Surface Modification by Combination of Dip-Pen Nanolithography and Soft Lithography for Reduction of Bacterial Adhesion

Dip-pen nanolithography (DPN) and soft lithography are techniques suitable to modify the surface of biomaterials. Modified surfaces might play a role in modulating cells and reducing bacterial adhesion and biofilm formation. The main objective of this study was threefold: first, to create patterns a...

Full description

Autores:
Arango Santander, Santiago
Pelaez Vargas, Alejandro
Da Cunha Freitas, Sidonio Ricardo
García González, Claudia Patricia
Tipo de recurso:
Article of journal
Fecha de publicación:
2018
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/41800
Acceso en línea:
https://doi.org/10.16925/cu.v1i1.307
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85034270363&doi=10.1016%2fj.humimm.2017.11.003&partnerID=40&md5=7158c0974f243f91d22a64f1c399925f
https://hdl.handle.net/20.500.12494/41800
Palabra clave:
Adhesives
Atomic force microscopy
Austenitic stainless steel
Biofilms
Nanolithography
Scanning electron microscopy
Silica
Silicones
Sols
Surface treatment
Biomaterial surfaces
Colony forming units
Dip-pen nanolithography
Experimental approaches
Micropatterned surface
Polymeric adhesive
Stainless steel 316L
Streptococcus mutans
Adhesion
Rights
closedAccess
License
http://purl.org/coar/access_right/c_14cb
id COOPER2_8079322ab7f5555f141aac5e0791952f
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/41800
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
spelling Arango Santander, SantiagoPelaez Vargas, AlejandroDa Cunha Freitas, Sidonio RicardoGarcía González, Claudia Patricia2021-12-16T22:15:48Z2021-12-16T22:15:48Z2018https://doi.org/10.16925/cu.v1i1.307https://www.scopus.com/inward/record.uri?eid=2-s2.0-85034270363&doi=10.1016%2fj.humimm.2017.11.003&partnerID=40&md5=7158c0974f243f91d22a64f1c399925f16879503https://hdl.handle.net/20.500.12494/41800Arango S,Pelaez A,Freitas SC,García C. Surface Modification by Combination of Dip-Pen Nanolithography and Soft Lithography for Reduction of Bacterial Adhesion. J Nanotechnol. 2018. 2018. p. 1-10. .Dip-pen nanolithography (DPN) and soft lithography are techniques suitable to modify the surface of biomaterials. Modified surfaces might play a role in modulating cells and reducing bacterial adhesion and biofilm formation. The main objective of this study was threefold: first, to create patterns at microscale on model surfaces using DPN; second, to duplicate and transfer these patterns to a real biomaterial surface using a microstamping technique; and finally, to assess bacterial adhesion to these developed patterned surfaces using the cariogenic species Streptococcus mutans. DPN was used with a polymeric adhesive to create dot patterns on model surfaces. Elastomeric polydimethylsiloxane was used to duplicate the patterns and silica sol to transfer them to the medical grade stainless steel 316L surface by microstamping. Optical microscopy and atomic force microscopy (AFM) were used to characterize the patterns. S. mutans adhesion was assessed by colony-forming units (CFUs), MTT viability assay, and scanning electron microscopy (SEM). DPN allowed creating microarrays from 1 to 5 µm in diameter on model surfaces that were successfully transferred to the stainless steel 316L surface via microstamping. A significant reduction up to one order of magnitude in bacterial adhesion to micropatterned surfaces was observed. The presented experimental approach may be used to create patterns at microscale on a surface and transfer them to other surfaces of interest. A reduction in bacterial adhesion to patterned surfaces might have a major impact since adhesion is a key step in biofilm formation and development of biomaterial-related infections. © 2018 Santiago Arango-Santander et al.0000-0001-7582-2760alejandro.pelaezv@campusucc.edu.co10-1Hindawi Publishing CorporationAdhesivesAtomic force microscopyAustenitic stainless steelBiofilmsNanolithographyScanning electron microscopySilicaSiliconesSolsSurface treatmentBiomaterial surfacesColony forming unitsDip-pen nanolithographyExperimental approachesMicropatterned surfacePolymeric adhesiveStainless steel 316LStreptococcus mutansAdhesionSurface Modification by Combination of Dip-Pen Nanolithography and Soft Lithography for Reduction of Bacterial AdhesionArtículohttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionJournal of Nanotechnologyinfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbPublication20.500.12494/41800oai:repository.ucc.edu.co:20.500.12494/418002024-08-20 16:16:27.694metadata.onlyhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.com
dc.title.spa.fl_str_mv Surface Modification by Combination of Dip-Pen Nanolithography and Soft Lithography for Reduction of Bacterial Adhesion
title Surface Modification by Combination of Dip-Pen Nanolithography and Soft Lithography for Reduction of Bacterial Adhesion
spellingShingle Surface Modification by Combination of Dip-Pen Nanolithography and Soft Lithography for Reduction of Bacterial Adhesion
Adhesives
Atomic force microscopy
Austenitic stainless steel
Biofilms
Nanolithography
Scanning electron microscopy
Silica
Silicones
Sols
Surface treatment
Biomaterial surfaces
Colony forming units
Dip-pen nanolithography
Experimental approaches
Micropatterned surface
Polymeric adhesive
Stainless steel 316L
Streptococcus mutans
Adhesion
title_short Surface Modification by Combination of Dip-Pen Nanolithography and Soft Lithography for Reduction of Bacterial Adhesion
title_full Surface Modification by Combination of Dip-Pen Nanolithography and Soft Lithography for Reduction of Bacterial Adhesion
title_fullStr Surface Modification by Combination of Dip-Pen Nanolithography and Soft Lithography for Reduction of Bacterial Adhesion
title_full_unstemmed Surface Modification by Combination of Dip-Pen Nanolithography and Soft Lithography for Reduction of Bacterial Adhesion
title_sort Surface Modification by Combination of Dip-Pen Nanolithography and Soft Lithography for Reduction of Bacterial Adhesion
dc.creator.fl_str_mv Arango Santander, Santiago
Pelaez Vargas, Alejandro
Da Cunha Freitas, Sidonio Ricardo
García González, Claudia Patricia
dc.contributor.author.none.fl_str_mv Arango Santander, Santiago
Pelaez Vargas, Alejandro
Da Cunha Freitas, Sidonio Ricardo
García González, Claudia Patricia
dc.subject.spa.fl_str_mv Adhesives
Atomic force microscopy
Austenitic stainless steel
Biofilms
Nanolithography
Scanning electron microscopy
Silica
Silicones
Sols
Surface treatment
Biomaterial surfaces
Colony forming units
Dip-pen nanolithography
Experimental approaches
Micropatterned surface
Polymeric adhesive
Stainless steel 316L
Streptococcus mutans
Adhesion
topic Adhesives
Atomic force microscopy
Austenitic stainless steel
Biofilms
Nanolithography
Scanning electron microscopy
Silica
Silicones
Sols
Surface treatment
Biomaterial surfaces
Colony forming units
Dip-pen nanolithography
Experimental approaches
Micropatterned surface
Polymeric adhesive
Stainless steel 316L
Streptococcus mutans
Adhesion
description Dip-pen nanolithography (DPN) and soft lithography are techniques suitable to modify the surface of biomaterials. Modified surfaces might play a role in modulating cells and reducing bacterial adhesion and biofilm formation. The main objective of this study was threefold: first, to create patterns at microscale on model surfaces using DPN; second, to duplicate and transfer these patterns to a real biomaterial surface using a microstamping technique; and finally, to assess bacterial adhesion to these developed patterned surfaces using the cariogenic species Streptococcus mutans. DPN was used with a polymeric adhesive to create dot patterns on model surfaces. Elastomeric polydimethylsiloxane was used to duplicate the patterns and silica sol to transfer them to the medical grade stainless steel 316L surface by microstamping. Optical microscopy and atomic force microscopy (AFM) were used to characterize the patterns. S. mutans adhesion was assessed by colony-forming units (CFUs), MTT viability assay, and scanning electron microscopy (SEM). DPN allowed creating microarrays from 1 to 5 µm in diameter on model surfaces that were successfully transferred to the stainless steel 316L surface via microstamping. A significant reduction up to one order of magnitude in bacterial adhesion to micropatterned surfaces was observed. The presented experimental approach may be used to create patterns at microscale on a surface and transfer them to other surfaces of interest. A reduction in bacterial adhesion to patterned surfaces might have a major impact since adhesion is a key step in biofilm formation and development of biomaterial-related infections. © 2018 Santiago Arango-Santander et al.
publishDate 2018
dc.date.issued.none.fl_str_mv 2018
dc.date.accessioned.none.fl_str_mv 2021-12-16T22:15:48Z
dc.date.available.none.fl_str_mv 2021-12-16T22:15:48Z
dc.type.none.fl_str_mv Artículo
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.none.fl_str_mv https://doi.org/10.16925/cu.v1i1.307
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85034270363&doi=10.1016%2fj.humimm.2017.11.003&partnerID=40&md5=7158c0974f243f91d22a64f1c399925f
dc.identifier.issn.spa.fl_str_mv 16879503
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12494/41800
dc.identifier.bibliographicCitation.spa.fl_str_mv Arango S,Pelaez A,Freitas SC,García C. Surface Modification by Combination of Dip-Pen Nanolithography and Soft Lithography for Reduction of Bacterial Adhesion. J Nanotechnol. 2018. 2018. p. 1-10. .
url https://doi.org/10.16925/cu.v1i1.307
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85034270363&doi=10.1016%2fj.humimm.2017.11.003&partnerID=40&md5=7158c0974f243f91d22a64f1c399925f
https://hdl.handle.net/20.500.12494/41800
identifier_str_mv 16879503
Arango S,Pelaez A,Freitas SC,García C. Surface Modification by Combination of Dip-Pen Nanolithography and Soft Lithography for Reduction of Bacterial Adhesion. J Nanotechnol. 2018. 2018. p. 1-10. .
dc.relation.ispartofjournal.spa.fl_str_mv Journal of Nanotechnology
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/closedAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_14cb
eu_rights_str_mv closedAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_14cb
dc.format.extent.spa.fl_str_mv 10-1
dc.publisher.spa.fl_str_mv Hindawi Publishing Corporation
institution Universidad Cooperativa de Colombia
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1814246640258646016