Development of riverine hydrokinetic energy systems in Colombia and other world regions: a review of case studies

A nivel mundial, la energía hidrocinética ha sido considerada como una fuente de energía renovable, y se ha convertido en una alternativa atractiva para la electrificación rural de zonas no interconectadas con presencia de recursos hídricos. Aspectos como la baja tasa de electrificación rural, el au...

Full description

Autores:
Villegas Quiceno, Adriana Patricia
Aristizabal Tique, Victor Hugo
Arbeláez Pérez, Oscar Felipe
Colmenares Quintero, Ramón Fernando
Véloez Hoyos, Francisco Javier
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/35644
Acceso en línea:
https://doi.org/10.15446/dyna.v88n217.93098
https://hdl.handle.net/20.500.12494/35644
Palabra clave:
Potencia Hidrocinética
Energía Hidrocinética
Turbina Hidrocinética
Tecnología Fluvial Hidrocinética
Energía Fluvial
Turbina fluvial
hydrokinetic power
hydrokinetic energy
hydrokinetic turbines
hydrokinetic river technology
river energy
river turbine
Case Study
Caso de estudio
Rights
openAccess
License
Atribución
id COOPER2_824e8fb281e89d3de7d5870f591af4c8
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/35644
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.spa.fl_str_mv Development of riverine hydrokinetic energy systems in Colombia and other world regions: a review of case studies
title Development of riverine hydrokinetic energy systems in Colombia and other world regions: a review of case studies
spellingShingle Development of riverine hydrokinetic energy systems in Colombia and other world regions: a review of case studies
Potencia Hidrocinética
Energía Hidrocinética
Turbina Hidrocinética
Tecnología Fluvial Hidrocinética
Energía Fluvial
Turbina fluvial
hydrokinetic power
hydrokinetic energy
hydrokinetic turbines
hydrokinetic river technology
river energy
river turbine
Case Study
Caso de estudio
title_short Development of riverine hydrokinetic energy systems in Colombia and other world regions: a review of case studies
title_full Development of riverine hydrokinetic energy systems in Colombia and other world regions: a review of case studies
title_fullStr Development of riverine hydrokinetic energy systems in Colombia and other world regions: a review of case studies
title_full_unstemmed Development of riverine hydrokinetic energy systems in Colombia and other world regions: a review of case studies
title_sort Development of riverine hydrokinetic energy systems in Colombia and other world regions: a review of case studies
dc.creator.fl_str_mv Villegas Quiceno, Adriana Patricia
Aristizabal Tique, Victor Hugo
Arbeláez Pérez, Oscar Felipe
Colmenares Quintero, Ramón Fernando
Véloez Hoyos, Francisco Javier
dc.contributor.author.none.fl_str_mv Villegas Quiceno, Adriana Patricia
Aristizabal Tique, Victor Hugo
Arbeláez Pérez, Oscar Felipe
Colmenares Quintero, Ramón Fernando
Véloez Hoyos, Francisco Javier
dc.subject.spa.fl_str_mv Potencia Hidrocinética
Energía Hidrocinética
Turbina Hidrocinética
Tecnología Fluvial Hidrocinética
Energía Fluvial
Turbina fluvial
topic Potencia Hidrocinética
Energía Hidrocinética
Turbina Hidrocinética
Tecnología Fluvial Hidrocinética
Energía Fluvial
Turbina fluvial
hydrokinetic power
hydrokinetic energy
hydrokinetic turbines
hydrokinetic river technology
river energy
river turbine
Case Study
Caso de estudio
dc.subject.other.spa.fl_str_mv hydrokinetic power
hydrokinetic energy
hydrokinetic turbines
hydrokinetic river technology
river energy
river turbine
Case Study
Caso de estudio
description A nivel mundial, la energía hidrocinética ha sido considerada como una fuente de energía renovable, y se ha convertido en una alternativa atractiva para la electrificación rural de zonas no interconectadas con presencia de recursos hídricos. Aspectos como la baja tasa de electrificación rural, el aumento de la demanda energética, la disminución de las reservas fósiles y el cambio climático, son algunos de los factores que han impulsado el uso de esta tecnología para la producción de electricidad. El objetivo de este trabajo es hacer una revisión del potencial energético hidrocinético de los recursos hídricos, los requerimientos e impactos de la implementación de la tecnología hidrocinética en diferentes países, y el desarrollo actual en el caso colombiano. En la actualidad, se puede observar que la implementación de esta tecnología en diferentes regiones del mundo, especialmente en Colombia, presenta varios retos y barreras, entre los que se encuentran los vacíos de conocimiento, información y datos, así como las limitaciones del recurso hídrico y de la infraestructura, repercutiendo finalmente en una baja adopción de esta tecnología. Por otro lado, las publicaciones sobre estudios de implementación y potencial de la tecnología hidrocinética han ido aumentando con el tiempo, lo que indica que este tema ha ido ganando interés a pesar de los desafíos.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-08-18T15:42:35Z
dc.date.available.none.fl_str_mv 2021-08-18T15:42:35Z
dc.date.issued.none.fl_str_mv 2021-05
dc.type.none.fl_str_mv Artículo
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 23462183
dc.identifier.uri.spa.fl_str_mv https://doi.org/10.15446/dyna.v88n217.93098
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12494/35644
dc.identifier.bibliographicCitation.spa.fl_str_mv Villegas Quiceno, A. P., Aristizabal Tique, V. H. ., Arbelaez Pérez, O. F. ., Colmenares Quintero, R. F. ., & Vélez Hoyos, F. J. . (2021). Development of riverine hydrokinetic energy systems in Colombia and other world regions: a review of case studies. DYNA, 88(217), 256-264. https://doi.org/10.15446/dyna.v88n217.93098
identifier_str_mv 23462183
Villegas Quiceno, A. P., Aristizabal Tique, V. H. ., Arbelaez Pérez, O. F. ., Colmenares Quintero, R. F. ., & Vélez Hoyos, F. J. . (2021). Development of riverine hydrokinetic energy systems in Colombia and other world regions: a review of case studies. DYNA, 88(217), 256-264. https://doi.org/10.15446/dyna.v88n217.93098
url https://doi.org/10.15446/dyna.v88n217.93098
https://hdl.handle.net/20.500.12494/35644
dc.relation.isversionof.spa.fl_str_mv https://revistas.unal.edu.co/index.php/dyna/article/view/93098
dc.relation.ispartofjournal.spa.fl_str_mv DYNA
dc.relation.references.spa.fl_str_mv Ediger, V.Ş., An integrated review and analysis of multi-energy transition from fossil fuels to renewables. Energy Procedia, 156, pp. 2-6, 2019. DOI: 10.1016/j.egypro.2018.11.073.
Bueno-Lopez, M. and Garzon-Lemos, S., Electrification in Non-interconnected areas: towards a new vision of rurality in Colombia. IEEE Technology and Society Magazine, 36(4), pp. 73-79, 2017. DOI: 10.1109/MTS.2017.2763479.
Hil-Baky, M.A., Rahman, M.M. and Islam, A.K.M.S., Development of renewable energy sector in Bangladesh: current status and future potentials. Renewable and Sustainable Energy Reviews, 73, pp. 1184-1197, 2017. DOI: 10.1016/j.rser.2017.02.047.
Yuce, M.I. and Muratoglu, A., Hydrokinetic energy conversion systems: a technology status review. Renewable and Sustainable Energy Reviews, 43, pp. 72-82, 2015. DOI: 10.1016/j.rser.2014.10.037.
Chandel, S.S., Shrivastva, R., Sharma, V. and Ramasamy, P., Overview of the initiatives in renewable energy sector under the national action plan on climate change in India. Renewable and Sustainable Energy Reviews, 54, pp. 866-873, 2016. DOI: 10.1016/j.rser.2015.10.057.
Vermaak, H.J., Kusakana, K. and Koko, S.P., Status of micro-hydrokinetic river technology in rural applications: a review of literature. Renewable and Sustainable Energy Reviews, 29, pp. 625-633, 2014. DOI: 10.1016/j.rser.2013.08.066.
Johnson, J.B. and Pride, D.J., River, tidal and ocean current hydrokinetic energy technologies: status and future opportunities in Alaska, 2010.
Ardizzon, G., Cavazzini, G. and Pavesi, G., A new generation of small hydro and pumped-hydro power plants: advances and future challenges. Renewable and Sustainable Energy Reviews, 31, pp. 746-761, 2014. DOI: 10.1016/j.rser.2013.12.043.
Miller, V.B., Landis, A.E. and Schaefer, L.A., A benchmark for life cycle air emissions and life cycle impact assessment of hydrokinetic energy extraction using life cycle assessment. Renewable Energy, 36(3), pp. 1040-1046, 2011. DOI: 10.1016/j.renene.2010.08.016.
Taylor, G.W., Burns, J.R., Kammann, S.A., Powers, W.B. and Welsh, T.R., The energy harvesting eel: a small subsurface ocean/river power generator. IEEE Journal of Oceanic Engineering, 26(4), pp. 539-547, 2001. DOI: 10.1109/48.972090.
Khan, M.J., Bhuyan, G., Iqbal, M.T. and Quaicoe, J.E., Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: a technology status review. Applied Energy, 86(10), pp. 1823-1835, 2009. DOI: 10.1016/j.apenergy.2009.02.017.
Behrouzi, F., Maimun, A. and Nakisa, M., Review of various designs and development in hydropower turbines. World Academy of Science, Engineering and Technology, Open Science Index 86, International Journal of Mechanical and Mechatronics Engineering, 8(2), pp. 293-297, 2014.
Kumar, A. and Saini, R.P., Performance parameters of Savonius type hydrokinetic turbine - A review. Renewable and Sustainable Energy Reviews, 64, pp. 289-310, 2016. DOI: 10.1016/j.rser.2016.06.005.
Sørnes, K., Small-scale water current turbines for river applications. 2010.
Saini, G. and Saini, R.P., A review on technology, configurations, and performance of cross‐flow hydrokinetic turbines. International Journal of Energy Research, 43 pp. 6639‐ 6679, 2019. DOI: 10.1002/er.4625.
Rourke, F.O., Boyle, F. and Reynolds, A., Marine current energy devices: current status and possible future applications in Ireland. Renewable and Sustainable Energy Reviews, 14(3), pp. 1026-1036, 2010. DOI: 10.1016/j.rser.2009.11.012.
Lago, L.I., Ponta, F.L. and Chen, L., Advances and trends in hydrokinetic turbine systems. Energy for Sustainable Development, 14(4), pp. 287-296, 2010. DOI: 10.1016/j.esd.2010.09.004.
Kirke, B.K., Tests on ducted and bare helical and straight blade Darrieus hydrokinetic turbines. Renewable Energy, 36(11), pp. 3013-3022, 2011. DOI: 10.1016/j.renene.2011.03.036.
van Els, R.H. and Brasil Junior, A.C.P., The Brazilian Experience with hydrokinetic turbines. Energy Procedia, 75, pp. 259-264, 2015. DOI: 10.1016/j.egypro.2015.07.328.
Holanda, P. da S., Blanco, C.J.C., Mesquita, A.L.A., Brasil Junior, A.C.P., de Figueiredo, N.M., Macêdo, E.N., et al., Assessment of hydrokinetic energy resources downstream of hydropower plants. Renewable Energy, 101, pp. 1203-1214, 2017. DOI: 10.1016/j.renene.2016.10.011.
Montoya-Ramírez, R.D., Cuervo, F.I. and Monsalve Rico, C.A., Technical and financial valuation of hydrokinetic power in the discharge channels of large hydropower plants in Colombia: a case study. Renewable Energy, 99, pp. 136-147, 2016. DOI: 10.1016/j.renene.2016.06.047.
Ulvmyr, A., Potential risks and prospects of protections of a hydrokinetic turbine implemented in the Amazon River, Colombia: a theoretical and practical study. Karlstad University, MSc. Thesis, 2016.
Ramirez-Tovar, A.M., López, Y.U. and Laín, A.M., Design and prototype of a micro hydrokinetic vertical turbine. Renewable Energy and Power Quality Journal, 1(15), pp. 903-910, 2017. DOI: 10.24084/repqj15.512.
Arrieta, E.L.C., Cardona-Mancilla, C., Slayton, J., Romero, F., Torres, E., Agudelo, S., et al., Experimental investigations and CFD simulations of the blade section pitch angle effect on the performance of a horizontal-axis hydrokinetic turbine. Engineering Journal, 22(5), pp. 141-154, 2018. DOI: 10.4186/ej.2018.22.5.141.
Chica, E., Torres, E.A. and Arbeláez, J., Manufacture and experimental evaluation of a hydrokinetic turbine for remote communities in Colombia. Renewable Energy and Power Quality Journal, 1, pp. 82-87, 2018. DOI: 10.24084/repqj16.217.
Ramirez-Tovar, A.M., López-Castrillón, Y.U. and Laín, S., Simulating and designing small hydrokinetic turbines: a review. International Review of Mechanical Engineering (IREME), 12(11), pp. 876, 2018. DOI: 10.15866/ireme.v12i11.15525.
Fabregas-Villegas, J., Santamaria-de la Cruz, H., Márquez-Santos, M., Fontalvo-Calvo, C., Carpintero-Durango, J. and Villa-Dominguez, J., Design of a hydrokinetic turbine capable of satisfying electricity demand for housing on the margin of the Magdalena River through analysis by finite elements. International Journal of Engineering Science, 7(4), pp. 6848-6850, 2018. DOI: 10.14419/ijet.v7i4.26843.
Tigabu, M.T., Wood, D.H. and Admasu, B.T., Resource assessment for hydro-kinetic turbines in Ethiopian rivers and irrigation canals. Energy for Sustainable Development, 58, pp. 209-224, 2020. DOI: 10.1016/j.esd.2020.08.005.
Miller, V.B., Ramde, E.W., Gradoville, R.T. and Schaefer, L.A., Hydrokinetic power for energy access in rural Ghana. Renewable Energy, 36(2), pp. 671-675, 2011. DOI: 10.1016/j.renene.2010.08.014.
Kontoyiannis, H., Panagiotopoulos, M. and Soukissian, T., The Euripus tidal stream at Halkida/Greece: a practical, inexpensive approach in assessing the hydrokinetic renewable energy from field measurements in a tidal channel. Journal of Ocean Engineering and Marine Energy, 1(3), pp. 325-335, 2015. DOI: 10.1007/s40722-015-0020-8.
Saini, G., Kumar, A. and Saini, R.P., Assessment of hydrokinetic energy - A case study of eastern Yamuna canal. Materials Today: Proceedings, 2020. DOI: 10.1016/j.matpr.2020.08.595.
Dayyani, S., Mohammadi, K. and Reza-Najib, H., River flow estimation for ungaged stations using GIS model. 7th Int. Water Technol. Conf., Egypt: 2003, pp. 347-355.
Punys, P., Adamonyte, I., Kvaraciejus, A., Martinaitis, E., Vyciene, G. and Kasiulis, E., Riverine hydrokinetic resource assessment. a case study of a lowland river in Lithuania. Renewable and Sustainable Energy Reviews, 50, pp. 643-652, 2015. DOI: 10.1016/j.rser.2015.04.155.
Zdankus, N., Punys, P. and Zdankus, T., Conversion of lowland river flow kinetic energy. Renewable and Sustainable Energy Reviews, 38, pp. 121-130, 2014. DOI: 10.1016/j.rser.2014.05.074.
Ibrahim, W.I., Ismail, R.M.T.R. and Mohamed, M.R., Micro-Hydro energy estimation for hydrokinetic energy harnessing at Sungai Lembing, Conference or Workshop, TK Electrical engineering.
Electronics Nuclear engineering, 2019, pp. 549-562. DOI: 10.1007/978-981-13-3708-6_49.
Ladokun, L.L., Sule, B.F., Ajao, K.R. and Adeogun, A.G., Resource assessment and feasibility study for the generation of hydrokinetic power in the tailwaters of selected hydropower stations in Nigeria. Water Science, 32(2), pp. 338-354, 2018. DOI: 10.1016/j.wsj.2018.05.003.
Kusakana, K. and Vermaak, H.J., Hydrokinetic power generation for rural electricity supply: case of South Africa. Renewable Energy, 55, pp. 467-473, 2013. DOI: 10.1016/j.renene.2012.12.051.
Kusakana, K., Techno-economic analysis of off-grid hydrokinetic-based hybrid energy systems for onshore/remote area in South Africa. Energy, 68, pp. 947-957, 2014. DOI: 10.1016/j.energy.2014.01.100.
Lalander, E. and Leijon, M., Numerical modeling of a river site for in-stream energy converters. 8th Eur. Wave Tidal Energy Conf., Uppsala, Sweden: 2009, pp. 826-832.
Previsic, M., Bedard, R. and Polagye, B., System level design, performance, cost and economic assessment—Alaska River in‐stream power plants. Report EPRI RP 006, Washington, D.C., USA, 2008.
Ames, D.P., Rafn, E.B., Van Kirk, R. and Crosby, B., Estimation of stream channel geometry in Idaho using GIS-derived watershed characteristics. Environmental Modelling & Software, 24(3), pp. 444-448, 2009. DOI: 10.1016/j.envsoft.2008.08.008.
Toniolo, H., Duvoy, P., Vanlesberg, S. and Johnson, J., Modelling and field measurements in support of the hydrokinetic resource assessment for the Tanana river at Nenana, Alaska. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 224(8), pp. 1127-1139, 2010. DOI: 10.1243/09576509JPE1017.
Toniolo, H., Hydrokinetic assessment of the Kvichak River near Igiugig, Alaska, using a two-dimensional hydrodynamic model. Energy and Power Engineering, 04(06), pp. 422-431, 2012. DOI: 10.4236/epe.2012.46056.
Jacobson, P., Assessment and mapping of the riverine hydrokinetic resource in the continental United States. 2012. DOI: 10.2172/1219876.
Palodichuk, M., Polagye, B. and Thomson, J., Resource mapping at tidal energy sites. IEEE Journal of Oceanic Engineering, 38(3), pp. 433-446, 2013. DOI: 10.1109/JOE.2012.2227578.
Duerr, A.E.S. and Dhanak, M.R., An assessment of the hydrokinetic energy resource of the Florida current. IEEE Journal of Oceanic Engineering, 37(2), pp. 281-293, 2012. DOI: 10.1109/JOE.2012.2186347.
VanZwieten, J.H., Vanrietvelde, N. and Hacker, B.L., Numerical simulation of an experimental ocean current turbine. IEEE Journal of Oceanic Engineering, 38(1), pp. 131-143, 2013. DOI: 10.1109/JOE.2012.2218891.
Muljadi, E. and Yu, Y.-H., Review of marine hydrokinetic power generation and power plant. Electric Power Components and Systems, 43(12), pp. 1422-1433, 2015. DOI: 10.1080/15325008.2015.1030519.
Gunawan, B., Assessing and testing hydrokinetic turbine performance and effects on open channel hydrodynamics: an irrigation canal case study. Report SAND2017-4925R, Albuquerque, NM, USA,2017.
Edgerly, E.M. and Ravens, T.M., Measuring the hydraulic effect of hydrokinetic energy extraction in the Tanana River, Alaska. Journal of Ocean Engineering and Marine Energy, 5(3), pp. 241-250, 2019. DOI: 10.1007/s40722-019-00142-x.
Guerra, M. and Thomson, J., Wake measurements from a hydrokinetic river turbine. Renewable Energy, 139, pp. 483-495, 2019. DOI: 10.1016/j.renene.2019.02.052.
D’Auteuil, S., Birjandi, A., Bibeau, E., Jordan, S., Soviak, J. and Friesen, D., Riverine hydrokinetic resource assessment using low cost winter imagery. Renewable and Sustainable Energy Reviews, 105, pp. 293-300, 2019. DOI: 10.1016/j.rser.2019.01.057.
Lust, E.E., Bailin, B.H. and Flack, K.A., Performance characteristics of a cross-flow hydrokinetic turbine in current only and current and wave conditions. Ocean Engineering, 219, pp. 108362, 2021. DOI: 10.1016/j.oceaneng.2020.108362.
Unidad de Planeación Minero Energética (UPME), Plan Energetico Nacional Colombia: Ideario Energético 2050. Republica de Colombia, pp. 184, 2015.
dc.rights.license.none.fl_str_mv Atribución
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 256-264 p.
dc.coverage.temporal.spa.fl_str_mv 88 (217)
dc.publisher.spa.fl_str_mv Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Civil, Medellín y Envigado
dc.publisher.program.spa.fl_str_mv Ingeniería Civil
dc.publisher.place.spa.fl_str_mv Medellín
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/88f743b9-aaf6-4589-a3fb-38714c8e185f/download
https://repository.ucc.edu.co/bitstreams/f3fb1f3f-d579-41f3-858c-f136f5f232b8/download
https://repository.ucc.edu.co/bitstreams/a445fd09-6375-438f-b6f9-568b654a6a4a/download
https://repository.ucc.edu.co/bitstreams/860285f4-ff8c-4cc5-941f-88a87e654095/download
bitstream.checksum.fl_str_mv 4f19c9d504670bf16d3568d666c5b890
3bce4f7ab09dfc588f126e1e36e98a45
02eb05548b9dff18b5d39c9bd7858900
43d6d5b3863380b93a2d78b69edfe98b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808789125555290112
spelling Villegas Quiceno, Adriana PatriciaAristizabal Tique, Victor HugoArbeláez Pérez, Oscar FelipeColmenares Quintero, Ramón FernandoVéloez Hoyos, Francisco Javier 88 (217)2021-08-18T15:42:35Z2021-08-18T15:42:35Z2021-0523462183https://doi.org/10.15446/dyna.v88n217.93098https://hdl.handle.net/20.500.12494/35644Villegas Quiceno, A. P., Aristizabal Tique, V. H. ., Arbelaez Pérez, O. F. ., Colmenares Quintero, R. F. ., & Vélez Hoyos, F. J. . (2021). Development of riverine hydrokinetic energy systems in Colombia and other world regions: a review of case studies. DYNA, 88(217), 256-264. https://doi.org/10.15446/dyna.v88n217.93098A nivel mundial, la energía hidrocinética ha sido considerada como una fuente de energía renovable, y se ha convertido en una alternativa atractiva para la electrificación rural de zonas no interconectadas con presencia de recursos hídricos. Aspectos como la baja tasa de electrificación rural, el aumento de la demanda energética, la disminución de las reservas fósiles y el cambio climático, son algunos de los factores que han impulsado el uso de esta tecnología para la producción de electricidad. El objetivo de este trabajo es hacer una revisión del potencial energético hidrocinético de los recursos hídricos, los requerimientos e impactos de la implementación de la tecnología hidrocinética en diferentes países, y el desarrollo actual en el caso colombiano. En la actualidad, se puede observar que la implementación de esta tecnología en diferentes regiones del mundo, especialmente en Colombia, presenta varios retos y barreras, entre los que se encuentran los vacíos de conocimiento, información y datos, así como las limitaciones del recurso hídrico y de la infraestructura, repercutiendo finalmente en una baja adopción de esta tecnología. Por otro lado, las publicaciones sobre estudios de implementación y potencial de la tecnología hidrocinética han ido aumentando con el tiempo, lo que indica que este tema ha ido ganando interés a pesar de los desafíos.At a global level, hydrokinetic power has been considered as a renewable energy source, and it has become an attractive alternative for the rural electrification of non-interconnected areas with the presence of water resources. Aspects such as the low rural electrification rate, the increase in energy demand, the decrease in fossil reserves and the climate change, are some of the factors that have driven the use of this technology for the electricity production. The aim of this work is to give a review of the hydrokinetic energy potential of water resources, the requirements and impacts of the implementation of hydrokinetic technology in different countries, and the current development in the Colombian case. At present, it can be observed that the implementation of this technology in different regions of the world, especially in Colombia, has several challenges and barriers, including gaps in knowledge, information and data, such as well as limitations of water resources and infrastructure, finally, impacting on a low adoption of this technology. On the other hand, publications on studies of implementation and potential of hydrokinetic technology have been increasing over time, indicating that this topic has been gaining interest despite the challenges.https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000867438https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000448249https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001125974https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000192503https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000448222https://orcid.org/0000-0001-9697-8297https://orcid.org/0000-0002-7880-5883https://orcid.org/0000-0001-8592-5333https://orcid.org/0000-0003-1166-1982https://orcid.org/0000-0002-4267-042Xhttps://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000005961adriana.villegas@ucc.edu.covictor.aristizabalt@campusucc.edu.cooscar.arbelaez@campusucc.edu.coramon.colmenaresq@campusucc.edu.cofrancisco.velezh@campusucc.edu.cohttps://scholar.google.com/citations?user=KCXOHPgAAAAJ&hl=enhttps://scholar.google.es/citations?user=EbGraxIAAAAJ&hl=eshttps://scholar.google.com/citations?user=TmMf33gAAAAJ&hl=eshttps://scholar.google.com/citations?user=9HLAZYUAAAAJ&hl=eshttps://scholar.google.com/citations?user=CLkAM5AAAAAJ&hl=es256-264 p.Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Civil, Medellín y EnvigadoIngeniería CivilMedellínhttps://revistas.unal.edu.co/index.php/dyna/article/view/93098DYNAEdiger, V.Ş., An integrated review and analysis of multi-energy transition from fossil fuels to renewables. Energy Procedia, 156, pp. 2-6, 2019. DOI: 10.1016/j.egypro.2018.11.073.Bueno-Lopez, M. and Garzon-Lemos, S., Electrification in Non-interconnected areas: towards a new vision of rurality in Colombia. IEEE Technology and Society Magazine, 36(4), pp. 73-79, 2017. DOI: 10.1109/MTS.2017.2763479.Hil-Baky, M.A., Rahman, M.M. and Islam, A.K.M.S., Development of renewable energy sector in Bangladesh: current status and future potentials. Renewable and Sustainable Energy Reviews, 73, pp. 1184-1197, 2017. DOI: 10.1016/j.rser.2017.02.047.Yuce, M.I. and Muratoglu, A., Hydrokinetic energy conversion systems: a technology status review. Renewable and Sustainable Energy Reviews, 43, pp. 72-82, 2015. DOI: 10.1016/j.rser.2014.10.037.Chandel, S.S., Shrivastva, R., Sharma, V. and Ramasamy, P., Overview of the initiatives in renewable energy sector under the national action plan on climate change in India. Renewable and Sustainable Energy Reviews, 54, pp. 866-873, 2016. DOI: 10.1016/j.rser.2015.10.057.Vermaak, H.J., Kusakana, K. and Koko, S.P., Status of micro-hydrokinetic river technology in rural applications: a review of literature. Renewable and Sustainable Energy Reviews, 29, pp. 625-633, 2014. DOI: 10.1016/j.rser.2013.08.066.Johnson, J.B. and Pride, D.J., River, tidal and ocean current hydrokinetic energy technologies: status and future opportunities in Alaska, 2010.Ardizzon, G., Cavazzini, G. and Pavesi, G., A new generation of small hydro and pumped-hydro power plants: advances and future challenges. Renewable and Sustainable Energy Reviews, 31, pp. 746-761, 2014. DOI: 10.1016/j.rser.2013.12.043.Miller, V.B., Landis, A.E. and Schaefer, L.A., A benchmark for life cycle air emissions and life cycle impact assessment of hydrokinetic energy extraction using life cycle assessment. Renewable Energy, 36(3), pp. 1040-1046, 2011. DOI: 10.1016/j.renene.2010.08.016.Taylor, G.W., Burns, J.R., Kammann, S.A., Powers, W.B. and Welsh, T.R., The energy harvesting eel: a small subsurface ocean/river power generator. IEEE Journal of Oceanic Engineering, 26(4), pp. 539-547, 2001. DOI: 10.1109/48.972090.Khan, M.J., Bhuyan, G., Iqbal, M.T. and Quaicoe, J.E., Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: a technology status review. Applied Energy, 86(10), pp. 1823-1835, 2009. DOI: 10.1016/j.apenergy.2009.02.017.Behrouzi, F., Maimun, A. and Nakisa, M., Review of various designs and development in hydropower turbines. World Academy of Science, Engineering and Technology, Open Science Index 86, International Journal of Mechanical and Mechatronics Engineering, 8(2), pp. 293-297, 2014.Kumar, A. and Saini, R.P., Performance parameters of Savonius type hydrokinetic turbine - A review. Renewable and Sustainable Energy Reviews, 64, pp. 289-310, 2016. DOI: 10.1016/j.rser.2016.06.005.Sørnes, K., Small-scale water current turbines for river applications. 2010.Saini, G. and Saini, R.P., A review on technology, configurations, and performance of cross‐flow hydrokinetic turbines. International Journal of Energy Research, 43 pp. 6639‐ 6679, 2019. DOI: 10.1002/er.4625.Rourke, F.O., Boyle, F. and Reynolds, A., Marine current energy devices: current status and possible future applications in Ireland. Renewable and Sustainable Energy Reviews, 14(3), pp. 1026-1036, 2010. DOI: 10.1016/j.rser.2009.11.012.Lago, L.I., Ponta, F.L. and Chen, L., Advances and trends in hydrokinetic turbine systems. Energy for Sustainable Development, 14(4), pp. 287-296, 2010. DOI: 10.1016/j.esd.2010.09.004.Kirke, B.K., Tests on ducted and bare helical and straight blade Darrieus hydrokinetic turbines. Renewable Energy, 36(11), pp. 3013-3022, 2011. DOI: 10.1016/j.renene.2011.03.036.van Els, R.H. and Brasil Junior, A.C.P., The Brazilian Experience with hydrokinetic turbines. Energy Procedia, 75, pp. 259-264, 2015. DOI: 10.1016/j.egypro.2015.07.328.Holanda, P. da S., Blanco, C.J.C., Mesquita, A.L.A., Brasil Junior, A.C.P., de Figueiredo, N.M., Macêdo, E.N., et al., Assessment of hydrokinetic energy resources downstream of hydropower plants. Renewable Energy, 101, pp. 1203-1214, 2017. DOI: 10.1016/j.renene.2016.10.011.Montoya-Ramírez, R.D., Cuervo, F.I. and Monsalve Rico, C.A., Technical and financial valuation of hydrokinetic power in the discharge channels of large hydropower plants in Colombia: a case study. Renewable Energy, 99, pp. 136-147, 2016. DOI: 10.1016/j.renene.2016.06.047.Ulvmyr, A., Potential risks and prospects of protections of a hydrokinetic turbine implemented in the Amazon River, Colombia: a theoretical and practical study. Karlstad University, MSc. Thesis, 2016.Ramirez-Tovar, A.M., López, Y.U. and Laín, A.M., Design and prototype of a micro hydrokinetic vertical turbine. Renewable Energy and Power Quality Journal, 1(15), pp. 903-910, 2017. DOI: 10.24084/repqj15.512.Arrieta, E.L.C., Cardona-Mancilla, C., Slayton, J., Romero, F., Torres, E., Agudelo, S., et al., Experimental investigations and CFD simulations of the blade section pitch angle effect on the performance of a horizontal-axis hydrokinetic turbine. Engineering Journal, 22(5), pp. 141-154, 2018. DOI: 10.4186/ej.2018.22.5.141.Chica, E., Torres, E.A. and Arbeláez, J., Manufacture and experimental evaluation of a hydrokinetic turbine for remote communities in Colombia. Renewable Energy and Power Quality Journal, 1, pp. 82-87, 2018. DOI: 10.24084/repqj16.217.Ramirez-Tovar, A.M., López-Castrillón, Y.U. and Laín, S., Simulating and designing small hydrokinetic turbines: a review. International Review of Mechanical Engineering (IREME), 12(11), pp. 876, 2018. DOI: 10.15866/ireme.v12i11.15525.Fabregas-Villegas, J., Santamaria-de la Cruz, H., Márquez-Santos, M., Fontalvo-Calvo, C., Carpintero-Durango, J. and Villa-Dominguez, J., Design of a hydrokinetic turbine capable of satisfying electricity demand for housing on the margin of the Magdalena River through analysis by finite elements. International Journal of Engineering Science, 7(4), pp. 6848-6850, 2018. DOI: 10.14419/ijet.v7i4.26843.Tigabu, M.T., Wood, D.H. and Admasu, B.T., Resource assessment for hydro-kinetic turbines in Ethiopian rivers and irrigation canals. Energy for Sustainable Development, 58, pp. 209-224, 2020. DOI: 10.1016/j.esd.2020.08.005.Miller, V.B., Ramde, E.W., Gradoville, R.T. and Schaefer, L.A., Hydrokinetic power for energy access in rural Ghana. Renewable Energy, 36(2), pp. 671-675, 2011. DOI: 10.1016/j.renene.2010.08.014.Kontoyiannis, H., Panagiotopoulos, M. and Soukissian, T., The Euripus tidal stream at Halkida/Greece: a practical, inexpensive approach in assessing the hydrokinetic renewable energy from field measurements in a tidal channel. Journal of Ocean Engineering and Marine Energy, 1(3), pp. 325-335, 2015. DOI: 10.1007/s40722-015-0020-8.Saini, G., Kumar, A. and Saini, R.P., Assessment of hydrokinetic energy - A case study of eastern Yamuna canal. Materials Today: Proceedings, 2020. DOI: 10.1016/j.matpr.2020.08.595.Dayyani, S., Mohammadi, K. and Reza-Najib, H., River flow estimation for ungaged stations using GIS model. 7th Int. Water Technol. Conf., Egypt: 2003, pp. 347-355.Punys, P., Adamonyte, I., Kvaraciejus, A., Martinaitis, E., Vyciene, G. and Kasiulis, E., Riverine hydrokinetic resource assessment. a case study of a lowland river in Lithuania. Renewable and Sustainable Energy Reviews, 50, pp. 643-652, 2015. DOI: 10.1016/j.rser.2015.04.155.Zdankus, N., Punys, P. and Zdankus, T., Conversion of lowland river flow kinetic energy. Renewable and Sustainable Energy Reviews, 38, pp. 121-130, 2014. DOI: 10.1016/j.rser.2014.05.074.Ibrahim, W.I., Ismail, R.M.T.R. and Mohamed, M.R., Micro-Hydro energy estimation for hydrokinetic energy harnessing at Sungai Lembing, Conference or Workshop, TK Electrical engineering.Electronics Nuclear engineering, 2019, pp. 549-562. DOI: 10.1007/978-981-13-3708-6_49.Ladokun, L.L., Sule, B.F., Ajao, K.R. and Adeogun, A.G., Resource assessment and feasibility study for the generation of hydrokinetic power in the tailwaters of selected hydropower stations in Nigeria. Water Science, 32(2), pp. 338-354, 2018. DOI: 10.1016/j.wsj.2018.05.003.Kusakana, K. and Vermaak, H.J., Hydrokinetic power generation for rural electricity supply: case of South Africa. Renewable Energy, 55, pp. 467-473, 2013. DOI: 10.1016/j.renene.2012.12.051.Kusakana, K., Techno-economic analysis of off-grid hydrokinetic-based hybrid energy systems for onshore/remote area in South Africa. Energy, 68, pp. 947-957, 2014. DOI: 10.1016/j.energy.2014.01.100.Lalander, E. and Leijon, M., Numerical modeling of a river site for in-stream energy converters. 8th Eur. Wave Tidal Energy Conf., Uppsala, Sweden: 2009, pp. 826-832.Previsic, M., Bedard, R. and Polagye, B., System level design, performance, cost and economic assessment—Alaska River in‐stream power plants. Report EPRI RP 006, Washington, D.C., USA, 2008.Ames, D.P., Rafn, E.B., Van Kirk, R. and Crosby, B., Estimation of stream channel geometry in Idaho using GIS-derived watershed characteristics. Environmental Modelling & Software, 24(3), pp. 444-448, 2009. DOI: 10.1016/j.envsoft.2008.08.008.Toniolo, H., Duvoy, P., Vanlesberg, S. and Johnson, J., Modelling and field measurements in support of the hydrokinetic resource assessment for the Tanana river at Nenana, Alaska. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 224(8), pp. 1127-1139, 2010. DOI: 10.1243/09576509JPE1017.Toniolo, H., Hydrokinetic assessment of the Kvichak River near Igiugig, Alaska, using a two-dimensional hydrodynamic model. Energy and Power Engineering, 04(06), pp. 422-431, 2012. DOI: 10.4236/epe.2012.46056.Jacobson, P., Assessment and mapping of the riverine hydrokinetic resource in the continental United States. 2012. DOI: 10.2172/1219876.Palodichuk, M., Polagye, B. and Thomson, J., Resource mapping at tidal energy sites. IEEE Journal of Oceanic Engineering, 38(3), pp. 433-446, 2013. DOI: 10.1109/JOE.2012.2227578.Duerr, A.E.S. and Dhanak, M.R., An assessment of the hydrokinetic energy resource of the Florida current. IEEE Journal of Oceanic Engineering, 37(2), pp. 281-293, 2012. DOI: 10.1109/JOE.2012.2186347.VanZwieten, J.H., Vanrietvelde, N. and Hacker, B.L., Numerical simulation of an experimental ocean current turbine. IEEE Journal of Oceanic Engineering, 38(1), pp. 131-143, 2013. DOI: 10.1109/JOE.2012.2218891.Muljadi, E. and Yu, Y.-H., Review of marine hydrokinetic power generation and power plant. Electric Power Components and Systems, 43(12), pp. 1422-1433, 2015. DOI: 10.1080/15325008.2015.1030519.Gunawan, B., Assessing and testing hydrokinetic turbine performance and effects on open channel hydrodynamics: an irrigation canal case study. Report SAND2017-4925R, Albuquerque, NM, USA,2017.Edgerly, E.M. and Ravens, T.M., Measuring the hydraulic effect of hydrokinetic energy extraction in the Tanana River, Alaska. Journal of Ocean Engineering and Marine Energy, 5(3), pp. 241-250, 2019. DOI: 10.1007/s40722-019-00142-x.Guerra, M. and Thomson, J., Wake measurements from a hydrokinetic river turbine. Renewable Energy, 139, pp. 483-495, 2019. DOI: 10.1016/j.renene.2019.02.052.D’Auteuil, S., Birjandi, A., Bibeau, E., Jordan, S., Soviak, J. and Friesen, D., Riverine hydrokinetic resource assessment using low cost winter imagery. Renewable and Sustainable Energy Reviews, 105, pp. 293-300, 2019. DOI: 10.1016/j.rser.2019.01.057.Lust, E.E., Bailin, B.H. and Flack, K.A., Performance characteristics of a cross-flow hydrokinetic turbine in current only and current and wave conditions. Ocean Engineering, 219, pp. 108362, 2021. DOI: 10.1016/j.oceaneng.2020.108362.Unidad de Planeación Minero Energética (UPME), Plan Energetico Nacional Colombia: Ideario Energético 2050. Republica de Colombia, pp. 184, 2015.Potencia HidrocinéticaEnergía HidrocinéticaTurbina HidrocinéticaTecnología Fluvial HidrocinéticaEnergía FluvialTurbina fluvialhydrokinetic powerhydrokinetic energyhydrokinetic turbineshydrokinetic river technologyriver energyriver turbineCase StudyCaso de estudioDevelopment of riverine hydrokinetic energy systems in Colombia and other world regions: a review of case studiesArtículohttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribucióninfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationORIGINALLicencia de Uso-Development of riverine hydrokinetic energy systems in Colombia.pdfLicencia de Uso-Development of riverine hydrokinetic energy systems in Colombia.pdfLicencia de usoapplication/pdf178574https://repository.ucc.edu.co/bitstreams/88f743b9-aaf6-4589-a3fb-38714c8e185f/download4f19c9d504670bf16d3568d666c5b890MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/f3fb1f3f-d579-41f3-858c-f136f5f232b8/download3bce4f7ab09dfc588f126e1e36e98a45MD53THUMBNAILLicencia de Uso-Development of riverine hydrokinetic energy systems in Colombia.pdf.jpgLicencia de Uso-Development of riverine hydrokinetic energy systems in Colombia.pdf.jpgGenerated Thumbnailimage/jpeg5011https://repository.ucc.edu.co/bitstreams/a445fd09-6375-438f-b6f9-568b654a6a4a/download02eb05548b9dff18b5d39c9bd7858900MD54TEXTLicencia de Uso-Development of riverine hydrokinetic energy systems in Colombia.pdf.txtLicencia de Uso-Development of riverine hydrokinetic energy systems in Colombia.pdf.txtExtracted texttext/plain5745https://repository.ucc.edu.co/bitstreams/860285f4-ff8c-4cc5-941f-88a87e654095/download43d6d5b3863380b93a2d78b69edfe98bMD5520.500.12494/35644oai:repository.ucc.edu.co:20.500.12494/356442024-08-10 21:01:22.79restrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo=