Bioinspired Topographic Surface Modification of Biomaterials

Physical surface modification is an approach that has been investigated over the last decade to reduce bacterial adhesion and improve cell attachment to biomaterials. Many techniques have been reported to modify surfaces, including the use of natural sources as inspiration to fabricate topographies...

Full description

Autores:
Arango Santander, Santiago
Tipo de recurso:
Article of journal
Fecha de publicación:
2022
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/44555
Acceso en línea:
https://doi.org/10.3390/ma15072383
https://hdl.handle.net/20.500.12494/44555
Palabra clave:
Modificación de superficies
Biomimética
Sharklet
Hoja de loto
Adhesión bacteriana
Comportamiento celular
TG 2022 ODO 44555
Surface modification
Biomimetics
Sharklet
Lotus leaf
Bacterial adhesion
Cell behavior
Rights
openAccess
License
Atribución – No comercial – Sin Derivar
id COOPER2_779f10903b21394cd00c699fc5cbc6b8
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/44555
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.spa.fl_str_mv Bioinspired Topographic Surface Modification of Biomaterials
title Bioinspired Topographic Surface Modification of Biomaterials
spellingShingle Bioinspired Topographic Surface Modification of Biomaterials
Modificación de superficies
Biomimética
Sharklet
Hoja de loto
Adhesión bacteriana
Comportamiento celular
TG 2022 ODO 44555
Surface modification
Biomimetics
Sharklet
Lotus leaf
Bacterial adhesion
Cell behavior
title_short Bioinspired Topographic Surface Modification of Biomaterials
title_full Bioinspired Topographic Surface Modification of Biomaterials
title_fullStr Bioinspired Topographic Surface Modification of Biomaterials
title_full_unstemmed Bioinspired Topographic Surface Modification of Biomaterials
title_sort Bioinspired Topographic Surface Modification of Biomaterials
dc.creator.fl_str_mv Arango Santander, Santiago
dc.contributor.author.none.fl_str_mv Arango Santander, Santiago
dc.subject.spa.fl_str_mv Modificación de superficies
Biomimética
Sharklet
Hoja de loto
Adhesión bacteriana
Comportamiento celular
topic Modificación de superficies
Biomimética
Sharklet
Hoja de loto
Adhesión bacteriana
Comportamiento celular
TG 2022 ODO 44555
Surface modification
Biomimetics
Sharklet
Lotus leaf
Bacterial adhesion
Cell behavior
dc.subject.classification.spa.fl_str_mv TG 2022 ODO 44555
dc.subject.other.spa.fl_str_mv Surface modification
Biomimetics
Sharklet
Lotus leaf
Bacterial adhesion
Cell behavior
description Physical surface modification is an approach that has been investigated over the last decade to reduce bacterial adhesion and improve cell attachment to biomaterials. Many techniques have been reported to modify surfaces, including the use of natural sources as inspiration to fabricate topographies on artificial surfaces. Biomimetics is a tool to take advantage of nature to solve human problems. Physical surface modification using animal and vegetal topographies as inspiration to reduce bacterial adhesion and improve cell attachment has been investigated in the last years, and the results have been very promising. However, just a few animal and plant surfaces have been used to modify the surface of biomaterials with these objectives, and only a small number of bacterial species and cell types have been tested. The purpose of this review is to present the most current results on topographic surface modification using animal and plant surfaces as inspiration to modify the surface of biomedical materials with the objective of reducing bacterial adhesion and improving cell behavior
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-04-19T12:41:25Z
dc.date.available.none.fl_str_mv 2022-04-19T12:41:25Z
dc.date.issued.none.fl_str_mv 2022-03-24
dc.type.none.fl_str_mv Artículo
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.uri.spa.fl_str_mv https://doi.org/10.3390/ma15072383
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12494/44555
dc.identifier.bibliographicCitation.spa.fl_str_mv Arango-Santander, S. (2022) Bioinspired Topographic Surface Modification of Biomaterials. Materials 2022;15:2383.http://hdl.handle.net/20.500.12494/44555
url https://doi.org/10.3390/ma15072383
https://hdl.handle.net/20.500.12494/44555
identifier_str_mv Arango-Santander, S. (2022) Bioinspired Topographic Surface Modification of Biomaterials. Materials 2022;15:2383.http://hdl.handle.net/20.500.12494/44555
dc.relation.isversionof.spa.fl_str_mv https://www.mdpi.com/1996-1944/15/7/2383
dc.relation.ispartofjournal.spa.fl_str_mv Materials
dc.relation.references.spa.fl_str_mv Hwang, J.; Jeong, Y.; Park, J.M.; Lee, K.H.; Hong, J.W.; Choi, J. Biomimetics: Forecasting the future of science, engineering, andmedicine.Int. J. Nanomed.2015,10, 5701–5713.
Drack, M.; Limpinsel, M.; De Bruyn, G.; Nebelsick, J.H.; Betz, O. Towards a theoretical clarification of biomimetics usingconceptual tools from engineering design.Bioinspir. Biomim.2018,13, 016007
French, J.R.J.; Ahmed, B.M. The challenge of biomimetic design for carbon-neutral buildings using termite engineering.Insect Sci.2010,17, 154–162
Siddiqui, N.A.; Asrar, W.; Sulaeman, E. Literature review: Biomimetic and conventional aircraft wing tips.Int. J. Aviat. Aeronaut.Aerosp.2017,4, 2
Fish, F.E.; Kocak, D.M. Biomimetics and marine technology: An introduction.Mar. Technol. Soc. J.2011,45, 8–13.
Yan, H.; Wu, Q.; Yu, C.; Zhao, T.; Liu, M. Recent Progress of Biomimetic Antifouling Surfaces in Marine.Adv. Mater. Interfaces2020,7, 20
Wijegunawardana, I.D.; de Mel, W.R. Biomimetic Designs for Automobile Engineering: A Review.Int. J. Automot. Mech. Eng.2021,18, 9029–9041
Feng, C.; Zhang, W.; Deng, C.; Li, G.; Chang, J.; Zhang, Z.; Jiang, X.; Wu, C. 3D Printing of Lotus Root-Like Biomimetic Materialsfor Cell Delivery and Tissue Regeneration.Adv. Sci.2017,4, 1700401
Contessi Negrini, N.; Toffoletto, N.; Farè, S.; Altomare, L. Plant Tissues as 3D Natural Scaffolds for Adipose, Bone and TendonTissue Regeneration.Front. Bioeng. Biotechnol.2020,8, 723
Mahtabian, S.; Mirhadi, S.M.; Tavangarian, F. From rose petal to bone scaffolds: Using nature to fabricate osteon-like scaffolds forbone tissue engineering applications.Ceram. Int.2021,47, 21633–21641.
Li, C.; Yang, Y.; Yang, L.; Shi, Z.; Yang, P.; Cheng, G.In vitrobioactivity and biocompatibility of bio-inspired Ti-6Al-4V alloysurfaces modified by combined laser micro/nano structuring.Molecules2020,25, 1494.
Tricinci, O.; Terencio, T.; Mazzolai, B.; Pugno, N.M.; Greco, F.; Mattoli, V. 3D Micropatterned Surface Inspired by Salvinia molestavia Direct Laser Lithography.ACS Appl. Mater. Interfaces2015,7, 25560–25567
Jian, R.; Hao, L.; Song, L.; Tian, L.; Fan, Y.; Zhao, J.; Liu, C.; Ming, W.; Ren, L. Lotus-leaf-inspired hierarchical structured surfacewith non-fouling and mechanical bactericidal performances.Chem. Eng. J.2020,398, 125609
Öztürk-Öncel, M.Ö.; Ercok-Biradli, F.; Rasier, R.; Marcali, M.; Elbuken, C.; Garipcan, B. Rose petal topography mimickedpoly(dimethylsiloxane) substrates for enhanced corneal endothelial cell behavior.Mater. Sci. Eng. C2021,126, 112147
Ramaswamy, Y.; Roohani, I.; No, Y.J.; Madafiglio, G.; Chang, F.; Zhao, F.; Lu, Z.; Zreiqat, H. Nature-inspired topographies onhydroxyapatite surfaces regulate stem cells behavior.Bioactive Mater.2021,6, 1107–1117
Hwang, G.B.; Page, K.; Patir, A.; Nair, S.P.; Allan, E.; Parkin, I.P. The Anti-Biofouling Properties of Superhydrophobic Surfaces areShort-Lived.ACS Nano2018,12, 6050–6058
Mandal, P.; Ivvala, J.; Arora, H.S.; Ghosh, S.K.; Grewal, H.S. Bioinspired micro/nano structured aluminum with multifacetedapplications.Colloids Surf. B Interfaces2022,211, 112311
Xue, F.; Liu, J.; Guo, L.; Zhang, L.; Li, Q. Theoretical study on the bactericidal nature of nanopatterned surfaces.J. Theor. Biol.2015,385, 1–7.
Velic, A.; Hasan, J.; Li, Z.; Yarlagadda, P.K.D.V. Mechanics of Bacterial Interaction and Death on Nanopatterned Surfaces.Biophys.J.2020,120, 217–231
Jenkins, J.; Mantell, J.; Neal, C.; Gholinia, A.; Verkade, P.; Nobbs, A.H.; Su, B. Antibacterial effects of nanopillar surfaces aremediated by cell impedance, penetration and induction of oxidative stress.Nat. Commum.2020,11, 1626
Turner, A.M.; Dowell, N.; Kam, L.; Isaacson, M.; Turner, J.N.; Craighead, H.G.; Shain, W. Attachment of astroglial cells tomicrofabricated pillar arrays of different geometries.J. Biomed. Mater. Res.2000,51, 430–441
Glinel, K.; Thebault, P.; Humblot, V.; Pradier, C.M.; Jouenne, T. Antibacterial surfaces developed from bio-inspired approaches.Acta Biomater.2012,8, 1670–1684
Hasturk, O.; Ermis, M.; Demirci, U.; Hasirci, N.; Hasirci, V. Square prism micropillars improve osteogenicity of poly(methylmethacrylate) surfaces.J. Mater. Sci. Mater. Med.2018,29, 53.
Radotic, V.; Bedalov, A.; Drvis, P.; Braeken, D.; Kovacic, D. Guided growth with aligned neurites in adult spiral ganglion neuronscultured in vitro on silicon micro-pillar substrates.J. Neural. Eng.2019,16, 066037
Beckwith, K.S.; Ullmann, S.; Vinje, J.; Sikorski, P. Influence of Nanopillar Arrays on Fibroblast Motility, Adhesion, and MigrationMechanisms.Small2019,15, e190251
Kryszak, B.; Szustakiewicz, K.; Dzienny, P.; Junka, A.; Paleczny, J.; Szymczyk-Ziolkowska, P.; Hoppe, V.; Grzymajlo, M.; Antonczak,A. ‘Cookies on a tray’: Superselective hierarchical microstructured poly(L-lactide) surface as a decoy for cells.Mater. Sci. Eng. C2022,132, 112648
Raczkowska, J.; Stetsyshyn, Y.; Awsiuk, K.; Lekka, M.; Marzec, M.; Harhay, K.; Ohar, H.; Ostapiv, D.; Sharan, M.;Yaremchuk, I.; et al.Temperature-responsive grafted polymer brushes obtained from renewable sources with potentialapplication as substrates for tissue engineering.Appl. Surf. Sci.2017,407, 546–554
Liu, X.; Liu, R.; Gu, Y.; Ding, J. Nonmonotonic self-deformation of cell nuclei on topological surfaces with micropillar array.ACSAppl. Mater. Interfaces2017,9, 18521–18530
Li, Y.; Sun, W.; Zhang, A.; Jin, S.; Liang, X.; Tang, Z.; Liu, X.; Chen, H. Vascular cell behavior on heparin-like polymers modifiedsilicone surfaces: The prominent role of the lotus leaf-like topography.J. Colloid Interface Sci.2021,603, 501–510
Jaggessar, A.; Shahali, H.; Mathew, A.; Yarlagadda, P.K.D.V. Bio-mimicking nano and micro-structured surface fabrication forantibacterial properties in medical implants.J. Nanobiotechnol.2017,15, 64
Jia, Z.; Xiu, P.; Li, M.; Xu, X.; Shi, Y.; Cheng, Y.; Wei, S.; Zheng, Y.; Xi, T.; Cai, H.; et al. Bioinspired anchoring AgNPs ontomicro-nanoporous TiO2orthopedic coatings: Trap-killing of bacteria, surface-regulated osteoblast functions and host responses.Biomaterials2016,75, 203–222
Jia, L.; Han, F.; Wang, H.; Zhu, C.; Guo, Q.; Li, J.; Zhao, Z.; Zhang, Q.; Zhu, X.; Li, B. Polydopamine-assisted surface modificationfor orthopaedic implants.J. Orthop. Trans.2019,17, 82–95
Cheng, H.; Yue, K.; Kazemzadeh-Narbat, M.; Liu, Y.; Khalilpour, A.; Li, B.; Zhang, Y.S.; Annabi, N.; Khademhosseini, A.Mussel-Inspired Multifunctional Hydrogel Coating for Prevention of Infections and Enhanced Osteogenesis.ACS Appl. Mater.Interfaces2017,9, 11428–11439
Asha, A.B.; Chen, Y.; Zhang, H.; Ghaemi, S.; Ishihara, K.; Liu, Y.; Narain, R. Rapid Mussel-Inspired Surface Zwitteration forEnhanced Antifouling and Antibacterial Properties.Langmuir2019,35, 1621–1630
Choi, S.H.; Jang, Y.S.; Jang, J.H.; Bae, T.S.; Lee, S.J.; Lee, M.H. Enhanced antibacterial activity of titanium by surface modificationwith polydopamine and silver for dental implant application.J. Appl. Biomater. Funct. Mater.2019,17, 1–9
Freitas, S.C.; Correa-Uribe, A.; Martins, M.C.L.; Pelaez-Vargas, A. Self-Assembled Monolayers for Dental Implants.Int. J. Dent.2018,2018, 4395460
Zabara, M.; Ren, Q.; Amenitsch, H.; Salentinig, S. Bioinspired Antimicrobial Coatings from Peptide-Functionalized LiquidCrystalline Nanostructures.ACS Appl. Bio Mater.2021,4, 5295–5303
Zhang, Z.; Kou, N.; Ye, W.; Wang, S.; Lu, J.; Lu, Y.; Liu, H.; Wang, X. Construction and Characterizations of Antibacterial SurfacesBased on Self-Assembled Monolayer of Antimicrobial Peptides (Pac-525) Derivatives on Gold.Coatings2021,11, 9.
Saif, S.; Tahir, A.; Asim, T.; Chen, Y.; Khan, M.; Adil, S.F. Green synthesis of ZnO hierarchical microstructures by Cordia myxa andtheir antibacterial activity.Saudi J. Biol. Sci.2019,26, 1364–1371
Liu, M.; Li, M.T.; Xu, S.; Yang, H.; Sun, H.B. Bioinspired Superhydrophobic Surfaces via Laser-Structuring.Front. Chem.2020,16, 835.
Bhushan, B.; Jung, Y.C. Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and dragreduction.Prog. Mater. Sci.2011,56, 1–108.
Chen, L.; Duan, Y.; Cui, M.; Huang, R.; Su, R.; Qi, W.; He, Z. Biomimetic surface coatings for marine antifouling: Natural antifoulants, synthetic polymers and surface microtopography.Sci. Total Environ.2021,766, 144469.
Patil, D.; Overland, M.; Stoller, M.; Chatterjee, K. Bioinspired nanostructured bactericidal surfaces.Curr. Opin. Chem. Eng.2021,34, 100741
Shimomura, M. The New Trends in Next Generation Biomimetics Material Technology: Learning from Biodiversity.Sci. Technol.Trends2010,37, 53–75.
O’Neill, P.; Barrett, A.; Sullivan, T.; Regan, F.; Brabazon, D. Rapid Prototyped Biomimetic Antifouling Surfaces for MarineApplications.Biomimetics2016,5, 58.
Bai, X.Q.; Xie, G.T.; Fan, H.; Peng, Z.X.; Yuan, C.Q.; Yan, X.P. Study on biomimetic preparation of shell surface microstructure forship antifouling.Wear2012,306, 285–295.
Munther, M.; Palma, T.; Angeron, I.A.; Salari, S.; Ghassemi, H.; Vasefi, M.; Beheshti, A.; Davami, K. Microfabricated Biomimeticplacoid Scale-Inspired surfaces for antifouling applications.Appl. Surf. Sci.2018,453, 166–172
Han, X.; Wu, J.; Zhang, X.; Shi, J.; Wei, J.; Yang, Y.; Wu, B.; Feng, Y. The progress on antifouling organic coating: From biocide tobiomimetic surface.J. Mater. Sci. Technol.2021,61, 46–62.
Zhu, Z.; Zhang, Y.; Sun, D.W. Biomimetic modification of freezing facility surfaces to prevent icing and frosting during freezingfor the food industry.Trends Food Sci. Technol.2021,111, 581–594
Zouaghi, S.; Bellayer, S.; Thomy, V.; Dargent, T.; Coffinier, Y.; Andre, C.; Delaplace, G.; Jimenez, M. Biomimetic surfacemodifications of stainless steel targeting dairy fouling mitigation and bacterial adhesion.Food Bioprod. Process.2019,113, 32–38.
Ibrahim, U.H.; Devnarain, N.; Govender, T. Biomimetic strategies for enhancing synthesis and delivery of antibacterial nanosys-tems.Int. J. Pharm.2021,596, 120276
Hochbaum, A.I.; Aizenberg, J. Bacteria pattern spontaneously on periodic nanostructure arrays.Nano Lett.2010,10, 3717–3721
Chung, K.K.; Schumacher, J.F.; Sampson, E.M.; Burne, R.A.; Antonelli, P.J.; Brennan, A.B. Impact of engineered surface microto-pography on biofilm formation of Staphylococcus aureus.Biointerphases2007,2, 89–94
May, R.M.; Hoffman, M.G.; Sogo, M.J.; Parker, A.E.; O’Toole, G.A.; Brennan, A.B.; Reddy, S.T. Micro-patterned surfaces reducebacterial colonization and biofilm formation in vitro: Potential for enhancing endotracheal tube designs. Clin. Transl. Med.2014,3, 8
Arango-Santander, S.; Serna, L.; Sanchez-Garzon, J.; Franco, J. Evaluation ofStreptococcus mutansAdhesion to Stainless Steel Surfaces Modified Using Different Topographies Following a Biomimetic Approach.Coatings2021,11, 829.
Arango-Santander, S.; Gonzalez, C.; Aguilar, A.; Cano, A.; Castro, S.; Sanchez-Garzon, J.; Franco, J. Assessment of streptococcus mutans adhesion to the surface of biomimetically-modified orthodontic archwires.Coatings2020,10, 201
Li, W.; Thian, E.S.; Wang, M.; Wang, Z.; Ren, L. Surface Design for Antibacterial Materials: From Fundamentals to Advanced Strategies. Adv. Sci.2021,8, 2100368
Hayles, A.; Hasan, J.; Bright, R.; Palms, D.; Brown, T.; Barker, D.; Vasilev, K. Hydrothermally etched titanium: A review on apromising mechano-bactericidal surface for implant applications.Mater. Today Chem.2021,22, 100622.
Flemming, R.G.; Murphy, C.J.; Abrams, G.A.; Goodman, S.L.; Nealey, P.F. Effects of synthetic micro- and nano-structured surfaceson cell behavior.Biomaterials1999,20, 573–588
Bettinger, C.; Langer, R.; Borenstein, J. Engineering substrate micro- and nanotopography to control cell function.Angew. Chem.Int. Ed. Engl.2009,48, 5406–5415
Pelaez-Vargas, A.; Gallego-Perez, D.; Magallanes-Perdomo, M.; Fernandes, M.H.; Hansford, D.J.; De Aza, A.H.; Pena, P.; Monteiro,F.J. Isotropic micropatterned silica coatings on zirconia induce guided cell growth for dental implants.Dent. Mater.2011,27, 581–589
Liu, R.; Chi, Z.; Cao, L.; Weng, Z.; Wang, L.; Li, L.; Saeed, S.; Lian, Z.; Wang, Z. Fabrication of biomimetic superhydrophobicand anti-icing Ti6Al4V alloy surfaces by direct laser interference lithography and hydrothermal treatment.App. Surf. Sci.2020,534, 147576
Kuczynska-Zemla, D.; Sotniczuk, A.; Pisarek, M.; Chlanda, A.; Garbacz, H. Corrosion behavior of titanium modified by directlaser interference lithography.Surf. Coat. Technol.2021,418, 127219.
Lohse, M.; Heinrich, M.; Grützner, S.; Haase, A.; Ramos, I.; Salado, C.; Thesen, M.W.; Grützner, G. Versatile fabrication methodfor multiscale hierarchical structured polymer masters using a combination of photo- and nanoimprint lithography.Micro NanoEng.2021,10, 100079.
Ponomarev, V.A.; Shvindina, N.V.; Permyakova, E.S.; Slukin, P.V.; Ignatov, S.G.; Sirota, B.; Voevodin, A.A.; Shtansky, D.V. Structureand antibacterial properties of Ag-doped micropattern surfaces produced by photolithography method.Coll. Surf. B Biointerfaces.2019,173, 719–724
Biswas, A.; Bayer, I.S.; Biris, A.S.; Wang, T.; Dervishi, E.; Faupel, F. Advances in top–down and bottom–up surface nanofabrication:Techniques, applications & future prospects.Adv. Colloid Interface Sci.2012,170, 2–27.
Shahmohammadi, M.; Nagay, B.E.; Barao, V.A.R.; Sukotjo, C.; Jursich, G.; Takoudis, C.G. Atomic layer deposition of TiO2, ZrO2and TiO2/ZrO2mixed oxide nanofilms on PMMA for enhanced biomaterial functionalization.Appl. Surf. Sci.2022,578, 151891
Xia, D.-H.; Pan, C.; Qin, Z.; Fan, B.; Song, S.; Jin, W.; Hu, W. Covalent surface modification of LY12 aluminum alloy surface byself-assembly dodecyl phosphate film towards corrosion protection.Prog. Org. Coat.2020,143, 105638.
Ortiz-Cárdenas, J.E.; Zatorski, J.M.; Arneja, A.; Montalbine, A.N.; Munson, J.M.; Luckey, C.J.; Pompano, R.R. Towards spatially-organized organs-on-chip: Photopatterning cell-laden thiolene and methacryloyl hydrogels in a microfluidic device.Organs-on-a-Chip2022,4, 100018
Sun, J.; Bhushan, B. Nanomanufacturing of bioinspired surfaces.Tribol. Int.2019,129, 67–74
Chien, H.W.; Chen, X.Y.; Tsai, W.P. Poly(methyl methacrylate)/titanium dioxide (PMMA/TiO2) nanocomposite with shark-skinstructure for preventing biofilm formation.Mater. Lett.2021,285, 129098.
Chien, H.W.; Chen, X.Y.; Tsai, W.P.; Lee, M. Inhibition of biofilm formation by rough shark skin-patterned surfaces.Colloids Surf.B Biointerfaces2020,186, 110738.
Damodaran, V.B.; Murthy, S.N. Bio-inspired strategies for designing antifouling biomaterials.Biomater. Res.2016,20, 18
Faustino, C.M.C.; Lemos, S.M.C.; Monge, N.; Ribeiro, I.A.C. A scope at antifouling strategies to prevent catheter-associatedinfections.Adv. Colloid Interface Sci.2020,284, 102230.
Gao, X.; Jiang, L. Water-repellent legs of water striders.Nature2004,432, 36
Fang, Y.; Sun, G.; Cong, Q.; Chen, G.; Ren, L. Effects of Methanol on Wettability of the Non-Smooth Surface on Butterfly Wing.J.Bionic. Eng.2008,5, 127–133
Bhushan, B.; Sayer, R.A. Surface characterization and friction of a bio-inspired reversible adhesive tape.Microsyst. Technol.2007,13, 71–78
Chen, K.; Liu, Q.; Liao, G.; Yang, Y.; Ren, L.; Yang, H.; Chen, X. The Sound Suppression Characteristics of Wing Feather of Owl(Bubo bubo).J. Bionic Eng.2012,9, 192–199
Kelleher, S.M.; Habimana, O.; Lawler, J.; O’reilly, B.; Daniels, S.; Casey, E.; Cowley, A. Cicada Wing Surface Topography: AnInvestigation into the Bactericidal Properties of Nanostructural Features.ACS Appl. Mater. Interfaces2016,8, 14966–14974
Feng, L.; Li, S.; Li, Y.; Li, H.; Zhang, L.; Zhai, J.; Song, Y.; Liu, B.; Jiang, L.; Zhu, D. Super-hydrophobic surfaces: From natural toartificial.Adv. Mater.2002,14, 1857–1860
Bixler, G.D.; Theiss, A.; Bhushan, B.; Lee, S.C. Anti-fouling properties of microstructured surfaces bio-inspired by rice leaves andbutterfly wings.J. Colloid Interface Sci.2014,419, 114–133
Latthe, S.S.; Terashima, C.; Nakata, K.; Fujishima, A. Superhydrophobic surfaces developed by mimicking hierarchical surface morphology of lotus leaf.Molecules2014,19, 4256–428
Grewal, H.S.; Cho, I.J.; Yoon, E.S. The role of bio-inspired hierarchical structures in wetting.Bioinspiration Biomim.2015,10, 026009
Liu, Y.; Li, X.; Jin, J.; Liu, J.; Yan, Y.; Han, Z.; Ren, L. Anti-icing property of bio-inspired micro-structure superhydrophobic surfacesand heat transfer model.Appl. Surf. Sci.2017,400, 498–505
Liu, Q.; Brookbank, L.; Ho, A.; Coffey, J.; Brennan, A.B.; Jones, C.J. Surface texture limits transfer of S. aureus, T4 bacteriophage,influenza B virus and human coronavirus.PLoS ONE2020,15, e024451
Román-Kustas, J.; Hoffman, J.B.; Reed, J.H.; Gonsalves, A.E.; Oh, J.; Li, L.; Hong, S.; Jo, K.D.; Dana, C.E.; Miljkovic, N.; et al.Molecular and Topographical Organization: Influence on Cicada Wing Wettability and Bactericidal Properties.Adv. Mater.Interfaces2020,7, 2000112
Román-Kustas, J.; Hoffman, J.B.; Alonso, D.; Reed, J.H.; Gonsalves, A.E.; Oh, J.; Hong, S.; Jo, K.D.; Dana, C.E.; Alleyne, M.; et al.Analysis of cicada wing surface constituents by comprehensive multidimensional gas chromatography for species differentiation.Microchem. J.2020,158, 105089
Ivanova, E.P.; Hasan, F.; Webb, H.K.; Truong, V.K.; Watson, G.S.; Watson, J.A.; Baulin, V.A.; Pogodin, S.; Wang, J.Y.;Tobin, M.J.; et al.Natural bactericidal surfaces: Mechanical rupture ofPseudomonas aeruginosacells by cicada wings.Small2012,8, 2489–2494
Fisher, L.E.; Yang, Y.; Yuen, M.-F.; Zhang, W.; Nobbs, A.H.; Su, B. Bactericidal activity of biomimetic diamond nanocone surfaces.Biointerphases2016,11, 011014
Zhang, G.; Zhang, J.; Xie, G.; Liu, Z.; Shao, H. Cicada Wings: A Stamp from Nature for Nanoimprint Lithography.Small2006,2, 1440–1443
Ivanova, E.P.; Hasan, F.; Webb, H.K.; Gervinskas, G.; Juodkazis, S.; Truong, V.K.; Wu, A.H.F.; Lamb, R.N.; Baulin, V.A.;Watson, G.S.; et al. Bactericidal activity of black silicon.Nat. Commum.2013,4, 2838
Nguyen, S.H.T.; Webb, H.K.; Hasan, J.; Tobin, M.J.; Crawford, R.J.; Ivanova, E.P. Dual role of outer epicuticular lipids indetermining the wettability of dragonfly wings.Colloids Surf. B Biointerfaces2013,106, 126–134
Watson, G.S.; Green, D.W.; Schwarzkopf, L.; Li, X.; Cribb, B.W.; Myhra, S.; Watson, J.A. A gecko skin micro/nano structure –A lowadhesion, superhydrophobic, anti-wetting, self-cleaning, biocompatible, antibacterial surface.Acta Biomater.2015,21, 109–122.
Badge, I.; Stark, A.Y.; Paoloni, E.L.; Niewiarowski, P.H.; Dhinojwala, A. The Role of Surface Chemistry in Adhesion and Wettingof Gecko Toe Pads.Sci. Rep.2014,4, 6643.
Watson, G.S.; Green, D.W.; Cribb, B.W.; Brown, C.L.; Meritt, C.R.; Tobin, M.J.; Vongsvivut, J.; Sun, M.; Liang, A.P.; Watson, J.A. In-sect Analogue to the Lotus Leaf: A Planthopper Wing Membrane Incorporating a Low-Adhesion, Nonwetting, Superhydrophobic,Bactericidal, and Biocompatible Surface.ACS Appl. Mater. Interfaces2017,9, 24381–24392
Pu, X.; Li, G.; Huang, H. Preparation, anti-biofouling and drag-reduction properties of a biomimetic shark skin surface.Biol. Open2016,5, 389–396.
Magyar, A.; Arthanareeswaran, V.K.A.; Soós, L.; Nagy, K.; Dobák, A.; Szilágyi, I.M.; Justh, N.; Chandra, A.R.; Köves, B.; Tenke, P.Does micropattern (sharklet) on urinary catheter surface reduce urinary tract infections? Results from phase I randomized openlabel interventional trial.Eur. Urol. Suppl.2017,16, e146–e148
Shahali, H.; Hasan, J.; Mathews, A.; Wang, H.; Yan, C.; Tesfamichael, T.; Yarlagadda, P.K.D.V. Multi-biofunctional properties ofthree species of cicada wings and biomimetic fabrication of nanopatterned titanium pillars.J. Mater. Chem. B2019,7, 1300–1310
Hazell, G.; Fisher, L.; Murray, A.; Nobbs, A.; Su, B. Bioinspired bactericidal surfaces with polymer nanocone arrays.J. ColloidsInterf.2018,528, 389–399
Magin, C.M.; May, R.M.; Drinker, M.C.; Cuevas, K.H.; Brennan, A.B.; Reddy, S.T. Micropatterned Protective Membranes InhibitLens Epithelial Cell Migration in Posterior Capsule Opacification Model.Transl. Vis. Sci. Technol.2015,4, 9.
Mann, E.E.; Manna, D.; Mettetal, M.R.; May, R.M.; Dannemiller, E.M.; Chung, K.K.; Brennan, A.B.; Reddy, S.T. Surface micropatternlimits bacterial contamination. Antimicrob.Resist. Infect. Control2014,3, 28
Mann, E.E.; Magin, C.M.; Mettetal, M.R.; May, R.M.; Henry, M.K.M.; DeLoid, H.; Prater, J.; Sullivan, L.; Thomas, J.G.;Twite, M.D.; et al. Micropatterned Endotracheal Tubes Reduce Secretion-Related Lumen Occlusion.Ann. Biomed. Eng.2016,44, 3645
Reddy, S.T.; Chung, K.K.; McDaniel, C.J.; Darouiche, R.O.; Landman, J.; Brennan, A.B. Micropatterned surfaces for reducing therisk of catheter-associated urinary tract infection: Anin vitrostudy on the effect of sharklet micropatterned surfaces to inhibitbacterial colonization and migration of uropathogenicEscherichia coli.J. Endourol.2011,25, 1547–155
May, R.M.; Magin, C.M.; Mann, E.E.; Drinker, M.C.; Fraser, J.C.; Siedlecki, C.A.; Brennan, A.B.; Reddy, S.T. An engineeredmicropattern to reduce bacterial colonization, platelet adhesion and fibrin sheath formation for improved biocompatibility ofcentral venous catheters.Clin. Transl. Med.2015,26, 9
Arisoy, F.D.; Kolewe, K.W.; Homyak, B.; Kurtz, I.S.; Schiffman, I.D.; Watkins, J.J. Bioinspired Photocatalytic Shark-Skin Surfaceswith Antibacterial and Antifouling Activity via Nanoimprint Lithography.ACS Appl. Mater. Interfaces2018,10, 20055–20063
Rostami, S.; Puza, F.; Ucak, M.; Ozgur, E.; Gul, O.; Ercan, U.K.; Garipcan, B. Bifunctional sharkskin mimicked chitosan/grapheneoxide membranes: Reduced biofilm formation and improved cytocompatibility.Appl. Surf. Sci.2021,544, 148828
Dehghani, S.; Mashreghi, M.; Nezhad, A.H.N.; Karimi, J.; Hosseinpour, S.; Davoodi, A. Exploring mechano-bactericidal nature ofPsalmocharias cicadaswings: An analytical nanotopology investigation based on atomic force microscopy characterization.Surf.Interfaces2021,26, 101407
Bhadra, C.M.; Truong, V.K.; Pham, V.T.H.; Al Kobaisi, M.; Senituinas, G.; Wang, J.Y.; Juodkazis, S.; Crawford, R.J.; Ivanova, E.P.Antibacterial titanium nanopatterned arrays inspired by dragonfly wings.Sci. Rep.2015,5, 16817
Li, C.; Yang, L.; Liu, N.; Yang, Y.; Zhao, J.; Yang, P.; Cheng, G. Bioinspired surface hierarchical microstructures of Ti6Al4V alloywith a positive effect on osteoconduction.Surf. Coat. Technol.2020,388, 125594.
Mobini, S.; Kuliasha, C.A.; Siders, Z.A.; Bohmann, N.A.; Jamal, S.M.; Judy, J.W.; Schmidt, C.E.; Brennan, A.B. MicrotopographicalPatterns Promote Different Responses in Fibroblasts and Schwann Cells: A Possible Feature for Neural Implants.J. Biomed. Mater.Res. A2021,109, 64–76
Ensikat, H.J.; Ditsche-Kuru, P.; Neinhuis, C.; Barthlott, W. Superhydrophobicity in perfection: The outstanding properties of thelotus leaf.Beilstein J. Nanotechnol.2011,2, 152–161
Guo, Z.; Liu, W.; Su, B.L. Superhydrophobic surfaces: From natural to biomimetic to functional.J. Colloid Interface. Sci.2011,353, 335–355
Wang, C.; Shao, R.; Wang, Q.; Sun, S. Hierarchical hydrophobic surfaces with controlled dual transition between rose petal effectand lotus effect via structure tailoring or chemical modification.Coll. Surf. A Physichem. Eng. Asp.2021,622, 126661
Bhushan, B.; Nosonovsky, M. The rose petal effect and the modes of superhydrophobicity.Philos. Trans. R Soc. A2010,368, 4713–4728
Cao, Y.; Jana, S.; Bowen, L.; Tan, X.; Liu, H.; Rostami, N.; Brown, J.; Jakubovics, N.S.; Chen, J. Hierarchical Rose Petal SurfacesDelay the Early-Stage Bacterial Biofilm Growth.Langmuir2019,35, 14670–14680
Nowak, R.; Olech, M.; Pecio, L.; Oleszek, W.; Los, R.; Malm, A.; Rzymowska, J. Cytotoxic, antioxidant, antimicrobial propertiesand chemical composition of rose petals.J. Sci. Food. Agric.2013,94, 3
Mitharwal, S.; Kumar, A.; Chauhan, K.; Taneja, N.K. Nutritional, phytochemical composition and potential health benefits of taro(Colocasia esculentaL.) leaves: A review.Food Chem.2022,383, 132406
dc.rights.license.none.fl_str_mv Atribución – No comercial – Sin Derivar
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución – No comercial – Sin Derivar
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 19
dc.coverage.temporal.spa.fl_str_mv 15
dc.publisher.spa.fl_str_mv MDPI
Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Odontología, Medellín y Envigado
dc.publisher.program.spa.fl_str_mv Especialización en Ortodoncia
dc.publisher.place.spa.fl_str_mv Medellín
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/88dfbc96-6df6-40bb-a6aa-efa05e87b690/download
https://repository.ucc.edu.co/bitstreams/74998335-b2b2-47fe-8fb8-82f8cc62941e/download
https://repository.ucc.edu.co/bitstreams/54c9fd5d-8113-48f6-a3a3-7cc9aacdf6d8/download
https://repository.ucc.edu.co/bitstreams/1322d055-dfdb-4496-a5e4-75749d95edc0/download
https://repository.ucc.edu.co/bitstreams/dcc311b4-7c0b-4f3d-ad2c-608895dd5c8c/download
https://repository.ucc.edu.co/bitstreams/8acac664-c5dc-4e2f-8a50-9f8edd8d18b6/download
https://repository.ucc.edu.co/bitstreams/f14e1622-017e-4176-99b9-0748db634b25/download
bitstream.checksum.fl_str_mv 58a6f0ba9c86faaf4e8369f2562655dd
d03714bfb031588509186edc73747aaf
3bce4f7ab09dfc588f126e1e36e98a45
48e340f7b7bb2a48d8e88cde705fb3ad
50338e5ce1722f01cd29d849f76c232c
610108f739dbb31a0d9c687dcc81c103
b41fe31d6efada9ac0972a9478729d17
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1814246979703668736
spelling Arango Santander, Santiago152022-04-19T12:41:25Z2022-04-19T12:41:25Z2022-03-24https://doi.org/10.3390/ma15072383https://hdl.handle.net/20.500.12494/44555Arango-Santander, S. (2022) Bioinspired Topographic Surface Modification of Biomaterials. Materials 2022;15:2383.http://hdl.handle.net/20.500.12494/44555Physical surface modification is an approach that has been investigated over the last decade to reduce bacterial adhesion and improve cell attachment to biomaterials. Many techniques have been reported to modify surfaces, including the use of natural sources as inspiration to fabricate topographies on artificial surfaces. Biomimetics is a tool to take advantage of nature to solve human problems. Physical surface modification using animal and vegetal topographies as inspiration to reduce bacterial adhesion and improve cell attachment has been investigated in the last years, and the results have been very promising. However, just a few animal and plant surfaces have been used to modify the surface of biomaterials with these objectives, and only a small number of bacterial species and cell types have been tested. The purpose of this review is to present the most current results on topographic surface modification using animal and plant surfaces as inspiration to modify the surface of biomedical materials with the objective of reducing bacterial adhesion and improving cell behaviorhttps://scienti.colciencias.gov.co/cvlac/EnRecursoHumano/inicio.do0000-0002-3113-9895GIOMsantiago.arango@campusucc.edu.co19MDPIUniversidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Odontología, Medellín y EnvigadoEspecialización en OrtodonciaMedellínhttps://www.mdpi.com/1996-1944/15/7/2383MaterialsHwang, J.; Jeong, Y.; Park, J.M.; Lee, K.H.; Hong, J.W.; Choi, J. Biomimetics: Forecasting the future of science, engineering, andmedicine.Int. J. Nanomed.2015,10, 5701–5713.Drack, M.; Limpinsel, M.; De Bruyn, G.; Nebelsick, J.H.; Betz, O. Towards a theoretical clarification of biomimetics usingconceptual tools from engineering design.Bioinspir. Biomim.2018,13, 016007French, J.R.J.; Ahmed, B.M. The challenge of biomimetic design for carbon-neutral buildings using termite engineering.Insect Sci.2010,17, 154–162Siddiqui, N.A.; Asrar, W.; Sulaeman, E. Literature review: Biomimetic and conventional aircraft wing tips.Int. J. Aviat. Aeronaut.Aerosp.2017,4, 2Fish, F.E.; Kocak, D.M. Biomimetics and marine technology: An introduction.Mar. Technol. Soc. J.2011,45, 8–13.Yan, H.; Wu, Q.; Yu, C.; Zhao, T.; Liu, M. Recent Progress of Biomimetic Antifouling Surfaces in Marine.Adv. Mater. Interfaces2020,7, 20Wijegunawardana, I.D.; de Mel, W.R. Biomimetic Designs for Automobile Engineering: A Review.Int. J. Automot. Mech. Eng.2021,18, 9029–9041Feng, C.; Zhang, W.; Deng, C.; Li, G.; Chang, J.; Zhang, Z.; Jiang, X.; Wu, C. 3D Printing of Lotus Root-Like Biomimetic Materialsfor Cell Delivery and Tissue Regeneration.Adv. Sci.2017,4, 1700401Contessi Negrini, N.; Toffoletto, N.; Farè, S.; Altomare, L. Plant Tissues as 3D Natural Scaffolds for Adipose, Bone and TendonTissue Regeneration.Front. Bioeng. Biotechnol.2020,8, 723Mahtabian, S.; Mirhadi, S.M.; Tavangarian, F. From rose petal to bone scaffolds: Using nature to fabricate osteon-like scaffolds forbone tissue engineering applications.Ceram. Int.2021,47, 21633–21641.Li, C.; Yang, Y.; Yang, L.; Shi, Z.; Yang, P.; Cheng, G.In vitrobioactivity and biocompatibility of bio-inspired Ti-6Al-4V alloysurfaces modified by combined laser micro/nano structuring.Molecules2020,25, 1494.Tricinci, O.; Terencio, T.; Mazzolai, B.; Pugno, N.M.; Greco, F.; Mattoli, V. 3D Micropatterned Surface Inspired by Salvinia molestavia Direct Laser Lithography.ACS Appl. Mater. Interfaces2015,7, 25560–25567Jian, R.; Hao, L.; Song, L.; Tian, L.; Fan, Y.; Zhao, J.; Liu, C.; Ming, W.; Ren, L. Lotus-leaf-inspired hierarchical structured surfacewith non-fouling and mechanical bactericidal performances.Chem. Eng. J.2020,398, 125609Öztürk-Öncel, M.Ö.; Ercok-Biradli, F.; Rasier, R.; Marcali, M.; Elbuken, C.; Garipcan, B. Rose petal topography mimickedpoly(dimethylsiloxane) substrates for enhanced corneal endothelial cell behavior.Mater. Sci. Eng. C2021,126, 112147Ramaswamy, Y.; Roohani, I.; No, Y.J.; Madafiglio, G.; Chang, F.; Zhao, F.; Lu, Z.; Zreiqat, H. Nature-inspired topographies onhydroxyapatite surfaces regulate stem cells behavior.Bioactive Mater.2021,6, 1107–1117Hwang, G.B.; Page, K.; Patir, A.; Nair, S.P.; Allan, E.; Parkin, I.P. The Anti-Biofouling Properties of Superhydrophobic Surfaces areShort-Lived.ACS Nano2018,12, 6050–6058Mandal, P.; Ivvala, J.; Arora, H.S.; Ghosh, S.K.; Grewal, H.S. Bioinspired micro/nano structured aluminum with multifacetedapplications.Colloids Surf. B Interfaces2022,211, 112311Xue, F.; Liu, J.; Guo, L.; Zhang, L.; Li, Q. Theoretical study on the bactericidal nature of nanopatterned surfaces.J. Theor. Biol.2015,385, 1–7.Velic, A.; Hasan, J.; Li, Z.; Yarlagadda, P.K.D.V. Mechanics of Bacterial Interaction and Death on Nanopatterned Surfaces.Biophys.J.2020,120, 217–231Jenkins, J.; Mantell, J.; Neal, C.; Gholinia, A.; Verkade, P.; Nobbs, A.H.; Su, B. Antibacterial effects of nanopillar surfaces aremediated by cell impedance, penetration and induction of oxidative stress.Nat. Commum.2020,11, 1626Turner, A.M.; Dowell, N.; Kam, L.; Isaacson, M.; Turner, J.N.; Craighead, H.G.; Shain, W. Attachment of astroglial cells tomicrofabricated pillar arrays of different geometries.J. Biomed. Mater. Res.2000,51, 430–441Glinel, K.; Thebault, P.; Humblot, V.; Pradier, C.M.; Jouenne, T. Antibacterial surfaces developed from bio-inspired approaches.Acta Biomater.2012,8, 1670–1684Hasturk, O.; Ermis, M.; Demirci, U.; Hasirci, N.; Hasirci, V. Square prism micropillars improve osteogenicity of poly(methylmethacrylate) surfaces.J. Mater. Sci. Mater. Med.2018,29, 53.Radotic, V.; Bedalov, A.; Drvis, P.; Braeken, D.; Kovacic, D. Guided growth with aligned neurites in adult spiral ganglion neuronscultured in vitro on silicon micro-pillar substrates.J. Neural. Eng.2019,16, 066037Beckwith, K.S.; Ullmann, S.; Vinje, J.; Sikorski, P. Influence of Nanopillar Arrays on Fibroblast Motility, Adhesion, and MigrationMechanisms.Small2019,15, e190251Kryszak, B.; Szustakiewicz, K.; Dzienny, P.; Junka, A.; Paleczny, J.; Szymczyk-Ziolkowska, P.; Hoppe, V.; Grzymajlo, M.; Antonczak,A. ‘Cookies on a tray’: Superselective hierarchical microstructured poly(L-lactide) surface as a decoy for cells.Mater. Sci. Eng. C2022,132, 112648Raczkowska, J.; Stetsyshyn, Y.; Awsiuk, K.; Lekka, M.; Marzec, M.; Harhay, K.; Ohar, H.; Ostapiv, D.; Sharan, M.;Yaremchuk, I.; et al.Temperature-responsive grafted polymer brushes obtained from renewable sources with potentialapplication as substrates for tissue engineering.Appl. Surf. Sci.2017,407, 546–554Liu, X.; Liu, R.; Gu, Y.; Ding, J. Nonmonotonic self-deformation of cell nuclei on topological surfaces with micropillar array.ACSAppl. Mater. Interfaces2017,9, 18521–18530Li, Y.; Sun, W.; Zhang, A.; Jin, S.; Liang, X.; Tang, Z.; Liu, X.; Chen, H. Vascular cell behavior on heparin-like polymers modifiedsilicone surfaces: The prominent role of the lotus leaf-like topography.J. Colloid Interface Sci.2021,603, 501–510Jaggessar, A.; Shahali, H.; Mathew, A.; Yarlagadda, P.K.D.V. Bio-mimicking nano and micro-structured surface fabrication forantibacterial properties in medical implants.J. Nanobiotechnol.2017,15, 64Jia, Z.; Xiu, P.; Li, M.; Xu, X.; Shi, Y.; Cheng, Y.; Wei, S.; Zheng, Y.; Xi, T.; Cai, H.; et al. Bioinspired anchoring AgNPs ontomicro-nanoporous TiO2orthopedic coatings: Trap-killing of bacteria, surface-regulated osteoblast functions and host responses.Biomaterials2016,75, 203–222Jia, L.; Han, F.; Wang, H.; Zhu, C.; Guo, Q.; Li, J.; Zhao, Z.; Zhang, Q.; Zhu, X.; Li, B. Polydopamine-assisted surface modificationfor orthopaedic implants.J. Orthop. Trans.2019,17, 82–95Cheng, H.; Yue, K.; Kazemzadeh-Narbat, M.; Liu, Y.; Khalilpour, A.; Li, B.; Zhang, Y.S.; Annabi, N.; Khademhosseini, A.Mussel-Inspired Multifunctional Hydrogel Coating for Prevention of Infections and Enhanced Osteogenesis.ACS Appl. Mater.Interfaces2017,9, 11428–11439Asha, A.B.; Chen, Y.; Zhang, H.; Ghaemi, S.; Ishihara, K.; Liu, Y.; Narain, R. Rapid Mussel-Inspired Surface Zwitteration forEnhanced Antifouling and Antibacterial Properties.Langmuir2019,35, 1621–1630Choi, S.H.; Jang, Y.S.; Jang, J.H.; Bae, T.S.; Lee, S.J.; Lee, M.H. Enhanced antibacterial activity of titanium by surface modificationwith polydopamine and silver for dental implant application.J. Appl. Biomater. Funct. Mater.2019,17, 1–9Freitas, S.C.; Correa-Uribe, A.; Martins, M.C.L.; Pelaez-Vargas, A. Self-Assembled Monolayers for Dental Implants.Int. J. Dent.2018,2018, 4395460Zabara, M.; Ren, Q.; Amenitsch, H.; Salentinig, S. Bioinspired Antimicrobial Coatings from Peptide-Functionalized LiquidCrystalline Nanostructures.ACS Appl. Bio Mater.2021,4, 5295–5303Zhang, Z.; Kou, N.; Ye, W.; Wang, S.; Lu, J.; Lu, Y.; Liu, H.; Wang, X. Construction and Characterizations of Antibacterial SurfacesBased on Self-Assembled Monolayer of Antimicrobial Peptides (Pac-525) Derivatives on Gold.Coatings2021,11, 9.Saif, S.; Tahir, A.; Asim, T.; Chen, Y.; Khan, M.; Adil, S.F. Green synthesis of ZnO hierarchical microstructures by Cordia myxa andtheir antibacterial activity.Saudi J. Biol. Sci.2019,26, 1364–1371Liu, M.; Li, M.T.; Xu, S.; Yang, H.; Sun, H.B. Bioinspired Superhydrophobic Surfaces via Laser-Structuring.Front. Chem.2020,16, 835.Bhushan, B.; Jung, Y.C. Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and dragreduction.Prog. Mater. Sci.2011,56, 1–108.Chen, L.; Duan, Y.; Cui, M.; Huang, R.; Su, R.; Qi, W.; He, Z. Biomimetic surface coatings for marine antifouling: Natural antifoulants, synthetic polymers and surface microtopography.Sci. Total Environ.2021,766, 144469.Patil, D.; Overland, M.; Stoller, M.; Chatterjee, K. Bioinspired nanostructured bactericidal surfaces.Curr. Opin. Chem. Eng.2021,34, 100741Shimomura, M. The New Trends in Next Generation Biomimetics Material Technology: Learning from Biodiversity.Sci. Technol.Trends2010,37, 53–75.O’Neill, P.; Barrett, A.; Sullivan, T.; Regan, F.; Brabazon, D. Rapid Prototyped Biomimetic Antifouling Surfaces for MarineApplications.Biomimetics2016,5, 58.Bai, X.Q.; Xie, G.T.; Fan, H.; Peng, Z.X.; Yuan, C.Q.; Yan, X.P. Study on biomimetic preparation of shell surface microstructure forship antifouling.Wear2012,306, 285–295.Munther, M.; Palma, T.; Angeron, I.A.; Salari, S.; Ghassemi, H.; Vasefi, M.; Beheshti, A.; Davami, K. Microfabricated Biomimeticplacoid Scale-Inspired surfaces for antifouling applications.Appl. Surf. Sci.2018,453, 166–172Han, X.; Wu, J.; Zhang, X.; Shi, J.; Wei, J.; Yang, Y.; Wu, B.; Feng, Y. The progress on antifouling organic coating: From biocide tobiomimetic surface.J. Mater. Sci. Technol.2021,61, 46–62.Zhu, Z.; Zhang, Y.; Sun, D.W. Biomimetic modification of freezing facility surfaces to prevent icing and frosting during freezingfor the food industry.Trends Food Sci. Technol.2021,111, 581–594Zouaghi, S.; Bellayer, S.; Thomy, V.; Dargent, T.; Coffinier, Y.; Andre, C.; Delaplace, G.; Jimenez, M. Biomimetic surfacemodifications of stainless steel targeting dairy fouling mitigation and bacterial adhesion.Food Bioprod. Process.2019,113, 32–38.Ibrahim, U.H.; Devnarain, N.; Govender, T. Biomimetic strategies for enhancing synthesis and delivery of antibacterial nanosys-tems.Int. J. Pharm.2021,596, 120276Hochbaum, A.I.; Aizenberg, J. Bacteria pattern spontaneously on periodic nanostructure arrays.Nano Lett.2010,10, 3717–3721Chung, K.K.; Schumacher, J.F.; Sampson, E.M.; Burne, R.A.; Antonelli, P.J.; Brennan, A.B. Impact of engineered surface microto-pography on biofilm formation of Staphylococcus aureus.Biointerphases2007,2, 89–94May, R.M.; Hoffman, M.G.; Sogo, M.J.; Parker, A.E.; O’Toole, G.A.; Brennan, A.B.; Reddy, S.T. Micro-patterned surfaces reducebacterial colonization and biofilm formation in vitro: Potential for enhancing endotracheal tube designs. Clin. Transl. Med.2014,3, 8Arango-Santander, S.; Serna, L.; Sanchez-Garzon, J.; Franco, J. Evaluation ofStreptococcus mutansAdhesion to Stainless Steel Surfaces Modified Using Different Topographies Following a Biomimetic Approach.Coatings2021,11, 829.Arango-Santander, S.; Gonzalez, C.; Aguilar, A.; Cano, A.; Castro, S.; Sanchez-Garzon, J.; Franco, J. Assessment of streptococcus mutans adhesion to the surface of biomimetically-modified orthodontic archwires.Coatings2020,10, 201Li, W.; Thian, E.S.; Wang, M.; Wang, Z.; Ren, L. Surface Design for Antibacterial Materials: From Fundamentals to Advanced Strategies. Adv. Sci.2021,8, 2100368Hayles, A.; Hasan, J.; Bright, R.; Palms, D.; Brown, T.; Barker, D.; Vasilev, K. Hydrothermally etched titanium: A review on apromising mechano-bactericidal surface for implant applications.Mater. Today Chem.2021,22, 100622.Flemming, R.G.; Murphy, C.J.; Abrams, G.A.; Goodman, S.L.; Nealey, P.F. Effects of synthetic micro- and nano-structured surfaceson cell behavior.Biomaterials1999,20, 573–588Bettinger, C.; Langer, R.; Borenstein, J. Engineering substrate micro- and nanotopography to control cell function.Angew. Chem.Int. Ed. Engl.2009,48, 5406–5415Pelaez-Vargas, A.; Gallego-Perez, D.; Magallanes-Perdomo, M.; Fernandes, M.H.; Hansford, D.J.; De Aza, A.H.; Pena, P.; Monteiro,F.J. Isotropic micropatterned silica coatings on zirconia induce guided cell growth for dental implants.Dent. Mater.2011,27, 581–589Liu, R.; Chi, Z.; Cao, L.; Weng, Z.; Wang, L.; Li, L.; Saeed, S.; Lian, Z.; Wang, Z. Fabrication of biomimetic superhydrophobicand anti-icing Ti6Al4V alloy surfaces by direct laser interference lithography and hydrothermal treatment.App. Surf. Sci.2020,534, 147576Kuczynska-Zemla, D.; Sotniczuk, A.; Pisarek, M.; Chlanda, A.; Garbacz, H. Corrosion behavior of titanium modified by directlaser interference lithography.Surf. Coat. Technol.2021,418, 127219.Lohse, M.; Heinrich, M.; Grützner, S.; Haase, A.; Ramos, I.; Salado, C.; Thesen, M.W.; Grützner, G. Versatile fabrication methodfor multiscale hierarchical structured polymer masters using a combination of photo- and nanoimprint lithography.Micro NanoEng.2021,10, 100079.Ponomarev, V.A.; Shvindina, N.V.; Permyakova, E.S.; Slukin, P.V.; Ignatov, S.G.; Sirota, B.; Voevodin, A.A.; Shtansky, D.V. Structureand antibacterial properties of Ag-doped micropattern surfaces produced by photolithography method.Coll. Surf. B Biointerfaces.2019,173, 719–724Biswas, A.; Bayer, I.S.; Biris, A.S.; Wang, T.; Dervishi, E.; Faupel, F. Advances in top–down and bottom–up surface nanofabrication:Techniques, applications & future prospects.Adv. Colloid Interface Sci.2012,170, 2–27.Shahmohammadi, M.; Nagay, B.E.; Barao, V.A.R.; Sukotjo, C.; Jursich, G.; Takoudis, C.G. Atomic layer deposition of TiO2, ZrO2and TiO2/ZrO2mixed oxide nanofilms on PMMA for enhanced biomaterial functionalization.Appl. Surf. Sci.2022,578, 151891Xia, D.-H.; Pan, C.; Qin, Z.; Fan, B.; Song, S.; Jin, W.; Hu, W. Covalent surface modification of LY12 aluminum alloy surface byself-assembly dodecyl phosphate film towards corrosion protection.Prog. Org. Coat.2020,143, 105638.Ortiz-Cárdenas, J.E.; Zatorski, J.M.; Arneja, A.; Montalbine, A.N.; Munson, J.M.; Luckey, C.J.; Pompano, R.R. Towards spatially-organized organs-on-chip: Photopatterning cell-laden thiolene and methacryloyl hydrogels in a microfluidic device.Organs-on-a-Chip2022,4, 100018Sun, J.; Bhushan, B. Nanomanufacturing of bioinspired surfaces.Tribol. Int.2019,129, 67–74Chien, H.W.; Chen, X.Y.; Tsai, W.P. Poly(methyl methacrylate)/titanium dioxide (PMMA/TiO2) nanocomposite with shark-skinstructure for preventing biofilm formation.Mater. Lett.2021,285, 129098.Chien, H.W.; Chen, X.Y.; Tsai, W.P.; Lee, M. Inhibition of biofilm formation by rough shark skin-patterned surfaces.Colloids Surf.B Biointerfaces2020,186, 110738.Damodaran, V.B.; Murthy, S.N. Bio-inspired strategies for designing antifouling biomaterials.Biomater. Res.2016,20, 18Faustino, C.M.C.; Lemos, S.M.C.; Monge, N.; Ribeiro, I.A.C. A scope at antifouling strategies to prevent catheter-associatedinfections.Adv. Colloid Interface Sci.2020,284, 102230.Gao, X.; Jiang, L. Water-repellent legs of water striders.Nature2004,432, 36Fang, Y.; Sun, G.; Cong, Q.; Chen, G.; Ren, L. Effects of Methanol on Wettability of the Non-Smooth Surface on Butterfly Wing.J.Bionic. Eng.2008,5, 127–133Bhushan, B.; Sayer, R.A. Surface characterization and friction of a bio-inspired reversible adhesive tape.Microsyst. Technol.2007,13, 71–78Chen, K.; Liu, Q.; Liao, G.; Yang, Y.; Ren, L.; Yang, H.; Chen, X. The Sound Suppression Characteristics of Wing Feather of Owl(Bubo bubo).J. Bionic Eng.2012,9, 192–199Kelleher, S.M.; Habimana, O.; Lawler, J.; O’reilly, B.; Daniels, S.; Casey, E.; Cowley, A. Cicada Wing Surface Topography: AnInvestigation into the Bactericidal Properties of Nanostructural Features.ACS Appl. Mater. Interfaces2016,8, 14966–14974Feng, L.; Li, S.; Li, Y.; Li, H.; Zhang, L.; Zhai, J.; Song, Y.; Liu, B.; Jiang, L.; Zhu, D. Super-hydrophobic surfaces: From natural toartificial.Adv. Mater.2002,14, 1857–1860Bixler, G.D.; Theiss, A.; Bhushan, B.; Lee, S.C. Anti-fouling properties of microstructured surfaces bio-inspired by rice leaves andbutterfly wings.J. Colloid Interface Sci.2014,419, 114–133Latthe, S.S.; Terashima, C.; Nakata, K.; Fujishima, A. Superhydrophobic surfaces developed by mimicking hierarchical surface morphology of lotus leaf.Molecules2014,19, 4256–428Grewal, H.S.; Cho, I.J.; Yoon, E.S. The role of bio-inspired hierarchical structures in wetting.Bioinspiration Biomim.2015,10, 026009Liu, Y.; Li, X.; Jin, J.; Liu, J.; Yan, Y.; Han, Z.; Ren, L. Anti-icing property of bio-inspired micro-structure superhydrophobic surfacesand heat transfer model.Appl. Surf. Sci.2017,400, 498–505Liu, Q.; Brookbank, L.; Ho, A.; Coffey, J.; Brennan, A.B.; Jones, C.J. Surface texture limits transfer of S. aureus, T4 bacteriophage,influenza B virus and human coronavirus.PLoS ONE2020,15, e024451Román-Kustas, J.; Hoffman, J.B.; Reed, J.H.; Gonsalves, A.E.; Oh, J.; Li, L.; Hong, S.; Jo, K.D.; Dana, C.E.; Miljkovic, N.; et al.Molecular and Topographical Organization: Influence on Cicada Wing Wettability and Bactericidal Properties.Adv. Mater.Interfaces2020,7, 2000112Román-Kustas, J.; Hoffman, J.B.; Alonso, D.; Reed, J.H.; Gonsalves, A.E.; Oh, J.; Hong, S.; Jo, K.D.; Dana, C.E.; Alleyne, M.; et al.Analysis of cicada wing surface constituents by comprehensive multidimensional gas chromatography for species differentiation.Microchem. J.2020,158, 105089Ivanova, E.P.; Hasan, F.; Webb, H.K.; Truong, V.K.; Watson, G.S.; Watson, J.A.; Baulin, V.A.; Pogodin, S.; Wang, J.Y.;Tobin, M.J.; et al.Natural bactericidal surfaces: Mechanical rupture ofPseudomonas aeruginosacells by cicada wings.Small2012,8, 2489–2494Fisher, L.E.; Yang, Y.; Yuen, M.-F.; Zhang, W.; Nobbs, A.H.; Su, B. Bactericidal activity of biomimetic diamond nanocone surfaces.Biointerphases2016,11, 011014Zhang, G.; Zhang, J.; Xie, G.; Liu, Z.; Shao, H. Cicada Wings: A Stamp from Nature for Nanoimprint Lithography.Small2006,2, 1440–1443Ivanova, E.P.; Hasan, F.; Webb, H.K.; Gervinskas, G.; Juodkazis, S.; Truong, V.K.; Wu, A.H.F.; Lamb, R.N.; Baulin, V.A.;Watson, G.S.; et al. Bactericidal activity of black silicon.Nat. Commum.2013,4, 2838Nguyen, S.H.T.; Webb, H.K.; Hasan, J.; Tobin, M.J.; Crawford, R.J.; Ivanova, E.P. Dual role of outer epicuticular lipids indetermining the wettability of dragonfly wings.Colloids Surf. B Biointerfaces2013,106, 126–134Watson, G.S.; Green, D.W.; Schwarzkopf, L.; Li, X.; Cribb, B.W.; Myhra, S.; Watson, J.A. A gecko skin micro/nano structure –A lowadhesion, superhydrophobic, anti-wetting, self-cleaning, biocompatible, antibacterial surface.Acta Biomater.2015,21, 109–122.Badge, I.; Stark, A.Y.; Paoloni, E.L.; Niewiarowski, P.H.; Dhinojwala, A. The Role of Surface Chemistry in Adhesion and Wettingof Gecko Toe Pads.Sci. Rep.2014,4, 6643.Watson, G.S.; Green, D.W.; Cribb, B.W.; Brown, C.L.; Meritt, C.R.; Tobin, M.J.; Vongsvivut, J.; Sun, M.; Liang, A.P.; Watson, J.A. In-sect Analogue to the Lotus Leaf: A Planthopper Wing Membrane Incorporating a Low-Adhesion, Nonwetting, Superhydrophobic,Bactericidal, and Biocompatible Surface.ACS Appl. Mater. Interfaces2017,9, 24381–24392Pu, X.; Li, G.; Huang, H. Preparation, anti-biofouling and drag-reduction properties of a biomimetic shark skin surface.Biol. Open2016,5, 389–396.Magyar, A.; Arthanareeswaran, V.K.A.; Soós, L.; Nagy, K.; Dobák, A.; Szilágyi, I.M.; Justh, N.; Chandra, A.R.; Köves, B.; Tenke, P.Does micropattern (sharklet) on urinary catheter surface reduce urinary tract infections? Results from phase I randomized openlabel interventional trial.Eur. Urol. Suppl.2017,16, e146–e148Shahali, H.; Hasan, J.; Mathews, A.; Wang, H.; Yan, C.; Tesfamichael, T.; Yarlagadda, P.K.D.V. Multi-biofunctional properties ofthree species of cicada wings and biomimetic fabrication of nanopatterned titanium pillars.J. Mater. Chem. B2019,7, 1300–1310Hazell, G.; Fisher, L.; Murray, A.; Nobbs, A.; Su, B. Bioinspired bactericidal surfaces with polymer nanocone arrays.J. ColloidsInterf.2018,528, 389–399Magin, C.M.; May, R.M.; Drinker, M.C.; Cuevas, K.H.; Brennan, A.B.; Reddy, S.T. Micropatterned Protective Membranes InhibitLens Epithelial Cell Migration in Posterior Capsule Opacification Model.Transl. Vis. Sci. Technol.2015,4, 9.Mann, E.E.; Manna, D.; Mettetal, M.R.; May, R.M.; Dannemiller, E.M.; Chung, K.K.; Brennan, A.B.; Reddy, S.T. Surface micropatternlimits bacterial contamination. Antimicrob.Resist. Infect. Control2014,3, 28Mann, E.E.; Magin, C.M.; Mettetal, M.R.; May, R.M.; Henry, M.K.M.; DeLoid, H.; Prater, J.; Sullivan, L.; Thomas, J.G.;Twite, M.D.; et al. Micropatterned Endotracheal Tubes Reduce Secretion-Related Lumen Occlusion.Ann. Biomed. Eng.2016,44, 3645Reddy, S.T.; Chung, K.K.; McDaniel, C.J.; Darouiche, R.O.; Landman, J.; Brennan, A.B. Micropatterned surfaces for reducing therisk of catheter-associated urinary tract infection: Anin vitrostudy on the effect of sharklet micropatterned surfaces to inhibitbacterial colonization and migration of uropathogenicEscherichia coli.J. Endourol.2011,25, 1547–155May, R.M.; Magin, C.M.; Mann, E.E.; Drinker, M.C.; Fraser, J.C.; Siedlecki, C.A.; Brennan, A.B.; Reddy, S.T. An engineeredmicropattern to reduce bacterial colonization, platelet adhesion and fibrin sheath formation for improved biocompatibility ofcentral venous catheters.Clin. Transl. Med.2015,26, 9Arisoy, F.D.; Kolewe, K.W.; Homyak, B.; Kurtz, I.S.; Schiffman, I.D.; Watkins, J.J. Bioinspired Photocatalytic Shark-Skin Surfaceswith Antibacterial and Antifouling Activity via Nanoimprint Lithography.ACS Appl. Mater. Interfaces2018,10, 20055–20063Rostami, S.; Puza, F.; Ucak, M.; Ozgur, E.; Gul, O.; Ercan, U.K.; Garipcan, B. Bifunctional sharkskin mimicked chitosan/grapheneoxide membranes: Reduced biofilm formation and improved cytocompatibility.Appl. Surf. Sci.2021,544, 148828Dehghani, S.; Mashreghi, M.; Nezhad, A.H.N.; Karimi, J.; Hosseinpour, S.; Davoodi, A. Exploring mechano-bactericidal nature ofPsalmocharias cicadaswings: An analytical nanotopology investigation based on atomic force microscopy characterization.Surf.Interfaces2021,26, 101407Bhadra, C.M.; Truong, V.K.; Pham, V.T.H.; Al Kobaisi, M.; Senituinas, G.; Wang, J.Y.; Juodkazis, S.; Crawford, R.J.; Ivanova, E.P.Antibacterial titanium nanopatterned arrays inspired by dragonfly wings.Sci. Rep.2015,5, 16817Li, C.; Yang, L.; Liu, N.; Yang, Y.; Zhao, J.; Yang, P.; Cheng, G. Bioinspired surface hierarchical microstructures of Ti6Al4V alloywith a positive effect on osteoconduction.Surf. Coat. Technol.2020,388, 125594.Mobini, S.; Kuliasha, C.A.; Siders, Z.A.; Bohmann, N.A.; Jamal, S.M.; Judy, J.W.; Schmidt, C.E.; Brennan, A.B. MicrotopographicalPatterns Promote Different Responses in Fibroblasts and Schwann Cells: A Possible Feature for Neural Implants.J. Biomed. Mater.Res. A2021,109, 64–76Ensikat, H.J.; Ditsche-Kuru, P.; Neinhuis, C.; Barthlott, W. Superhydrophobicity in perfection: The outstanding properties of thelotus leaf.Beilstein J. Nanotechnol.2011,2, 152–161Guo, Z.; Liu, W.; Su, B.L. Superhydrophobic surfaces: From natural to biomimetic to functional.J. Colloid Interface. Sci.2011,353, 335–355Wang, C.; Shao, R.; Wang, Q.; Sun, S. Hierarchical hydrophobic surfaces with controlled dual transition between rose petal effectand lotus effect via structure tailoring or chemical modification.Coll. Surf. A Physichem. Eng. Asp.2021,622, 126661Bhushan, B.; Nosonovsky, M. The rose petal effect and the modes of superhydrophobicity.Philos. Trans. R Soc. A2010,368, 4713–4728Cao, Y.; Jana, S.; Bowen, L.; Tan, X.; Liu, H.; Rostami, N.; Brown, J.; Jakubovics, N.S.; Chen, J. Hierarchical Rose Petal SurfacesDelay the Early-Stage Bacterial Biofilm Growth.Langmuir2019,35, 14670–14680Nowak, R.; Olech, M.; Pecio, L.; Oleszek, W.; Los, R.; Malm, A.; Rzymowska, J. Cytotoxic, antioxidant, antimicrobial propertiesand chemical composition of rose petals.J. Sci. Food. Agric.2013,94, 3Mitharwal, S.; Kumar, A.; Chauhan, K.; Taneja, N.K. Nutritional, phytochemical composition and potential health benefits of taro(Colocasia esculentaL.) leaves: A review.Food Chem.2022,383, 132406Modificación de superficiesBiomiméticaSharkletHoja de lotoAdhesión bacterianaComportamiento celularTG 2022 ODO 44555Surface modificationBiomimeticsSharkletLotus leafBacterial adhesionCell behaviorBioinspired Topographic Surface Modification of BiomaterialsArtículohttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribución – No comercial – Sin Derivarinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationORIGINAL2022_Bioinspired_Topographic_Surface_Formatolicenciadeuso.pdf2022_Bioinspired_Topographic_Surface_Formatolicenciadeuso.pdfLicencia de usoapplication/pdf479022https://repository.ucc.edu.co/bitstreams/88dfbc96-6df6-40bb-a6aa-efa05e87b690/download58a6f0ba9c86faaf4e8369f2562655ddMD512022_Bioinspired_topographic_surface.pdf2022_Bioinspired_topographic_surface.pdfArtículoapplication/pdf2567344https://repository.ucc.edu.co/bitstreams/74998335-b2b2-47fe-8fb8-82f8cc62941e/downloadd03714bfb031588509186edc73747aafMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/54c9fd5d-8113-48f6-a3a3-7cc9aacdf6d8/download3bce4f7ab09dfc588f126e1e36e98a45MD53THUMBNAIL2022_Bioinspired_Topographic_Surface_Formatolicenciadeuso.pdf.jpg2022_Bioinspired_Topographic_Surface_Formatolicenciadeuso.pdf.jpgGenerated Thumbnailimage/jpeg5385https://repository.ucc.edu.co/bitstreams/1322d055-dfdb-4496-a5e4-75749d95edc0/download48e340f7b7bb2a48d8e88cde705fb3adMD542022_Bioinspired_topographic_surface.pdf.jpg2022_Bioinspired_topographic_surface.pdf.jpgGenerated Thumbnailimage/jpeg5712https://repository.ucc.edu.co/bitstreams/dcc311b4-7c0b-4f3d-ad2c-608895dd5c8c/download50338e5ce1722f01cd29d849f76c232cMD55TEXT2022_Bioinspired_Topographic_Surface_Formatolicenciadeuso.pdf.txt2022_Bioinspired_Topographic_Surface_Formatolicenciadeuso.pdf.txtExtracted texttext/plain5326https://repository.ucc.edu.co/bitstreams/8acac664-c5dc-4e2f-8a50-9f8edd8d18b6/download610108f739dbb31a0d9c687dcc81c103MD562022_Bioinspired_topographic_surface.pdf.txt2022_Bioinspired_topographic_surface.pdf.txtExtracted texttext/plain94183https://repository.ucc.edu.co/bitstreams/f14e1622-017e-4176-99b9-0748db634b25/downloadb41fe31d6efada9ac0972a9478729d17MD5720.500.12494/44555oai:repository.ucc.edu.co:20.500.12494/445552024-08-10 22:43:44.43restrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo=