Tratamiento superficial de biomateriales dentales con plasma de oxígeno - Revisión
El tratamiento de superficies con plasma de oxígeno permite modificaciones superficiales de interés en biomateriales dentales. La presente revisión incluye su definición, algunos aspectos de su historia, y las ventajas y desventajas de su aplicación en biomateriales dentales según la composición de...
- Autores:
-
Ríos Restrepo, María Fernanda
Loaiza Castaño, Luisa Fernanda
Peláez Vargas, Alejandro
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2022
- Institución:
- Universidad Cooperativa de Colombia
- Repositorio:
- Repositorio UCC
- Idioma:
- OAI Identifier:
- oai:repository.ucc.edu.co:20.500.12494/45180
- Acceso en línea:
- https://hdl.handle.net/20.500.12494/45180
- Palabra clave:
- Plasma
Biomateriales dentales
Cerámicas
Biocompatibilidad
Oxígeno
Polímeros
Metales
Biomedicina
TG 2022 ODO 45180
Oxygen plasma
Dental materials
Ceramics
biocompatibility
polymers
metals
biomedicine
- Rights
- openAccess
- License
- Atribución – No comercial – Sin Derivar
id |
COOPER2_7c06aeb9fe1be483a0a6e0046c8c4304 |
---|---|
oai_identifier_str |
oai:repository.ucc.edu.co:20.500.12494/45180 |
network_acronym_str |
COOPER2 |
network_name_str |
Repositorio UCC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Tratamiento superficial de biomateriales dentales con plasma de oxígeno - Revisión |
title |
Tratamiento superficial de biomateriales dentales con plasma de oxígeno - Revisión |
spellingShingle |
Tratamiento superficial de biomateriales dentales con plasma de oxígeno - Revisión Plasma Biomateriales dentales Cerámicas Biocompatibilidad Oxígeno Polímeros Metales Biomedicina TG 2022 ODO 45180 Oxygen plasma Dental materials Ceramics biocompatibility polymers metals biomedicine |
title_short |
Tratamiento superficial de biomateriales dentales con plasma de oxígeno - Revisión |
title_full |
Tratamiento superficial de biomateriales dentales con plasma de oxígeno - Revisión |
title_fullStr |
Tratamiento superficial de biomateriales dentales con plasma de oxígeno - Revisión |
title_full_unstemmed |
Tratamiento superficial de biomateriales dentales con plasma de oxígeno - Revisión |
title_sort |
Tratamiento superficial de biomateriales dentales con plasma de oxígeno - Revisión |
dc.creator.fl_str_mv |
Ríos Restrepo, María Fernanda Loaiza Castaño, Luisa Fernanda Peláez Vargas, Alejandro |
dc.contributor.author.none.fl_str_mv |
Ríos Restrepo, María Fernanda Loaiza Castaño, Luisa Fernanda Peláez Vargas, Alejandro |
dc.subject.spa.fl_str_mv |
Plasma Biomateriales dentales Cerámicas Biocompatibilidad Oxígeno Polímeros Metales Biomedicina |
topic |
Plasma Biomateriales dentales Cerámicas Biocompatibilidad Oxígeno Polímeros Metales Biomedicina TG 2022 ODO 45180 Oxygen plasma Dental materials Ceramics biocompatibility polymers metals biomedicine |
dc.subject.classification.spa.fl_str_mv |
TG 2022 ODO 45180 |
dc.subject.other.spa.fl_str_mv |
Oxygen plasma Dental materials Ceramics biocompatibility polymers metals biomedicine |
description |
El tratamiento de superficies con plasma de oxígeno permite modificaciones superficiales de interés en biomateriales dentales. La presente revisión incluye su definición, algunos aspectos de su historia, y las ventajas y desventajas de su aplicación en biomateriales dentales según la composición de cerámicos, poliméricos, metálicos, y en biomateriales naturales. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-06-02T19:50:53Z |
dc.date.available.none.fl_str_mv |
2022-06-02T19:50:53Z |
dc.date.issued.none.fl_str_mv |
2022-06-02 |
dc.type.none.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12494/45180 |
dc.identifier.bibliographicCitation.spa.fl_str_mv |
Rios Restrepo, M. F. Loaiza Castaño, L. F. y Pelaez Vargas, A. (2022). Tratamiento superficial de biomateriales dentales con plasma de oxígeno - Revisión [Tesis de pregrado, Universidad Cooperativa de Colombia]. Repositorio Institucional UCC.https://repository.ucc.edu.co/handle/20.500.12494/45180 |
url |
https://hdl.handle.net/20.500.12494/45180 |
identifier_str_mv |
Rios Restrepo, M. F. Loaiza Castaño, L. F. y Pelaez Vargas, A. (2022). Tratamiento superficial de biomateriales dentales con plasma de oxígeno - Revisión [Tesis de pregrado, Universidad Cooperativa de Colombia]. Repositorio Institucional UCC.https://repository.ucc.edu.co/handle/20.500.12494/45180 |
dc.relation.references.spa.fl_str_mv |
Gibbon P. Introduction to plasma physics. In: CAS-CERN Accelerator School: Plasma Wake Acceleration Proceedings. 2016. p. 51–65. Yamamoto M, Matsumae T, Kurashima Y, Takagi H, Suga T, Itoh T, et al. Comparison of argon and oxygen plasma treatments for ambient room-temperature wafer-scale au-au bonding using ultrathin au films. Micromachines. 2019;10(2). Wu CC, Wei CK, Ho CC, Ding SJ. Enhanced hydrophilicity and biocompatibility of dental Zirconia ceramics by oxygen plasma treatment. Materials (Basel). 2015;8(2):684–99. Tsai G, Montero J, Calle W, Quinde M, Sarmiento P. Plasma: una tecnología de gran potencial para la industria y la ciencia. Ingenius. 2010;(4):66–72. Tan SH, Nguyen NT, Chua YC, Kang TG. Oxygen plasma treatment for reducing hydrophobicity of a sealed polydimethylsiloxane microchannel. Biomicrofluidics. 2010;4(3):1–8. Gao L, Shi X, Wu X. Applications and challenges of low temperature plasma in pharmaceutical field. J Pharm Anal. 2021;11(1):28–36. El-Khatib EM, Raslan WM, El-Halwagy AA, Galab S. Effect of Low Temperature Plasma Treatment on the Properties of Wool/Polyester Blend. Res J Text Appar. 2013;17(1):124–32. Naebe M, Haque ANMA, Haji A. Plasma-assisted antimicrobial finishing of textiles: A review. Engineering. 2021;https://doi.org/10.1016/j.eng.2021.01.011. Eghiaian F, Rico F, Colom A, Casuso I, Scheuring S. High-speed atomic force microscopy: Imaging and force spectroscopy. FEBS Lett. 2014;588(19):3631–8. Baer DR, Artyushkova K, Richard Brundle C, Castle JE, Engelhard MH, Gaskell KJ, et al. Practical guides for x-ray photoelectron spectroscopy: First steps in planning, conducting, and reporting XPS measurements. J Vac Sci Technol A. 2019;37(3):031401. Töberg S, Reithmeier E. Quantitative 3d reconstruction from scanning electron microscope images based on affine camera models. Sensors. 2020;20(12):1–26. Kelly JR, Benetti P. Ceramic materials in dentistry: Historical evolution and current practice. Aust Dent J. 2011;56(SUPPL. 1):84–96. Moriguchi Y, Lee DS, Chijimatsu R, Thamina K, Masuda K, Itsuki D, et al. Impact of non-thermal plasma surface modification on porous calcium hydroxyapatite ceramics for bone regeneration. PLoS One. 2018;13(3):1–18. Álvarez-Fernández MÁ, Peña-López JM, González-González IR, Olay-García MS. Características generales y propiedades de las cerámicas sin metal. Rcoe. 2003;8(5):525–46. Martínez Rus F, Pradíes Ramiro G, Suárez García MJ, Rivera Gómez B. Cerámicas dentales: clasificación y criterios de selección. Rcoe. 2007;12(4):253–63. Fares C, Elhassani R, Partain J, Hsu SM, Craciun V, Ren F, et al. Annealing and N2 plasma treatment to minimize corrosion of SiC-coated glass-ceramics. Materials (Basel). 2020;13(10):1–13. Zarone F, Di Mauro MI, Ausiello P, Ruggiero G, Sorrentino R. Current status on lithium disilicate and zirconia: A narrative review. BMC Oral Health. 2019;19(1):1–14. Micheline dos Santos D, Vivianne Freitas da Silva E, José Vechiato-Filho A, Francisco Cesar P, Cipriano Rangel E, Cristino da Cruz N, et al. Aging effect of atmospheric air on lithium disilicate ceramic after nonthermal plasma treatment. J Prosthet Dent. 2016;115(6):780–7. Rokaya D, Srimaneepong V, Sapkota J, Qin J, Siraleartmukul K, Siriwongrungson V. Polymeric materials and films in dentistry: An overview. J Adv Res. 2018;14:25–34. Vesel A, Mozetic M. Surface modification and ageing of PMMA polymer by oxygen plasma treatment. Vacuum. 2012;86(6):634–7. Koodaryan R, Hafezeqoran A. Surface modification of dental polymers by plasma treatment: A review. Biomed Pharmacol J. 2016;9(1):317–21. Neděla O, Slepička P, Švorčík V. Materials Surface Modification of Polymer Substrates for Biomedical Applications. Materials (Basel). 2017;21(10):1115. Spyrides S, do Prado M, de Araujo J, Simão RA, Bastian FL. Effects of plasma on polyethylene fiber surface for prosthodontic application. J Appl Oral Sci. 2015;23(6):614–22. Jaeblon T. Polymethylmethacrylate: Properties and contemporary uses in orthopaedics. J Am Acad Orthop Surg. 2010;18(5):297–305. Kanioura A, Constantoudis V, Petrou P, Kletsas D, Tserepi A, Gogolides E, et al. Oxygen plasma micro-nanostructured PMMA plates and microfluidics for increased adhesion and proliferation of cancer versus normal cells: The role of surface roughness and disorder. Micro Nano Eng. 2020;8:100060. Pinto S, Alves P, Matos CM, Santos AC, Rodrigues LR, Teixeira JA, et al. Poly(dimethyl siloxane) surface modification by low pressure plasma to improve its characteristics towards biomedical applications. Colloids Surfaces B Biointerfaces. 2010;81(1):20–6. Osorio-Delgado MA, Henao-Tamayo LJ, Velásquez-Cock JA, Cañas-Gutierrez AI, Restrepo-Múnera LM, Gañán-Rojo PF, et al. Aplicaciones biomédicas de biomateriales poliméricos. DYNA. 2017;84(201):241–52. JY, Khan-Malek C. Surface modification and aging studies of addition-curing silicone rubbers by oxygen plasma. Eur Polym J. 2008;44(7):2130–9. John AV, Abraham G, Alias A. Two-visit CAD/CAM milled dentures in the rehabilitation of edentulous arches: A case series. J Indian Prosthodont Soc. 2019;19(1):88–92. Mandolfino C, Lertora E, Gambaro C, Pizzorni M. Functionalization of neutral polypropylene by using low pressure plasma treatment: Effects on surface characteristics and adhesion properties. Polymers (Basel). 2019;11(2):202. Torres-Lagares D, Castellanos-Cosano L, Serrera-Figallo M ángeles, García-García FJ, López-Santos C, Barranco A, et al. In vitro and in vivo study of poly(lactic-co-glycolic) (PLGA)membranes treated with oxygen plasma and coated with nanostructured hydroxyapatite ultrathin films for guided bone regeneration processes. Polymers (Basel). 2017;9(9):doi:10.3390/polym9090410 Schwitalla A, Müller WD. PEEK dental implants: A review of the literature. J Oral Implantol. 2013;39(6):743–9. Yabutsuka T, Fukushima K, Hiruta T, Takai S, Yao T. Effect of pores formation process and oxygen plasma treatment to hydroxyapatite formation on bioactive PEEK prepared by incorporation of precursor of apatite. Mater Sci Eng C. 2017;81:349–58. Poulsson AHC, Eglin D, Zeiter S, Camenisch K, Sprecher C, Agarwal Y, et al. Osseointegration of machined, injection moulded and oxygen plasma modified PEEK implants in a sheep model. Biomaterials. 2014;35(12):3717–28. Han X, Sharma N, Spintzyk S, Zhou Y, Xu Z, Thieringer FM, et al. Tailoring the biologic responses of 3D printed PEEK medical implants by plasma functionalization. Dent Mater. 2022;10.1016/j.dental.2022.04.026. Givan DA. Precious Metals in Dentistry. Dent Clin North Am. 2007;51(3):591–601. Kaur M, Singh K. Review on titanium and titanium based alloys as biomaterials for orthopaedic applications. Mater Sci Eng C. 2019;102(April):844–62. Wang L, Wang W, Zhao H, Liu Y, Liu J, Bai N. Bioactive Effects of Low-Temperature Argon−Oxygen Plasma on a Titanium Implant Surface. ACS Omega. 2020;5(8):3996–4003. Berman D, Krim J. Impact of oxygen and argon plasma exposure on the roughness of gold film surfaces. Thin Solid Films. 2012;520(19):6201–6. Lancaster CA, Shumaker-Parry JS. Surface preparation of gold nanostructures on glass by ultraviolet ozone and oxygen plasma for thermal atomic layer deposition of Al2O3. Thin Solid Films. 2016;612(2016):141–6. Arango Santander S, Luna Ossa CM. Stainless Steel: Material Facts for the Orthodontic Practitioner. Rev Nac Odontol. 2015;11(20):doi: 10.16925/od.v11i20.751. Stapelmann K, Fiebrandt M, Raguse M, Awakowicz P, Nther Reitz G, Moeller R. Utilization of Low-Pressure Plasma to Inactivate Bacterial Spores on Stainless Steel Screws. Astrobiol. 2013;13(7):1–10. Catanio Bortolan C, Paternoster C, Turgeon S, Paoletti C, Cabibbo M, Lecis N, et al. Plasma-immersion ion implantation surface oxidation on a cobalt-chromium alloy for biomedical applications. Biointerphases. 2020;15(4):041004. Yadav P, Yadav H, Shah VG, Shah G, Dhaka G. Biomedical biopolymers, their origin and evolution in biomedical sciences: A systematic review. J Clin Diagnostic Res. 2015;9(9):21–5. Jacobs T, Morent R, De Geyter N, Dubruel P, Leys C. Plasma surface modification of biomedical polymers: Influence on cell-material interaction. Plasma Chem Plasma Process. 2012;32(5):1039–73. Prado M, Menezes MSDO, Gomes BPFDA, Barbosa CADM, Athias L, Simão RA. Surface modification of gutta-percha cones by non-thermal plasma. Mater Sci Eng C. 2016;68:343–9. |
dc.rights.license.none.fl_str_mv |
Atribución – No comercial – Sin Derivar |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución – No comercial – Sin Derivar http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
17 p. |
dc.publisher.spa.fl_str_mv |
Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Odontología, Medellín y Envigado |
dc.publisher.program.spa.fl_str_mv |
Odontología |
dc.publisher.place.spa.fl_str_mv |
Medellín |
institution |
Universidad Cooperativa de Colombia |
bitstream.url.fl_str_mv |
https://repository.ucc.edu.co/bitstreams/d9bd5286-ab59-4d80-b695-b0a331114179/download https://repository.ucc.edu.co/bitstreams/3c193809-d37b-4d0f-ab7e-0e53c1b9eda8/download https://repository.ucc.edu.co/bitstreams/a31f8b69-78d1-4548-b846-b7e721f766fb/download https://repository.ucc.edu.co/bitstreams/fc08e510-bda4-45d5-afcb-e12644b17ab6/download https://repository.ucc.edu.co/bitstreams/8cc476ff-706b-4dd8-81ca-b6d41d660d9b/download https://repository.ucc.edu.co/bitstreams/3959cee7-0fc2-462c-a9fd-d7de6484da36/download https://repository.ucc.edu.co/bitstreams/21533d56-fc88-4520-b30b-55b7b6155c8b/download |
bitstream.checksum.fl_str_mv |
55cd91c2df39b1e3efba4b27effc61c1 a98fb1508cef699b128d4e62b110131a 8a4605be74aa9ea9d79846c1fba20a33 1a56d32f7fe0780ab91b425181e5b056 0c92cbc4dd1e33df924c9d9380d6600c a6e0b996670c8eafe206f06a165bac45 a66e3e5e0d554cc8f14e5a6f03bc138b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Cooperativa de Colombia |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1814247084610551808 |
spelling |
Ríos Restrepo, María FernandaLoaiza Castaño, Luisa FernandaPeláez Vargas, Alejandro2022-06-02T19:50:53Z2022-06-02T19:50:53Z2022-06-02https://hdl.handle.net/20.500.12494/45180Rios Restrepo, M. F. Loaiza Castaño, L. F. y Pelaez Vargas, A. (2022). Tratamiento superficial de biomateriales dentales con plasma de oxígeno - Revisión [Tesis de pregrado, Universidad Cooperativa de Colombia]. Repositorio Institucional UCC.https://repository.ucc.edu.co/handle/20.500.12494/45180El tratamiento de superficies con plasma de oxígeno permite modificaciones superficiales de interés en biomateriales dentales. La presente revisión incluye su definición, algunos aspectos de su historia, y las ventajas y desventajas de su aplicación en biomateriales dentales según la composición de cerámicos, poliméricos, metálicos, y en biomateriales naturales.Surface treatments using oxygen plasma allow several chemical and biological modifications on dental materials to modulate biological response in the cell-material interface. This review describes general aspects such as definitions, history and applications discriminated by dental materials compositions and finally, a brief description about its application for natural biomaterials.mariaf.riosr@campusucc.edu.coluisa.loaizac@campusucc.edu.coalejandro.pelaezv@campusucc.edu.co17 p.Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Odontología, Medellín y EnvigadoOdontologíaMedellínPlasmaBiomateriales dentalesCerámicasBiocompatibilidadOxígenoPolímerosMetalesBiomedicinaTG 2022 ODO 45180Oxygen plasmaDental materialsCeramicsbiocompatibilitypolymersmetalsbiomedicineTratamiento superficial de biomateriales dentales con plasma de oxígeno - RevisiónTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionAtribución – No comercial – Sin Derivarinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Gibbon P. Introduction to plasma physics. In: CAS-CERN Accelerator School: Plasma Wake Acceleration Proceedings. 2016. p. 51–65.Yamamoto M, Matsumae T, Kurashima Y, Takagi H, Suga T, Itoh T, et al. Comparison of argon and oxygen plasma treatments for ambient room-temperature wafer-scale au-au bonding using ultrathin au films. Micromachines. 2019;10(2).Wu CC, Wei CK, Ho CC, Ding SJ. Enhanced hydrophilicity and biocompatibility of dental Zirconia ceramics by oxygen plasma treatment. Materials (Basel). 2015;8(2):684–99.Tsai G, Montero J, Calle W, Quinde M, Sarmiento P. Plasma: una tecnología de gran potencial para la industria y la ciencia. Ingenius. 2010;(4):66–72.Tan SH, Nguyen NT, Chua YC, Kang TG. Oxygen plasma treatment for reducing hydrophobicity of a sealed polydimethylsiloxane microchannel. Biomicrofluidics. 2010;4(3):1–8.Gao L, Shi X, Wu X. Applications and challenges of low temperature plasma in pharmaceutical field. J Pharm Anal. 2021;11(1):28–36.El-Khatib EM, Raslan WM, El-Halwagy AA, Galab S. Effect of Low Temperature Plasma Treatment on the Properties of Wool/Polyester Blend. Res J Text Appar. 2013;17(1):124–32.Naebe M, Haque ANMA, Haji A. Plasma-assisted antimicrobial finishing of textiles: A review. Engineering. 2021;https://doi.org/10.1016/j.eng.2021.01.011.Eghiaian F, Rico F, Colom A, Casuso I, Scheuring S. High-speed atomic force microscopy: Imaging and force spectroscopy. FEBS Lett. 2014;588(19):3631–8.Baer DR, Artyushkova K, Richard Brundle C, Castle JE, Engelhard MH, Gaskell KJ, et al. Practical guides for x-ray photoelectron spectroscopy: First steps in planning, conducting, and reporting XPS measurements. J Vac Sci Technol A. 2019;37(3):031401.Töberg S, Reithmeier E. Quantitative 3d reconstruction from scanning electron microscope images based on affine camera models. Sensors. 2020;20(12):1–26.Kelly JR, Benetti P. Ceramic materials in dentistry: Historical evolution and current practice. Aust Dent J. 2011;56(SUPPL. 1):84–96.Moriguchi Y, Lee DS, Chijimatsu R, Thamina K, Masuda K, Itsuki D, et al. Impact of non-thermal plasma surface modification on porous calcium hydroxyapatite ceramics for bone regeneration. PLoS One. 2018;13(3):1–18.Álvarez-Fernández MÁ, Peña-López JM, González-González IR, Olay-García MS. Características generales y propiedades de las cerámicas sin metal. Rcoe. 2003;8(5):525–46.Martínez Rus F, Pradíes Ramiro G, Suárez García MJ, Rivera Gómez B. Cerámicas dentales: clasificación y criterios de selección. Rcoe. 2007;12(4):253–63.Fares C, Elhassani R, Partain J, Hsu SM, Craciun V, Ren F, et al. Annealing and N2 plasma treatment to minimize corrosion of SiC-coated glass-ceramics. Materials (Basel). 2020;13(10):1–13.Zarone F, Di Mauro MI, Ausiello P, Ruggiero G, Sorrentino R. Current status on lithium disilicate and zirconia: A narrative review. BMC Oral Health. 2019;19(1):1–14.Micheline dos Santos D, Vivianne Freitas da Silva E, José Vechiato-Filho A, Francisco Cesar P, Cipriano Rangel E, Cristino da Cruz N, et al. Aging effect of atmospheric air on lithium disilicate ceramic after nonthermal plasma treatment. J Prosthet Dent. 2016;115(6):780–7.Rokaya D, Srimaneepong V, Sapkota J, Qin J, Siraleartmukul K, Siriwongrungson V. Polymeric materials and films in dentistry: An overview. J Adv Res. 2018;14:25–34.Vesel A, Mozetic M. Surface modification and ageing of PMMA polymer by oxygen plasma treatment. Vacuum. 2012;86(6):634–7.Koodaryan R, Hafezeqoran A. Surface modification of dental polymers by plasma treatment: A review. Biomed Pharmacol J. 2016;9(1):317–21.Neděla O, Slepička P, Švorčík V. Materials Surface Modification of Polymer Substrates for Biomedical Applications. Materials (Basel). 2017;21(10):1115.Spyrides S, do Prado M, de Araujo J, Simão RA, Bastian FL. Effects of plasma on polyethylene fiber surface for prosthodontic application. J Appl Oral Sci. 2015;23(6):614–22.Jaeblon T. Polymethylmethacrylate: Properties and contemporary uses in orthopaedics. J Am Acad Orthop Surg. 2010;18(5):297–305.Kanioura A, Constantoudis V, Petrou P, Kletsas D, Tserepi A, Gogolides E, et al. Oxygen plasma micro-nanostructured PMMA plates and microfluidics for increased adhesion and proliferation of cancer versus normal cells: The role of surface roughness and disorder. Micro Nano Eng. 2020;8:100060.Pinto S, Alves P, Matos CM, Santos AC, Rodrigues LR, Teixeira JA, et al. Poly(dimethyl siloxane) surface modification by low pressure plasma to improve its characteristics towards biomedical applications. Colloids Surfaces B Biointerfaces. 2010;81(1):20–6.Osorio-Delgado MA, Henao-Tamayo LJ, Velásquez-Cock JA, Cañas-Gutierrez AI, Restrepo-Múnera LM, Gañán-Rojo PF, et al. Aplicaciones biomédicas de biomateriales poliméricos. DYNA. 2017;84(201):241–52.JY, Khan-Malek C. Surface modification and aging studies of addition-curing silicone rubbers by oxygen plasma. Eur Polym J. 2008;44(7):2130–9.John AV, Abraham G, Alias A. Two-visit CAD/CAM milled dentures in the rehabilitation of edentulous arches: A case series. J Indian Prosthodont Soc. 2019;19(1):88–92.Mandolfino C, Lertora E, Gambaro C, Pizzorni M. Functionalization of neutral polypropylene by using low pressure plasma treatment: Effects on surface characteristics and adhesion properties. Polymers (Basel). 2019;11(2):202.Torres-Lagares D, Castellanos-Cosano L, Serrera-Figallo M ángeles, García-García FJ, López-Santos C, Barranco A, et al. In vitro and in vivo study of poly(lactic-co-glycolic) (PLGA)membranes treated with oxygen plasma and coated with nanostructured hydroxyapatite ultrathin films for guided bone regeneration processes. Polymers (Basel). 2017;9(9):doi:10.3390/polym9090410Schwitalla A, Müller WD. PEEK dental implants: A review of the literature. J Oral Implantol. 2013;39(6):743–9.Yabutsuka T, Fukushima K, Hiruta T, Takai S, Yao T. Effect of pores formation process and oxygen plasma treatment to hydroxyapatite formation on bioactive PEEK prepared by incorporation of precursor of apatite. Mater Sci Eng C. 2017;81:349–58.Poulsson AHC, Eglin D, Zeiter S, Camenisch K, Sprecher C, Agarwal Y, et al. Osseointegration of machined, injection moulded and oxygen plasma modified PEEK implants in a sheep model. Biomaterials. 2014;35(12):3717–28.Han X, Sharma N, Spintzyk S, Zhou Y, Xu Z, Thieringer FM, et al. Tailoring the biologic responses of 3D printed PEEK medical implants by plasma functionalization. Dent Mater. 2022;10.1016/j.dental.2022.04.026.Givan DA. Precious Metals in Dentistry. Dent Clin North Am. 2007;51(3):591–601.Kaur M, Singh K. Review on titanium and titanium based alloys as biomaterials for orthopaedic applications. Mater Sci Eng C. 2019;102(April):844–62.Wang L, Wang W, Zhao H, Liu Y, Liu J, Bai N. Bioactive Effects of Low-Temperature Argon−Oxygen Plasma on a Titanium Implant Surface. ACS Omega. 2020;5(8):3996–4003.Berman D, Krim J. Impact of oxygen and argon plasma exposure on the roughness of gold film surfaces. Thin Solid Films. 2012;520(19):6201–6.Lancaster CA, Shumaker-Parry JS. Surface preparation of gold nanostructures on glass by ultraviolet ozone and oxygen plasma for thermal atomic layer deposition of Al2O3. Thin Solid Films. 2016;612(2016):141–6.Arango Santander S, Luna Ossa CM. Stainless Steel: Material Facts for the Orthodontic Practitioner. Rev Nac Odontol. 2015;11(20):doi: 10.16925/od.v11i20.751.Stapelmann K, Fiebrandt M, Raguse M, Awakowicz P, Nther Reitz G, Moeller R. Utilization of Low-Pressure Plasma to Inactivate Bacterial Spores on Stainless Steel Screws. Astrobiol. 2013;13(7):1–10.Catanio Bortolan C, Paternoster C, Turgeon S, Paoletti C, Cabibbo M, Lecis N, et al. Plasma-immersion ion implantation surface oxidation on a cobalt-chromium alloy for biomedical applications. Biointerphases. 2020;15(4):041004.Yadav P, Yadav H, Shah VG, Shah G, Dhaka G. Biomedical biopolymers, their origin and evolution in biomedical sciences: A systematic review. J Clin Diagnostic Res. 2015;9(9):21–5.Jacobs T, Morent R, De Geyter N, Dubruel P, Leys C. Plasma surface modification of biomedical polymers: Influence on cell-material interaction. Plasma Chem Plasma Process. 2012;32(5):1039–73.Prado M, Menezes MSDO, Gomes BPFDA, Barbosa CADM, Athias L, Simão RA. Surface modification of gutta-percha cones by non-thermal plasma. Mater Sci Eng C. 2016;68:343–9.PublicationORIGINAL2022_tratamiento_superficial_biomateriales_formato_licenciadeuso.pdf2022_tratamiento_superficial_biomateriales_formato_licenciadeuso.pdfLicenciaapplication/pdf214745https://repository.ucc.edu.co/bitstreams/d9bd5286-ab59-4d80-b695-b0a331114179/download55cd91c2df39b1e3efba4b27effc61c1MD512022_tratamiento_superficial_biomateriales..pdf2022_tratamiento_superficial_biomateriales..pdfManuscritoapplication/pdf196965https://repository.ucc.edu.co/bitstreams/3c193809-d37b-4d0f-ab7e-0e53c1b9eda8/downloada98fb1508cef699b128d4e62b110131aMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repository.ucc.edu.co/bitstreams/a31f8b69-78d1-4548-b846-b7e721f766fb/download8a4605be74aa9ea9d79846c1fba20a33MD55THUMBNAIL2022_tratamiento_superficial_biomateriales_formato_licenciadeuso.pdf.jpg2022_tratamiento_superficial_biomateriales_formato_licenciadeuso.pdf.jpgGenerated Thumbnailimage/jpeg5274https://repository.ucc.edu.co/bitstreams/fc08e510-bda4-45d5-afcb-e12644b17ab6/download1a56d32f7fe0780ab91b425181e5b056MD562022_tratamiento_superficial_biomateriales..pdf.jpg2022_tratamiento_superficial_biomateriales..pdf.jpgGenerated Thumbnailimage/jpeg4645https://repository.ucc.edu.co/bitstreams/8cc476ff-706b-4dd8-81ca-b6d41d660d9b/download0c92cbc4dd1e33df924c9d9380d6600cMD57TEXT2022_tratamiento_superficial_biomateriales_formato_licenciadeuso.pdf.txt2022_tratamiento_superficial_biomateriales_formato_licenciadeuso.pdf.txtExtracted texttext/plain5837https://repository.ucc.edu.co/bitstreams/3959cee7-0fc2-462c-a9fd-d7de6484da36/downloada6e0b996670c8eafe206f06a165bac45MD582022_tratamiento_superficial_biomateriales..pdf.txt2022_tratamiento_superficial_biomateriales..pdf.txtExtracted texttext/plain35953https://repository.ucc.edu.co/bitstreams/21533d56-fc88-4520-b30b-55b7b6155c8b/downloada66e3e5e0d554cc8f14e5a6f03bc138bMD5920.500.12494/45180oai:repository.ucc.edu.co:20.500.12494/451802024-08-10 23:15:58.051restrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.com |