Formulations to overcome the divergence of iterative method of fixed-point in nonlinear equations solution
When we need to determine the solution of a nonlinear equation there are two options: closed-methods which use intervals that contain the root and during the iterative process reduce the size of natural way, and, open-methods that represent an attractive
- Autores:
-
Rodríguez Calderón, Wilson
Pallares Muñoz, Myriam Rocío
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2015
- Institución:
- Universidad Cooperativa de Colombia
- Repositorio:
- Repositorio UCC
- Idioma:
- OAI Identifier:
- oai:repository.ucc.edu.co:20.500.12494/42693
- Acceso en línea:
- https://doi.org/10.4995/redu.2015.5468
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84904391902&doi=10.3390%2ftoxins6072082&partnerID=40&md5=fc34c264a4474416a7481900443d5aa9
https://hdl.handle.net/20.500.12494/42693
- Palabra clave:
- divergence
fixed point
linear convergence
open methods
quadratic convergence
root equations
- Rights
- closedAccess
- License
- http://purl.org/coar/access_right/c_14cb
Summary: | When we need to determine the solution of a nonlinear equation there are two options: closed-methods which use intervals that contain the root and during the iterative process reduce the size of natural way, and, open-methods that represent an attractive |
---|