the divergence of iterative method of fixed-point in nonlinear equations solutionArtículohttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionTecnurainfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbPublication20.500.12494/42693oai:repository.ucc.edu.co:20.500.12494/426932024-08-20 16:09:01.92metadata.onlyhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.com
dc.title.spa.fl_str_mv Formulations to overcome the divergence of iterative method of fixed-point in nonlinear equations solution
title Formulations to overcome the divergence of iterative method of fixed-point in nonlinear equations solution
spellingShingle Formulations to overcome the divergence of iterative method of fixed-point in nonlinear equations solution
divergence
fixed point
linear convergence
open methods
quadratic convergence
root equations
title_short Formulations to overcome the divergence of iterative method of fixed-point in nonlinear equations solution
title_full Formulations to overcome the divergence of iterative method of fixed-point in nonlinear equations solution
title_fullStr Formulations to overcome the divergence of iterative method of fixed-point in nonlinear equations solution
title_full_unstemmed Formulations to overcome the divergence of iterative method of fixed-point in nonlinear equations solution
title_sort Formulations to overcome the divergence of iterative method of fixed-point in nonlinear equations solution
dc.creator.fl_str_mv Rodríguez Calderón, Wilson
Pallares Muñoz, Myriam Rocío
dc.contributor.author.none.fl_str_mv Rodríguez Calderón, Wilson
Pallares Muñoz, Myriam Rocío
dc.subject.spa.fl_str_mv divergence
fixed point
linear convergence
open methods
quadratic convergence
root equations
topic divergence
fixed point
linear convergence
open methods
quadratic convergence
root equations
description When we need to determine the solution of a nonlinear equation there are two options: closed-methods which use intervals that contain the root and during the iterative process reduce the size of natural way, and, open-methods that represent an attractive
publishDate 2015
dc.date.issued.none.fl_str_mv 2015
dc.date.accessioned.none.fl_str_mv 2021-12-16T22:16:27Z
dc.date.available.none.fl_str_mv 2021-12-16T22:16:27Z
dc.type.none.fl_str_mv Artículo
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.none.fl_str_mv https://doi.org/10.4995/redu.2015.5468
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84904391902&doi=10.3390%2ftoxins6072082&partnerID=40&md5=fc34c264a4474416a7481900443d5aa9
dc.identifier.issn.spa.fl_str_mv 0123921X
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12494/42693
dc.identifier.bibliographicCitation.spa.fl_str_mv RODRÍGUEZ W,Pallares MR. Formulations to overcome the divergence of iterative method of fixed-point in nonlinear equations solution. Tecnura. 2015. 19. (44):p. 191-199. .
url https://doi.org/10.4995/redu.2015.5468
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84904391902&doi=10.3390%2ftoxins6072082&partnerID=40&md5=fc34c264a4474416a7481900443d5aa9
https://hdl.handle.net/20.500.12494/42693
identifier_str_mv 0123921X
RODRÍGUEZ W,Pallares MR. Formulations to overcome the divergence of iterative method of fixed-point in nonlinear equations solution. Tecnura. 2015. 19. (44):p. 191-199. .
dc.relation.ispartofjournal.spa.fl_str_mv Tecnura
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/closedAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_14cb
eu_rights_str_mv closedAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_14cb
dc.format.extent.spa.fl_str_mv 199-191
dc.publisher.spa.fl_str_mv Universidad Distrital Francisco José de Caldas, Facultad Tecnológica
institution Universidad Cooperativa de Colombia
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1814246503484489728