Bioinspired Topographic Surface Modification of Biomaterials
Physical surface modification is an approach that has been investigated over the last decade to reduce bacterial adhesion and improve cell attachment to biomaterials. Many techniques have been reported to modify surfaces, including the use of natural sources as inspiration to fabricate topographies...
- Autores:
-
Arango Santander, Santiago
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2022
- Institución:
- Universidad Cooperativa de Colombia
- Repositorio:
- Repositorio UCC
- Idioma:
- OAI Identifier:
- oai:repository.ucc.edu.co:20.500.12494/44555
- Palabra clave:
- Modificación de superficies
Biomimética
Sharklet
Hoja de loto
Adhesión bacteriana
Comportamiento celular
TG 2022 ODO 44555
Surface modification
Biomimetics
Sharklet
Lotus leaf
Bacterial adhesion
Cell behavior
- Rights
- openAccess
- License
- Atribución – No comercial – Sin Derivar
id |
COOPER2_779f10903b21394cd00c699fc5cbc6b8 |
---|---|
oai_identifier_str |
oai:repository.ucc.edu.co:20.500.12494/44555 |
network_acronym_str |
COOPER2 |
network_name_str |
Repositorio UCC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Bioinspired Topographic Surface Modification of Biomaterials |
title |
Bioinspired Topographic Surface Modification of Biomaterials |
spellingShingle |
Bioinspired Topographic Surface Modification of Biomaterials Modificación de superficies Biomimética Sharklet Hoja de loto Adhesión bacteriana Comportamiento celular TG 2022 ODO 44555 Surface modification Biomimetics Sharklet Lotus leaf Bacterial adhesion Cell behavior |
title_short |
Bioinspired Topographic Surface Modification of Biomaterials |
title_full |
Bioinspired Topographic Surface Modification of Biomaterials |
title_fullStr |
Bioinspired Topographic Surface Modification of Biomaterials |
title_full_unstemmed |
Bioinspired Topographic Surface Modification of Biomaterials |
title_sort |
Bioinspired Topographic Surface Modification of Biomaterials |
dc.creator.fl_str_mv |
Arango Santander, Santiago |
dc.contributor.author.none.fl_str_mv |
Arango Santander, Santiago |
dc.subject.spa.fl_str_mv |
Modificación de superficies Biomimética Sharklet Hoja de loto Adhesión bacteriana Comportamiento celular |
topic |
Modificación de superficies Biomimética Sharklet Hoja de loto Adhesión bacteriana Comportamiento celular TG 2022 ODO 44555 Surface modification Biomimetics Sharklet Lotus leaf Bacterial adhesion Cell behavior |
dc.subject.classification.spa.fl_str_mv |
TG 2022 ODO 44555 |
dc.subject.other.spa.fl_str_mv |
Surface modification Biomimetics Sharklet Lotus leaf Bacterial adhesion Cell behavior |
description |
Physical surface modification is an approach that has been investigated over the last decade to reduce bacterial adhesion and improve cell attachment to biomaterials. Many techniques have been reported to modify surfaces, including the use of natural sources as inspiration to fabricate topographies on artificial surfaces. Biomimetics is a tool to take advantage of nature to solve human problems. Physical surface modification using animal and vegetal topographies as inspiration to reduce bacterial adhesion and improve cell attachment has been investigated in the last years, and the results have been very promising. However, just a few animal and plant surfaces have been used to modify the surface of biomaterials with these objectives, and only a small number of bacterial species and cell types have been tested. The purpose of this review is to present the most current results on topographic surface modification using animal and plant surfaces as inspiration to modify the surface of biomedical materials with the objective of reducing bacterial adhesion and improving cell behavior |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-04-19T12:41:25Z |
dc.date.available.none.fl_str_mv |
2022-04-19T12:41:25Z |
dc.date.issued.none.fl_str_mv |
2022-03-24 |
dc.type.none.fl_str_mv |
Artículo |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.uri.spa.fl_str_mv |
https://doi.org/10.3390/ma15072383 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12494/44555 |
dc.identifier.bibliographicCitation.spa.fl_str_mv |
Arango-Santander, S. (2022) Bioinspired Topographic Surface Modification of Biomaterials. Materials 2022;15:2383.http://hdl.handle.net/20.500.12494/44555 |
url |
https://doi.org/10.3390/ma15072383 https://hdl.handle.net/20.500.12494/44555 |
identifier_str_mv |
Arango-Santander, S. (2022) Bioinspired Topographic Surface Modification of Biomaterials. Materials 2022;15:2383.http://hdl.handle.net/20.500.12494/44555 |
dc.relation.isversionof.spa.fl_str_mv |
https://www.mdpi.com/1996-1944/15/7/2383 |
dc.relation.ispartofjournal.spa.fl_str_mv |
Materials |
dc.relation.references.spa.fl_str_mv |
Hwang, J.; Jeong, Y.; Park, J.M.; Lee, K.H.; Hong, J.W.; Choi, J. Biomimetics: Forecasting the future of science, engineering, andmedicine.Int. J. Nanomed.2015,10, 5701–5713. Drack, M.; Limpinsel, M.; De Bruyn, G.; Nebelsick, J.H.; Betz, O. Towards a theoretical clarification of biomimetics usingconceptual tools from engineering design.Bioinspir. Biomim.2018,13, 016007 French, J.R.J.; Ahmed, B.M. The challenge of biomimetic design for carbon-neutral buildings using termite engineering.Insect Sci.2010,17, 154–162 Siddiqui, N.A.; Asrar, W.; Sulaeman, E. Literature review: Biomimetic and conventional aircraft wing tips.Int. J. Aviat. Aeronaut.Aerosp.2017,4, 2 Fish, F.E.; Kocak, D.M. Biomimetics and marine technology: An introduction.Mar. Technol. Soc. J.2011,45, 8–13. Yan, H.; Wu, Q.; Yu, C.; Zhao, T.; Liu, M. Recent Progress of Biomimetic Antifouling Surfaces in Marine.Adv. Mater. Interfaces2020,7, 20 Wijegunawardana, I.D.; de Mel, W.R. Biomimetic Designs for Automobile Engineering: A Review.Int. J. Automot. Mech. Eng.2021,18, 9029–9041 Feng, C.; Zhang, W.; Deng, C.; Li, G.; Chang, J.; Zhang, Z.; Jiang, X.; Wu, C. 3D Printing of Lotus Root-Like Biomimetic Materialsfor Cell Delivery and Tissue Regeneration.Adv. Sci.2017,4, 1700401 Contessi Negrini, N.; Toffoletto, N.; Farè, S.; Altomare, L. Plant Tissues as 3D Natural Scaffolds for Adipose, Bone and TendonTissue Regeneration.Front. Bioeng. Biotechnol.2020,8, 723 Mahtabian, S.; Mirhadi, S.M.; Tavangarian, F. From rose petal to bone scaffolds: Using nature to fabricate osteon-like scaffolds forbone tissue engineering applications.Ceram. Int.2021,47, 21633–21641. Li, C.; Yang, Y.; Yang, L.; Shi, Z.; Yang, P.; Cheng, G.In vitrobioactivity and biocompatibility of bio-inspired Ti-6Al-4V alloysurfaces modified by combined laser micro/nano structuring.Molecules2020,25, 1494. Tricinci, O.; Terencio, T.; Mazzolai, B.; Pugno, N.M.; Greco, F.; Mattoli, V. 3D Micropatterned Surface Inspired by Salvinia molestavia Direct Laser Lithography.ACS Appl. Mater. Interfaces2015,7, 25560–25567 Jian, R.; Hao, L.; Song, L.; Tian, L.; Fan, Y.; Zhao, J.; Liu, C.; Ming, W.; Ren, L. Lotus-leaf-inspired hierarchical structured surfacewith non-fouling and mechanical bactericidal performances.Chem. Eng. J.2020,398, 125609 Öztürk-Öncel, M.Ö.; Ercok-Biradli, F.; Rasier, R.; Marcali, M.; Elbuken, C.; Garipcan, B. Rose petal topography mimickedpoly(dimethylsiloxane) substrates for enhanced corneal endothelial cell behavior.Mater. Sci. Eng. C2021,126, 112147 Ramaswamy, Y.; Roohani, I.; No, Y.J.; Madafiglio, G.; Chang, F.; Zhao, F.; Lu, Z.; Zreiqat, H. Nature-inspired topographies onhydroxyapatite surfaces regulate stem cells behavior.Bioactive Mater.2021,6, 1107–1117 Hwang, G.B.; Page, K.; Patir, A.; Nair, S.P.; Allan, E.; Parkin, I.P. The Anti-Biofouling Properties of Superhydrophobic Surfaces areShort-Lived.ACS Nano2018,12, 6050–6058 Mandal, P.; Ivvala, J.; Arora, H.S.; Ghosh, S.K.; Grewal, H.S. Bioinspired micro/nano structured aluminum with multifacetedapplications.Colloids Surf. B Interfaces2022,211, 112311 Xue, F.; Liu, J.; Guo, L.; Zhang, L.; Li, Q. Theoretical study on the bactericidal nature of nanopatterned surfaces.J. Theor. Biol.2015,385, 1–7. Velic, A.; Hasan, J.; Li, Z.; Yarlagadda, P.K.D.V. Mechanics of Bacterial Interaction and Death on Nanopatterned Surfaces.Biophys.J.2020,120, 217–231 Jenkins, J.; Mantell, J.; Neal, C.; Gholinia, A.; Verkade, P.; Nobbs, A.H.; Su, B. Antibacterial effects of nanopillar surfaces aremediated by cell impedance, penetration and induction of oxidative stress.Nat. Commum.2020,11, 1626 Turner, A.M.; Dowell, N.; Kam, L.; Isaacson, M.; Turner, J.N.; Craighead, H.G.; Shain, W. Attachment of astroglial cells tomicrofabricated pillar arrays of different geometries.J. Biomed. Mater. Res.2000,51, 430–441 Glinel, K.; Thebault, P.; Humblot, V.; Pradier, C.M.; Jouenne, T. Antibacterial surfaces developed from bio-inspired approaches.Acta Biomater.2012,8, 1670–1684 Hasturk, O.; Ermis, M.; Demirci, U.; Hasirci, N.; Hasirci, V. Square prism micropillars improve osteogenicity of poly(methylmethacrylate) surfaces.J. Mater. Sci. Mater. Med.2018,29, 53. Radotic, V.; Bedalov, A.; Drvis, P.; Braeken, D.; Kovacic, D. Guided growth with aligned neurites in adult spiral ganglion neuronscultured in vitro on silicon micro-pillar substrates.J. Neural. Eng.2019,16, 066037 Beckwith, K.S.; Ullmann, S.; Vinje, J.; Sikorski, P. Influence of Nanopillar Arrays on Fibroblast Motility, Adhesion, and MigrationMechanisms.Small2019,15, e190251 Kryszak, B.; Szustakiewicz, K.; Dzienny, P.; Junka, A.; Paleczny, J.; Szymczyk-Ziolkowska, P.; Hoppe, V.; Grzymajlo, M.; Antonczak,A. ‘Cookies on a tray’: Superselective hierarchical microstructured poly(L-lactide) surface as a decoy for cells.Mater. Sci. Eng. C2022,132, 112648 Raczkowska, J.; Stetsyshyn, Y.; Awsiuk, K.; Lekka, M.; Marzec, M.; Harhay, K.; Ohar, H.; Ostapiv, D.; Sharan, M.;Yaremchuk, I.; et al.Temperature-responsive grafted polymer brushes obtained from renewable sources with potentialapplication as substrates for tissue engineering.Appl. Surf. Sci.2017,407, 546–554 Liu, X.; Liu, R.; Gu, Y.; Ding, J. Nonmonotonic self-deformation of cell nuclei on topological surfaces with micropillar array.ACSAppl. Mater. Interfaces2017,9, 18521–18530 Li, Y.; Sun, W.; Zhang, A.; Jin, S.; Liang, X.; Tang, Z.; Liu, X.; Chen, H. Vascular cell behavior on heparin-like polymers modifiedsilicone surfaces: The prominent role of the lotus leaf-like topography.J. Colloid Interface Sci.2021,603, 501–510 Jaggessar, A.; Shahali, H.; Mathew, A.; Yarlagadda, P.K.D.V. Bio-mimicking nano and micro-structured surface fabrication forantibacterial properties in medical implants.J. Nanobiotechnol.2017,15, 64 Jia, Z.; Xiu, P.; Li, M.; Xu, X.; Shi, Y.; Cheng, Y.; Wei, S.; Zheng, Y.; Xi, T.; Cai, H.; et al. Bioinspired anchoring AgNPs ontomicro-nanoporous TiO2orthopedic coatings: Trap-killing of bacteria, surface-regulated osteoblast functions and host responses.Biomaterials2016,75, 203–222 Jia, L.; Han, F.; Wang, H.; Zhu, C.; Guo, Q.; Li, J.; Zhao, Z.; Zhang, Q.; Zhu, X.; Li, B. Polydopamine-assisted surface modificationfor orthopaedic implants.J. Orthop. Trans.2019,17, 82–95 Cheng, H.; Yue, K.; Kazemzadeh-Narbat, M.; Liu, Y.; Khalilpour, A.; Li, B.; Zhang, Y.S.; Annabi, N.; Khademhosseini, A.Mussel-Inspired Multifunctional Hydrogel Coating for Prevention of Infections and Enhanced Osteogenesis.ACS Appl. Mater.Interfaces2017,9, 11428–11439 Asha, A.B.; Chen, Y.; Zhang, H.; Ghaemi, S.; Ishihara, K.; Liu, Y.; Narain, R. Rapid Mussel-Inspired Surface Zwitteration forEnhanced Antifouling and Antibacterial Properties.Langmuir2019,35, 1621–1630 Choi, S.H.; Jang, Y.S.; Jang, J.H.; Bae, T.S.; Lee, S.J.; Lee, M.H. Enhanced antibacterial activity of titanium by surface modificationwith polydopamine and silver for dental implant application.J. Appl. Biomater. Funct. Mater.2019,17, 1–9 Freitas, S.C.; Correa-Uribe, A.; Martins, M.C.L.; Pelaez-Vargas, A. Self-Assembled Monolayers for Dental Implants.Int. J. Dent.2018,2018, 4395460 Zabara, M.; Ren, Q.; Amenitsch, H.; Salentinig, S. Bioinspired Antimicrobial Coatings from Peptide-Functionalized LiquidCrystalline Nanostructures.ACS Appl. Bio Mater.2021,4, 5295–5303 Zhang, Z.; Kou, N.; Ye, W.; Wang, S.; Lu, J.; Lu, Y.; Liu, H.; Wang, X. Construction and Characterizations of Antibacterial SurfacesBased on Self-Assembled Monolayer of Antimicrobial Peptides (Pac-525) Derivatives on Gold.Coatings2021,11, 9. Saif, S.; Tahir, A.; Asim, T.; Chen, Y.; Khan, M.; Adil, S.F. Green synthesis of ZnO hierarchical microstructures by Cordia myxa andtheir antibacterial activity.Saudi J. Biol. Sci.2019,26, 1364–1371 Liu, M.; Li, M.T.; Xu, S.; Yang, H.; Sun, H.B. Bioinspired Superhydrophobic Surfaces via Laser-Structuring.Front. Chem.2020,16, 835. Bhushan, B.; Jung, Y.C. Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and dragreduction.Prog. Mater. Sci.2011,56, 1–108. Chen, L.; Duan, Y.; Cui, M.; Huang, R.; Su, R.; Qi, W.; He, Z. Biomimetic surface coatings for marine antifouling: Natural antifoulants, synthetic polymers and surface microtopography.Sci. Total Environ.2021,766, 144469. Patil, D.; Overland, M.; Stoller, M.; Chatterjee, K. Bioinspired nanostructured bactericidal surfaces.Curr. Opin. Chem. Eng.2021,34, 100741 Shimomura, M. The New Trends in Next Generation Biomimetics Material Technology: Learning from Biodiversity.Sci. Technol.Trends2010,37, 53–75. O’Neill, P.; Barrett, A.; Sullivan, T.; Regan, F.; Brabazon, D. Rapid Prototyped Biomimetic Antifouling Surfaces for MarineApplications.Biomimetics2016,5, 58. Bai, X.Q.; Xie, G.T.; Fan, H.; Peng, Z.X.; Yuan, C.Q.; Yan, X.P. Study on biomimetic preparation of shell surface microstructure forship antifouling.Wear2012,306, 285–295. Munther, M.; Palma, T.; Angeron, I.A.; Salari, S.; Ghassemi, H.; Vasefi, M.; Beheshti, A.; Davami, K. Microfabricated Biomimeticplacoid Scale-Inspired surfaces for antifouling applications.Appl. Surf. Sci.2018,453, 166–172 Han, X.; Wu, J.; Zhang, X.; Shi, J.; Wei, J.; Yang, Y.; Wu, B.; Feng, Y. The progress on antifouling organic coating: From biocide tobiomimetic surface.J. Mater. Sci. Technol.2021,61, 46–62. Zhu, Z.; Zhang, Y.; Sun, D.W. Biomimetic modification of freezing facility surfaces to prevent icing and frosting during freezingfor the food industry.Trends Food Sci. Technol.2021,111, 581–594 Zouaghi, S.; Bellayer, S.; Thomy, V.; Dargent, T.; Coffinier, Y.; Andre, C.; Delaplace, G.; Jimenez, M. Biomimetic surfacemodifications of stainless steel targeting dairy fouling mitigation and bacterial adhesion.Food Bioprod. Process.2019,113, 32–38. Ibrahim, U.H.; Devnarain, N.; Govender, T. Biomimetic strategies for enhancing synthesis and delivery of antibacterial nanosys-tems.Int. J. Pharm.2021,596, 120276 Hochbaum, A.I.; Aizenberg, J. Bacteria pattern spontaneously on periodic nanostructure arrays.Nano Lett.2010,10, 3717–3721 Chung, K.K.; Schumacher, J.F.; Sampson, E.M.; Burne, R.A.; Antonelli, P.J.; Brennan, A.B. Impact of engineered surface microto-pography on biofilm formation of Staphylococcus aureus.Biointerphases2007,2, 89–94 May, R.M.; Hoffman, M.G.; Sogo, M.J.; Parker, A.E.; O’Toole, G.A.; Brennan, A.B.; Reddy, S.T. Micro-patterned surfaces reducebacterial colonization and biofilm formation in vitro: Potential for enhancing endotracheal tube designs. Clin. Transl. Med.2014,3, 8 Arango-Santander, S.; Serna, L.; Sanchez-Garzon, J.; Franco, J. Evaluation ofStreptococcus mutansAdhesion to Stainless Steel Surfaces Modified Using Different Topographies Following a Biomimetic Approach.Coatings2021,11, 829. Arango-Santander, S.; Gonzalez, C.; Aguilar, A.; Cano, A.; Castro, S.; Sanchez-Garzon, J.; Franco, J. Assessment of streptococcus mutans adhesion to the surface of biomimetically-modified orthodontic archwires.Coatings2020,10, 201 Li, W.; Thian, E.S.; Wang, M.; Wang, Z.; Ren, L. Surface Design for Antibacterial Materials: From Fundamentals to Advanced Strategies. Adv. Sci.2021,8, 2100368 Hayles, A.; Hasan, J.; Bright, R.; Palms, D.; Brown, T.; Barker, D.; Vasilev, K. Hydrothermally etched titanium: A review on apromising mechano-bactericidal surface for implant applications.Mater. Today Chem.2021,22, 100622. Flemming, R.G.; Murphy, C.J.; Abrams, G.A.; Goodman, S.L.; Nealey, P.F. Effects of synthetic micro- and nano-structured surfaceson cell behavior.Biomaterials1999,20, 573–588 Bettinger, C.; Langer, R.; Borenstein, J. Engineering substrate micro- and nanotopography to control cell function.Angew. Chem.Int. Ed. Engl.2009,48, 5406–5415 Pelaez-Vargas, A.; Gallego-Perez, D.; Magallanes-Perdomo, M.; Fernandes, M.H.; Hansford, D.J.; De Aza, A.H.; Pena, P.; Monteiro,F.J. Isotropic micropatterned silica coatings on zirconia induce guided cell growth for dental implants.Dent. Mater.2011,27, 581–589 Liu, R.; Chi, Z.; Cao, L.; Weng, Z.; Wang, L.; Li, L.; Saeed, S.; Lian, Z.; Wang, Z. Fabrication of biomimetic superhydrophobicand anti-icing Ti6Al4V alloy surfaces by direct laser interference lithography and hydrothermal treatment.App. Surf. Sci.2020,534, 147576 Kuczynska-Zemla, D.; Sotniczuk, A.; Pisarek, M.; Chlanda, A.; Garbacz, H. Corrosion behavior of titanium modified by directlaser interference lithography.Surf. Coat. Technol.2021,418, 127219. Lohse, M.; Heinrich, M.; Grützner, S.; Haase, A.; Ramos, I.; Salado, C.; Thesen, M.W.; Grützner, G. Versatile fabrication methodfor multiscale hierarchical structured polymer masters using a combination of photo- and nanoimprint lithography.Micro NanoEng.2021,10, 100079. Ponomarev, V.A.; Shvindina, N.V.; Permyakova, E.S.; Slukin, P.V.; Ignatov, S.G.; Sirota, B.; Voevodin, A.A.; Shtansky, D.V. Structureand antibacterial properties of Ag-doped micropattern surfaces produced by photolithography method.Coll. Surf. B Biointerfaces.2019,173, 719–724 Biswas, A.; Bayer, I.S.; Biris, A.S.; Wang, T.; Dervishi, E.; Faupel, F. Advances in top–down and bottom–up surface nanofabrication:Techniques, applications & future prospects.Adv. Colloid Interface Sci.2012,170, 2–27. Shahmohammadi, M.; Nagay, B.E.; Barao, V.A.R.; Sukotjo, C.; Jursich, G.; Takoudis, C.G. Atomic layer deposition of TiO2, ZrO2and TiO2/ZrO2mixed oxide nanofilms on PMMA for enhanced biomaterial functionalization.Appl. Surf. Sci.2022,578, 151891 Xia, D.-H.; Pan, C.; Qin, Z.; Fan, B.; Song, S.; Jin, W.; Hu, W. Covalent surface modification of LY12 aluminum alloy surface byself-assembly dodecyl phosphate film towards corrosion protection.Prog. Org. Coat.2020,143, 105638. Ortiz-Cárdenas, J.E.; Zatorski, J.M.; Arneja, A.; Montalbine, A.N.; Munson, J.M.; Luckey, C.J.; Pompano, R.R. Towards spatially-organized organs-on-chip: Photopatterning cell-laden thiolene and methacryloyl hydrogels in a microfluidic device.Organs-on-a-Chip2022,4, 100018 Sun, J.; Bhushan, B. Nanomanufacturing of bioinspired surfaces.Tribol. Int.2019,129, 67–74 Chien, H.W.; Chen, X.Y.; Tsai, W.P. Poly(methyl methacrylate)/titanium dioxide (PMMA/TiO2) nanocomposite with shark-skinstructure for preventing biofilm formation.Mater. Lett.2021,285, 129098. Chien, H.W.; Chen, X.Y.; Tsai, W.P.; Lee, M. Inhibition of biofilm formation by rough shark skin-patterned surfaces.Colloids Surf.B Biointerfaces2020,186, 110738. Damodaran, V.B.; Murthy, S.N. Bio-inspired strategies for designing antifouling biomaterials.Biomater. Res.2016,20, 18 Faustino, C.M.C.; Lemos, S.M.C.; Monge, N.; Ribeiro, I.A.C. A scope at antifouling strategies to prevent catheter-associatedinfections.Adv. Colloid Interface Sci.2020,284, 102230. Gao, X.; Jiang, L. Water-repellent legs of water striders.Nature2004,432, 36 Fang, Y.; Sun, G.; Cong, Q.; Chen, G.; Ren, L. Effects of Methanol on Wettability of the Non-Smooth Surface on Butterfly Wing.J.Bionic. Eng.2008,5, 127–133 Bhushan, B.; Sayer, R.A. Surface characterization and friction of a bio-inspired reversible adhesive tape.Microsyst. Technol.2007,13, 71–78 Chen, K.; Liu, Q.; Liao, G.; Yang, Y.; Ren, L.; Yang, H.; Chen, X. The Sound Suppression Characteristics of Wing Feather of Owl(Bubo bubo).J. Bionic Eng.2012,9, 192–199 Kelleher, S.M.; Habimana, O.; Lawler, J.; O’reilly, B.; Daniels, S.; Casey, E.; Cowley, A. Cicada Wing Surface Topography: AnInvestigation into the Bactericidal Properties of Nanostructural Features.ACS Appl. Mater. Interfaces2016,8, 14966–14974 Feng, L.; Li, S.; Li, Y.; Li, H.; Zhang, L.; Zhai, J.; Song, Y.; Liu, B.; Jiang, L.; Zhu, D. Super-hydrophobic surfaces: From natural toartificial.Adv. Mater.2002,14, 1857–1860 Bixler, G.D.; Theiss, A.; Bhushan, B.; Lee, S.C. Anti-fouling properties of microstructured surfaces bio-inspired by rice leaves andbutterfly wings.J. Colloid Interface Sci.2014,419, 114–133 Latthe, S.S.; Terashima, C.; Nakata, K.; Fujishima, A. Superhydrophobic surfaces developed by mimicking hierarchical surface morphology of lotus leaf.Molecules2014,19, 4256–428 Grewal, H.S.; Cho, I.J.; Yoon, E.S. The role of bio-inspired hierarchical structures in wetting.Bioinspiration Biomim.2015,10, 026009 Liu, Y.; Li, X.; Jin, J.; Liu, J.; Yan, Y.; Han, Z.; Ren, L. Anti-icing property of bio-inspired micro-structure superhydrophobic surfacesand heat transfer model.Appl. Surf. Sci.2017,400, 498–505 Liu, Q.; Brookbank, L.; Ho, A.; Coffey, J.; Brennan, A.B.; Jones, C.J. Surface texture limits transfer of S. aureus, T4 bacteriophage,influenza B virus and human coronavirus.PLoS ONE2020,15, e024451 Román-Kustas, J.; Hoffman, J.B.; Reed, J.H.; Gonsalves, A.E.; Oh, J.; Li, L.; Hong, S.; Jo, K.D.; Dana, C.E.; Miljkovic, N.; et al.Molecular and Topographical Organization: Influence on Cicada Wing Wettability and Bactericidal Properties.Adv. Mater.Interfaces2020,7, 2000112 Román-Kustas, J.; Hoffman, J.B.; Alonso, D.; Reed, J.H.; Gonsalves, A.E.; Oh, J.; Hong, S.; Jo, K.D.; Dana, C.E.; Alleyne, M.; et al.Analysis of cicada wing surface constituents by comprehensive multidimensional gas chromatography for species differentiation.Microchem. J.2020,158, 105089 Ivanova, E.P.; Hasan, F.; Webb, H.K.; Truong, V.K.; Watson, G.S.; Watson, J.A.; Baulin, V.A.; Pogodin, S.; Wang, J.Y.;Tobin, M.J.; et al.Natural bactericidal surfaces: Mechanical rupture ofPseudomonas aeruginosacells by cicada wings.Small2012,8, 2489–2494 Fisher, L.E.; Yang, Y.; Yuen, M.-F.; Zhang, W.; Nobbs, A.H.; Su, B. Bactericidal activity of biomimetic diamond nanocone surfaces.Biointerphases2016,11, 011014 Zhang, G.; Zhang, J.; Xie, G.; Liu, Z.; Shao, H. Cicada Wings: A Stamp from Nature for Nanoimprint Lithography.Small2006,2, 1440–1443 Ivanova, E.P.; Hasan, F.; Webb, H.K.; Gervinskas, G.; Juodkazis, S.; Truong, V.K.; Wu, A.H.F.; Lamb, R.N.; Baulin, V.A.;Watson, G.S.; et al. Bactericidal activity of black silicon.Nat. Commum.2013,4, 2838 Nguyen, S.H.T.; Webb, H.K.; Hasan, J.; Tobin, M.J.; Crawford, R.J.; Ivanova, E.P. Dual role of outer epicuticular lipids indetermining the wettability of dragonfly wings.Colloids Surf. B Biointerfaces2013,106, 126–134 Watson, G.S.; Green, D.W.; Schwarzkopf, L.; Li, X.; Cribb, B.W.; Myhra, S.; Watson, J.A. A gecko skin micro/nano structure –A lowadhesion, superhydrophobic, anti-wetting, self-cleaning, biocompatible, antibacterial surface.Acta Biomater.2015,21, 109–122. Badge, I.; Stark, A.Y.; Paoloni, E.L.; Niewiarowski, P.H.; Dhinojwala, A. The Role of Surface Chemistry in Adhesion and Wettingof Gecko Toe Pads.Sci. Rep.2014,4, 6643. Watson, G.S.; Green, D.W.; Cribb, B.W.; Brown, C.L.; Meritt, C.R.; Tobin, M.J.; Vongsvivut, J.; Sun, M.; Liang, A.P.; Watson, J.A. In-sect Analogue to the Lotus Leaf: A Planthopper Wing Membrane Incorporating a Low-Adhesion, Nonwetting, Superhydrophobic,Bactericidal, and Biocompatible Surface.ACS Appl. Mater. Interfaces2017,9, 24381–24392 Pu, X.; Li, G.; Huang, H. Preparation, anti-biofouling and drag-reduction properties of a biomimetic shark skin surface.Biol. Open2016,5, 389–396. Magyar, A.; Arthanareeswaran, V.K.A.; Soós, L.; Nagy, K.; Dobák, A.; Szilágyi, I.M.; Justh, N.; Chandra, A.R.; Köves, B.; Tenke, P.Does micropattern (sharklet) on urinary catheter surface reduce urinary tract infections? Results from phase I randomized openlabel interventional trial.Eur. Urol. Suppl.2017,16, e146–e148 Shahali, H.; Hasan, J.; Mathews, A.; Wang, H.; Yan, C.; Tesfamichael, T.; Yarlagadda, P.K.D.V. Multi-biofunctional properties ofthree species of cicada wings and biomimetic fabrication of nanopatterned titanium pillars.J. Mater. Chem. B2019,7, 1300–1310 Hazell, G.; Fisher, L.; Murray, A.; Nobbs, A.; Su, B. Bioinspired bactericidal surfaces with polymer nanocone arrays.J. ColloidsInterf.2018,528, 389–399 Magin, C.M.; May, R.M.; Drinker, M.C.; Cuevas, K.H.; Brennan, A.B.; Reddy, S.T. Micropatterned Protective Membranes InhibitLens Epithelial Cell Migration in Posterior Capsule Opacification Model.Transl. Vis. Sci. Technol.2015,4, 9. Mann, E.E.; Manna, D.; Mettetal, M.R.; May, R.M.; Dannemiller, E.M.; Chung, K.K.; Brennan, A.B.; Reddy, S.T. Surface micropatternlimits bacterial contamination. Antimicrob.Resist. Infect. Control2014,3, 28 Mann, E.E.; Magin, C.M.; Mettetal, M.R.; May, R.M.; Henry, M.K.M.; DeLoid, H.; Prater, J.; Sullivan, L.; Thomas, J.G.;Twite, M.D.; et al. Micropatterned Endotracheal Tubes Reduce Secretion-Related Lumen Occlusion.Ann. Biomed. Eng.2016,44, 3645 Reddy, S.T.; Chung, K.K.; McDaniel, C.J.; Darouiche, R.O.; Landman, J.; Brennan, A.B. Micropatterned surfaces for reducing therisk of catheter-associated urinary tract infection: Anin vitrostudy on the effect of sharklet micropatterned surfaces to inhibitbacterial colonization and migration of uropathogenicEscherichia coli.J. Endourol.2011,25, 1547–155 May, R.M.; Magin, C.M.; Mann, E.E.; Drinker, M.C.; Fraser, J.C.; Siedlecki, C.A.; Brennan, A.B.; Reddy, S.T. An engineeredmicropattern to reduce bacterial colonization, platelet adhesion and fibrin sheath formation for improved biocompatibility ofcentral venous catheters.Clin. Transl. Med.2015,26, 9 Arisoy, F.D.; Kolewe, K.W.; Homyak, B.; Kurtz, I.S.; Schiffman, I.D.; Watkins, J.J. Bioinspired Photocatalytic Shark-Skin Surfaceswith Antibacterial and Antifouling Activity via Nanoimprint Lithography.ACS Appl. Mater. Interfaces2018,10, 20055–20063 Rostami, S.; Puza, F.; Ucak, M.; Ozgur, E.; Gul, O.; Ercan, U.K.; Garipcan, B. Bifunctional sharkskin mimicked chitosan/grapheneoxide membranes: Reduced biofilm formation and improved cytocompatibility.Appl. Surf. Sci.2021,544, 148828 Dehghani, S.; Mashreghi, M.; Nezhad, A.H.N.; Karimi, J.; Hosseinpour, S.; Davoodi, A. Exploring mechano-bactericidal nature ofPsalmocharias cicadaswings: An analytical nanotopology investigation based on atomic force microscopy characterization.Surf.Interfaces2021,26, 101407 Bhadra, C.M.; Truong, V.K.; Pham, V.T.H.; Al Kobaisi, M.; Senituinas, G.; Wang, J.Y.; Juodkazis, S.; Crawford, R.J.; Ivanova, E.P.Antibacterial titanium nanopatterned arrays inspired by dragonfly wings.Sci. Rep.2015,5, 16817 Li, C.; Yang, L.; Liu, N.; Yang, Y.; Zhao, J.; Yang, P.; Cheng, G. Bioinspired surface hierarchical microstructures of Ti6Al4V alloywith a positive effect on osteoconduction.Surf. Coat. Technol.2020,388, 125594. Mobini, S.; Kuliasha, C.A.; Siders, Z.A.; Bohmann, N.A.; Jamal, S.M.; Judy, J.W.; Schmidt, C.E.; Brennan, A.B. MicrotopographicalPatterns Promote Different Responses in Fibroblasts and Schwann Cells: A Possible Feature for Neural Implants.J. Biomed. Mater.Res. A2021,109, 64–76 Ensikat, H.J.; Ditsche-Kuru, P.; Neinhuis, C.; Barthlott, W. Superhydrophobicity in perfection: The outstanding properties of thelotus leaf.Beilstein J. Nanotechnol.2011,2, 152–161 Guo, Z.; Liu, W.; Su, B.L. Superhydrophobic surfaces: From natural to biomimetic to functional.J. Colloid Interface. Sci.2011,353, 335–355 Wang, C.; Shao, R.; Wang, Q.; Sun, S. Hierarchical hydrophobic surfaces with controlled dual transition between rose petal effectand lotus effect via structure tailoring or chemical modification.Coll. Surf. A Physichem. Eng. Asp.2021,622, 126661 Bhushan, B.; Nosonovsky, M. The rose petal effect and the modes of superhydrophobicity.Philos. Trans. R Soc. A2010,368, 4713–4728 Cao, Y.; Jana, S.; Bowen, L.; Tan, X.; Liu, H.; Rostami, N.; Brown, J.; Jakubovics, N.S.; Chen, J. Hierarchical Rose Petal SurfacesDelay the Early-Stage Bacterial Biofilm Growth.Langmuir2019,35, 14670–14680 Nowak, R.; Olech, M.; Pecio, L.; Oleszek, W.; Los, R.; Malm, A.; Rzymowska, J. Cytotoxic, antioxidant, antimicrobial propertiesand chemical composition of rose petals.J. Sci. Food. Agric.2013,94, 3 Mitharwal, S.; Kumar, A.; Chauhan, K.; Taneja, N.K. Nutritional, phytochemical composition and potential health benefits of taro(Colocasia esculentaL.) leaves: A review.Food Chem.2022,383, 132406 |
dc.rights.license.none.fl_str_mv |
Atribución – No comercial – Sin Derivar |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución – No comercial – Sin Derivar http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
19 |
dc.coverage.temporal.spa.fl_str_mv |
15 |
dc.publisher.spa.fl_str_mv |
MDPI Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Odontología, Medellín y Envigado |
dc.publisher.program.spa.fl_str_mv |
Especialización en Ortodoncia |
dc.publisher.place.spa.fl_str_mv |
Medellín |
institution |
Universidad Cooperativa de Colombia |
bitstream.url.fl_str_mv |
https://repository.ucc.edu.co/bitstreams/88dfbc96-6df6-40bb-a6aa-efa05e87b690/download https://repository.ucc.edu.co/bitstreams/74998335-b2b2-47fe-8fb8-82f8cc62941e/download https://repository.ucc.edu.co/bitstreams/54c9fd5d-8113-48f6-a3a3-7cc9aacdf6d8/download https://repository.ucc.edu.co/bitstreams/1322d055-dfdb-4496-a5e4-75749d95edc0/download https://repository.ucc.edu.co/bitstreams/dcc311b4-7c0b-4f3d-ad2c-608895dd5c8c/download https://repository.ucc.edu.co/bitstreams/8acac664-c5dc-4e2f-8a50-9f8edd8d18b6/download https://repository.ucc.edu.co/bitstreams/f14e1622-017e-4176-99b9-0748db634b25/download |
bitstream.checksum.fl_str_mv |
58a6f0ba9c86faaf4e8369f2562655dd d03714bfb031588509186edc73747aaf 3bce4f7ab09dfc588f126e1e36e98a45 48e340f7b7bb2a48d8e88cde705fb3ad 50338e5ce1722f01cd29d849f76c232c 610108f739dbb31a0d9c687dcc81c103 b41fe31d6efada9ac0972a9478729d17 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Cooperativa de Colombia |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1814246979703668736 |
spelling |
Arango Santander, Santiago152022-04-19T12:41:25Z2022-04-19T12:41:25Z2022-03-24https://doi.org/10.3390/ma15072383https://hdl.handle.net/20.500.12494/44555Arango-Santander, S. (2022) Bioinspired Topographic Surface Modification of Biomaterials. Materials 2022;15:2383.http://hdl.handle.net/20.500.12494/44555Physical surface modification is an approach that has been investigated over the last decade to reduce bacterial adhesion and improve cell attachment to biomaterials. Many techniques have been reported to modify surfaces, including the use of natural sources as inspiration to fabricate topographies on artificial surfaces. Biomimetics is a tool to take advantage of nature to solve human problems. Physical surface modification using animal and vegetal topographies as inspiration to reduce bacterial adhesion and improve cell attachment has been investigated in the last years, and the results have been very promising. However, just a few animal and plant surfaces have been used to modify the surface of biomaterials with these objectives, and only a small number of bacterial species and cell types have been tested. The purpose of this review is to present the most current results on topographic surface modification using animal and plant surfaces as inspiration to modify the surface of biomedical materials with the objective of reducing bacterial adhesion and improving cell behaviorhttps://scienti.colciencias.gov.co/cvlac/EnRecursoHumano/inicio.do0000-0002-3113-9895GIOMsantiago.arango@campusucc.edu.co19MDPIUniversidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Odontología, Medellín y EnvigadoEspecialización en OrtodonciaMedellínhttps://www.mdpi.com/1996-1944/15/7/2383MaterialsHwang, J.; Jeong, Y.; Park, J.M.; Lee, K.H.; Hong, J.W.; Choi, J. Biomimetics: Forecasting the future of science, engineering, andmedicine.Int. J. Nanomed.2015,10, 5701–5713.Drack, M.; Limpinsel, M.; De Bruyn, G.; Nebelsick, J.H.; Betz, O. Towards a theoretical clarification of biomimetics usingconceptual tools from engineering design.Bioinspir. Biomim.2018,13, 016007French, J.R.J.; Ahmed, B.M. The challenge of biomimetic design for carbon-neutral buildings using termite engineering.Insect Sci.2010,17, 154–162Siddiqui, N.A.; Asrar, W.; Sulaeman, E. Literature review: Biomimetic and conventional aircraft wing tips.Int. J. Aviat. Aeronaut.Aerosp.2017,4, 2Fish, F.E.; Kocak, D.M. Biomimetics and marine technology: An introduction.Mar. Technol. Soc. J.2011,45, 8–13.Yan, H.; Wu, Q.; Yu, C.; Zhao, T.; Liu, M. Recent Progress of Biomimetic Antifouling Surfaces in Marine.Adv. Mater. Interfaces2020,7, 20Wijegunawardana, I.D.; de Mel, W.R. Biomimetic Designs for Automobile Engineering: A Review.Int. J. Automot. Mech. Eng.2021,18, 9029–9041Feng, C.; Zhang, W.; Deng, C.; Li, G.; Chang, J.; Zhang, Z.; Jiang, X.; Wu, C. 3D Printing of Lotus Root-Like Biomimetic Materialsfor Cell Delivery and Tissue Regeneration.Adv. Sci.2017,4, 1700401Contessi Negrini, N.; Toffoletto, N.; Farè, S.; Altomare, L. Plant Tissues as 3D Natural Scaffolds for Adipose, Bone and TendonTissue Regeneration.Front. Bioeng. Biotechnol.2020,8, 723Mahtabian, S.; Mirhadi, S.M.; Tavangarian, F. From rose petal to bone scaffolds: Using nature to fabricate osteon-like scaffolds forbone tissue engineering applications.Ceram. Int.2021,47, 21633–21641.Li, C.; Yang, Y.; Yang, L.; Shi, Z.; Yang, P.; Cheng, G.In vitrobioactivity and biocompatibility of bio-inspired Ti-6Al-4V alloysurfaces modified by combined laser micro/nano structuring.Molecules2020,25, 1494.Tricinci, O.; Terencio, T.; Mazzolai, B.; Pugno, N.M.; Greco, F.; Mattoli, V. 3D Micropatterned Surface Inspired by Salvinia molestavia Direct Laser Lithography.ACS Appl. Mater. Interfaces2015,7, 25560–25567Jian, R.; Hao, L.; Song, L.; Tian, L.; Fan, Y.; Zhao, J.; Liu, C.; Ming, W.; Ren, L. Lotus-leaf-inspired hierarchical structured surfacewith non-fouling and mechanical bactericidal performances.Chem. Eng. J.2020,398, 125609Öztürk-Öncel, M.Ö.; Ercok-Biradli, F.; Rasier, R.; Marcali, M.; Elbuken, C.; Garipcan, B. Rose petal topography mimickedpoly(dimethylsiloxane) substrates for enhanced corneal endothelial cell behavior.Mater. Sci. Eng. C2021,126, 112147Ramaswamy, Y.; Roohani, I.; No, Y.J.; Madafiglio, G.; Chang, F.; Zhao, F.; Lu, Z.; Zreiqat, H. Nature-inspired topographies onhydroxyapatite surfaces regulate stem cells behavior.Bioactive Mater.2021,6, 1107–1117Hwang, G.B.; Page, K.; Patir, A.; Nair, S.P.; Allan, E.; Parkin, I.P. The Anti-Biofouling Properties of Superhydrophobic Surfaces areShort-Lived.ACS Nano2018,12, 6050–6058Mandal, P.; Ivvala, J.; Arora, H.S.; Ghosh, S.K.; Grewal, H.S. Bioinspired micro/nano structured aluminum with multifacetedapplications.Colloids Surf. B Interfaces2022,211, 112311Xue, F.; Liu, J.; Guo, L.; Zhang, L.; Li, Q. Theoretical study on the bactericidal nature of nanopatterned surfaces.J. Theor. Biol.2015,385, 1–7.Velic, A.; Hasan, J.; Li, Z.; Yarlagadda, P.K.D.V. Mechanics of Bacterial Interaction and Death on Nanopatterned Surfaces.Biophys.J.2020,120, 217–231Jenkins, J.; Mantell, J.; Neal, C.; Gholinia, A.; Verkade, P.; Nobbs, A.H.; Su, B. Antibacterial effects of nanopillar surfaces aremediated by cell impedance, penetration and induction of oxidative stress.Nat. Commum.2020,11, 1626Turner, A.M.; Dowell, N.; Kam, L.; Isaacson, M.; Turner, J.N.; Craighead, H.G.; Shain, W. Attachment of astroglial cells tomicrofabricated pillar arrays of different geometries.J. Biomed. Mater. Res.2000,51, 430–441Glinel, K.; Thebault, P.; Humblot, V.; Pradier, C.M.; Jouenne, T. Antibacterial surfaces developed from bio-inspired approaches.Acta Biomater.2012,8, 1670–1684Hasturk, O.; Ermis, M.; Demirci, U.; Hasirci, N.; Hasirci, V. Square prism micropillars improve osteogenicity of poly(methylmethacrylate) surfaces.J. Mater. Sci. Mater. Med.2018,29, 53.Radotic, V.; Bedalov, A.; Drvis, P.; Braeken, D.; Kovacic, D. Guided growth with aligned neurites in adult spiral ganglion neuronscultured in vitro on silicon micro-pillar substrates.J. Neural. Eng.2019,16, 066037Beckwith, K.S.; Ullmann, S.; Vinje, J.; Sikorski, P. Influence of Nanopillar Arrays on Fibroblast Motility, Adhesion, and MigrationMechanisms.Small2019,15, e190251Kryszak, B.; Szustakiewicz, K.; Dzienny, P.; Junka, A.; Paleczny, J.; Szymczyk-Ziolkowska, P.; Hoppe, V.; Grzymajlo, M.; Antonczak,A. ‘Cookies on a tray’: Superselective hierarchical microstructured poly(L-lactide) surface as a decoy for cells.Mater. Sci. Eng. C2022,132, 112648Raczkowska, J.; Stetsyshyn, Y.; Awsiuk, K.; Lekka, M.; Marzec, M.; Harhay, K.; Ohar, H.; Ostapiv, D.; Sharan, M.;Yaremchuk, I.; et al.Temperature-responsive grafted polymer brushes obtained from renewable sources with potentialapplication as substrates for tissue engineering.Appl. Surf. Sci.2017,407, 546–554Liu, X.; Liu, R.; Gu, Y.; Ding, J. Nonmonotonic self-deformation of cell nuclei on topological surfaces with micropillar array.ACSAppl. Mater. Interfaces2017,9, 18521–18530Li, Y.; Sun, W.; Zhang, A.; Jin, S.; Liang, X.; Tang, Z.; Liu, X.; Chen, H. Vascular cell behavior on heparin-like polymers modifiedsilicone surfaces: The prominent role of the lotus leaf-like topography.J. Colloid Interface Sci.2021,603, 501–510Jaggessar, A.; Shahali, H.; Mathew, A.; Yarlagadda, P.K.D.V. Bio-mimicking nano and micro-structured surface fabrication forantibacterial properties in medical implants.J. Nanobiotechnol.2017,15, 64Jia, Z.; Xiu, P.; Li, M.; Xu, X.; Shi, Y.; Cheng, Y.; Wei, S.; Zheng, Y.; Xi, T.; Cai, H.; et al. Bioinspired anchoring AgNPs ontomicro-nanoporous TiO2orthopedic coatings: Trap-killing of bacteria, surface-regulated osteoblast functions and host responses.Biomaterials2016,75, 203–222Jia, L.; Han, F.; Wang, H.; Zhu, C.; Guo, Q.; Li, J.; Zhao, Z.; Zhang, Q.; Zhu, X.; Li, B. Polydopamine-assisted surface modificationfor orthopaedic implants.J. Orthop. Trans.2019,17, 82–95Cheng, H.; Yue, K.; Kazemzadeh-Narbat, M.; Liu, Y.; Khalilpour, A.; Li, B.; Zhang, Y.S.; Annabi, N.; Khademhosseini, A.Mussel-Inspired Multifunctional Hydrogel Coating for Prevention of Infections and Enhanced Osteogenesis.ACS Appl. Mater.Interfaces2017,9, 11428–11439Asha, A.B.; Chen, Y.; Zhang, H.; Ghaemi, S.; Ishihara, K.; Liu, Y.; Narain, R. Rapid Mussel-Inspired Surface Zwitteration forEnhanced Antifouling and Antibacterial Properties.Langmuir2019,35, 1621–1630Choi, S.H.; Jang, Y.S.; Jang, J.H.; Bae, T.S.; Lee, S.J.; Lee, M.H. Enhanced antibacterial activity of titanium by surface modificationwith polydopamine and silver for dental implant application.J. Appl. Biomater. Funct. Mater.2019,17, 1–9Freitas, S.C.; Correa-Uribe, A.; Martins, M.C.L.; Pelaez-Vargas, A. Self-Assembled Monolayers for Dental Implants.Int. J. Dent.2018,2018, 4395460Zabara, M.; Ren, Q.; Amenitsch, H.; Salentinig, S. Bioinspired Antimicrobial Coatings from Peptide-Functionalized LiquidCrystalline Nanostructures.ACS Appl. Bio Mater.2021,4, 5295–5303Zhang, Z.; Kou, N.; Ye, W.; Wang, S.; Lu, J.; Lu, Y.; Liu, H.; Wang, X. Construction and Characterizations of Antibacterial SurfacesBased on Self-Assembled Monolayer of Antimicrobial Peptides (Pac-525) Derivatives on Gold.Coatings2021,11, 9.Saif, S.; Tahir, A.; Asim, T.; Chen, Y.; Khan, M.; Adil, S.F. Green synthesis of ZnO hierarchical microstructures by Cordia myxa andtheir antibacterial activity.Saudi J. Biol. Sci.2019,26, 1364–1371Liu, M.; Li, M.T.; Xu, S.; Yang, H.; Sun, H.B. Bioinspired Superhydrophobic Surfaces via Laser-Structuring.Front. Chem.2020,16, 835.Bhushan, B.; Jung, Y.C. Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and dragreduction.Prog. Mater. Sci.2011,56, 1–108.Chen, L.; Duan, Y.; Cui, M.; Huang, R.; Su, R.; Qi, W.; He, Z. Biomimetic surface coatings for marine antifouling: Natural antifoulants, synthetic polymers and surface microtopography.Sci. Total Environ.2021,766, 144469.Patil, D.; Overland, M.; Stoller, M.; Chatterjee, K. Bioinspired nanostructured bactericidal surfaces.Curr. Opin. Chem. Eng.2021,34, 100741Shimomura, M. The New Trends in Next Generation Biomimetics Material Technology: Learning from Biodiversity.Sci. Technol.Trends2010,37, 53–75.O’Neill, P.; Barrett, A.; Sullivan, T.; Regan, F.; Brabazon, D. Rapid Prototyped Biomimetic Antifouling Surfaces for MarineApplications.Biomimetics2016,5, 58.Bai, X.Q.; Xie, G.T.; Fan, H.; Peng, Z.X.; Yuan, C.Q.; Yan, X.P. Study on biomimetic preparation of shell surface microstructure forship antifouling.Wear2012,306, 285–295.Munther, M.; Palma, T.; Angeron, I.A.; Salari, S.; Ghassemi, H.; Vasefi, M.; Beheshti, A.; Davami, K. Microfabricated Biomimeticplacoid Scale-Inspired surfaces for antifouling applications.Appl. Surf. Sci.2018,453, 166–172Han, X.; Wu, J.; Zhang, X.; Shi, J.; Wei, J.; Yang, Y.; Wu, B.; Feng, Y. The progress on antifouling organic coating: From biocide tobiomimetic surface.J. Mater. Sci. Technol.2021,61, 46–62.Zhu, Z.; Zhang, Y.; Sun, D.W. Biomimetic modification of freezing facility surfaces to prevent icing and frosting during freezingfor the food industry.Trends Food Sci. Technol.2021,111, 581–594Zouaghi, S.; Bellayer, S.; Thomy, V.; Dargent, T.; Coffinier, Y.; Andre, C.; Delaplace, G.; Jimenez, M. Biomimetic surfacemodifications of stainless steel targeting dairy fouling mitigation and bacterial adhesion.Food Bioprod. Process.2019,113, 32–38.Ibrahim, U.H.; Devnarain, N.; Govender, T. Biomimetic strategies for enhancing synthesis and delivery of antibacterial nanosys-tems.Int. J. Pharm.2021,596, 120276Hochbaum, A.I.; Aizenberg, J. Bacteria pattern spontaneously on periodic nanostructure arrays.Nano Lett.2010,10, 3717–3721Chung, K.K.; Schumacher, J.F.; Sampson, E.M.; Burne, R.A.; Antonelli, P.J.; Brennan, A.B. Impact of engineered surface microto-pography on biofilm formation of Staphylococcus aureus.Biointerphases2007,2, 89–94May, R.M.; Hoffman, M.G.; Sogo, M.J.; Parker, A.E.; O’Toole, G.A.; Brennan, A.B.; Reddy, S.T. Micro-patterned surfaces reducebacterial colonization and biofilm formation in vitro: Potential for enhancing endotracheal tube designs. Clin. Transl. Med.2014,3, 8Arango-Santander, S.; Serna, L.; Sanchez-Garzon, J.; Franco, J. Evaluation ofStreptococcus mutansAdhesion to Stainless Steel Surfaces Modified Using Different Topographies Following a Biomimetic Approach.Coatings2021,11, 829.Arango-Santander, S.; Gonzalez, C.; Aguilar, A.; Cano, A.; Castro, S.; Sanchez-Garzon, J.; Franco, J. Assessment of streptococcus mutans adhesion to the surface of biomimetically-modified orthodontic archwires.Coatings2020,10, 201Li, W.; Thian, E.S.; Wang, M.; Wang, Z.; Ren, L. Surface Design for Antibacterial Materials: From Fundamentals to Advanced Strategies. Adv. Sci.2021,8, 2100368Hayles, A.; Hasan, J.; Bright, R.; Palms, D.; Brown, T.; Barker, D.; Vasilev, K. Hydrothermally etched titanium: A review on apromising mechano-bactericidal surface for implant applications.Mater. Today Chem.2021,22, 100622.Flemming, R.G.; Murphy, C.J.; Abrams, G.A.; Goodman, S.L.; Nealey, P.F. Effects of synthetic micro- and nano-structured surfaceson cell behavior.Biomaterials1999,20, 573–588Bettinger, C.; Langer, R.; Borenstein, J. Engineering substrate micro- and nanotopography to control cell function.Angew. Chem.Int. Ed. Engl.2009,48, 5406–5415Pelaez-Vargas, A.; Gallego-Perez, D.; Magallanes-Perdomo, M.; Fernandes, M.H.; Hansford, D.J.; De Aza, A.H.; Pena, P.; Monteiro,F.J. Isotropic micropatterned silica coatings on zirconia induce guided cell growth for dental implants.Dent. Mater.2011,27, 581–589Liu, R.; Chi, Z.; Cao, L.; Weng, Z.; Wang, L.; Li, L.; Saeed, S.; Lian, Z.; Wang, Z. Fabrication of biomimetic superhydrophobicand anti-icing Ti6Al4V alloy surfaces by direct laser interference lithography and hydrothermal treatment.App. Surf. Sci.2020,534, 147576Kuczynska-Zemla, D.; Sotniczuk, A.; Pisarek, M.; Chlanda, A.; Garbacz, H. Corrosion behavior of titanium modified by directlaser interference lithography.Surf. Coat. Technol.2021,418, 127219.Lohse, M.; Heinrich, M.; Grützner, S.; Haase, A.; Ramos, I.; Salado, C.; Thesen, M.W.; Grützner, G. Versatile fabrication methodfor multiscale hierarchical structured polymer masters using a combination of photo- and nanoimprint lithography.Micro NanoEng.2021,10, 100079.Ponomarev, V.A.; Shvindina, N.V.; Permyakova, E.S.; Slukin, P.V.; Ignatov, S.G.; Sirota, B.; Voevodin, A.A.; Shtansky, D.V. Structureand antibacterial properties of Ag-doped micropattern surfaces produced by photolithography method.Coll. Surf. B Biointerfaces.2019,173, 719–724Biswas, A.; Bayer, I.S.; Biris, A.S.; Wang, T.; Dervishi, E.; Faupel, F. Advances in top–down and bottom–up surface nanofabrication:Techniques, applications & future prospects.Adv. Colloid Interface Sci.2012,170, 2–27.Shahmohammadi, M.; Nagay, B.E.; Barao, V.A.R.; Sukotjo, C.; Jursich, G.; Takoudis, C.G. Atomic layer deposition of TiO2, ZrO2and TiO2/ZrO2mixed oxide nanofilms on PMMA for enhanced biomaterial functionalization.Appl. Surf. Sci.2022,578, 151891Xia, D.-H.; Pan, C.; Qin, Z.; Fan, B.; Song, S.; Jin, W.; Hu, W. Covalent surface modification of LY12 aluminum alloy surface byself-assembly dodecyl phosphate film towards corrosion protection.Prog. Org. Coat.2020,143, 105638.Ortiz-Cárdenas, J.E.; Zatorski, J.M.; Arneja, A.; Montalbine, A.N.; Munson, J.M.; Luckey, C.J.; Pompano, R.R. Towards spatially-organized organs-on-chip: Photopatterning cell-laden thiolene and methacryloyl hydrogels in a microfluidic device.Organs-on-a-Chip2022,4, 100018Sun, J.; Bhushan, B. Nanomanufacturing of bioinspired surfaces.Tribol. Int.2019,129, 67–74Chien, H.W.; Chen, X.Y.; Tsai, W.P. Poly(methyl methacrylate)/titanium dioxide (PMMA/TiO2) nanocomposite with shark-skinstructure for preventing biofilm formation.Mater. Lett.2021,285, 129098.Chien, H.W.; Chen, X.Y.; Tsai, W.P.; Lee, M. Inhibition of biofilm formation by rough shark skin-patterned surfaces.Colloids Surf.B Biointerfaces2020,186, 110738.Damodaran, V.B.; Murthy, S.N. Bio-inspired strategies for designing antifouling biomaterials.Biomater. Res.2016,20, 18Faustino, C.M.C.; Lemos, S.M.C.; Monge, N.; Ribeiro, I.A.C. A scope at antifouling strategies to prevent catheter-associatedinfections.Adv. Colloid Interface Sci.2020,284, 102230.Gao, X.; Jiang, L. Water-repellent legs of water striders.Nature2004,432, 36Fang, Y.; Sun, G.; Cong, Q.; Chen, G.; Ren, L. Effects of Methanol on Wettability of the Non-Smooth Surface on Butterfly Wing.J.Bionic. Eng.2008,5, 127–133Bhushan, B.; Sayer, R.A. Surface characterization and friction of a bio-inspired reversible adhesive tape.Microsyst. Technol.2007,13, 71–78Chen, K.; Liu, Q.; Liao, G.; Yang, Y.; Ren, L.; Yang, H.; Chen, X. The Sound Suppression Characteristics of Wing Feather of Owl(Bubo bubo).J. Bionic Eng.2012,9, 192–199Kelleher, S.M.; Habimana, O.; Lawler, J.; O’reilly, B.; Daniels, S.; Casey, E.; Cowley, A. Cicada Wing Surface Topography: AnInvestigation into the Bactericidal Properties of Nanostructural Features.ACS Appl. Mater. Interfaces2016,8, 14966–14974Feng, L.; Li, S.; Li, Y.; Li, H.; Zhang, L.; Zhai, J.; Song, Y.; Liu, B.; Jiang, L.; Zhu, D. Super-hydrophobic surfaces: From natural toartificial.Adv. Mater.2002,14, 1857–1860Bixler, G.D.; Theiss, A.; Bhushan, B.; Lee, S.C. Anti-fouling properties of microstructured surfaces bio-inspired by rice leaves andbutterfly wings.J. Colloid Interface Sci.2014,419, 114–133Latthe, S.S.; Terashima, C.; Nakata, K.; Fujishima, A. Superhydrophobic surfaces developed by mimicking hierarchical surface morphology of lotus leaf.Molecules2014,19, 4256–428Grewal, H.S.; Cho, I.J.; Yoon, E.S. The role of bio-inspired hierarchical structures in wetting.Bioinspiration Biomim.2015,10, 026009Liu, Y.; Li, X.; Jin, J.; Liu, J.; Yan, Y.; Han, Z.; Ren, L. Anti-icing property of bio-inspired micro-structure superhydrophobic surfacesand heat transfer model.Appl. Surf. Sci.2017,400, 498–505Liu, Q.; Brookbank, L.; Ho, A.; Coffey, J.; Brennan, A.B.; Jones, C.J. Surface texture limits transfer of S. aureus, T4 bacteriophage,influenza B virus and human coronavirus.PLoS ONE2020,15, e024451Román-Kustas, J.; Hoffman, J.B.; Reed, J.H.; Gonsalves, A.E.; Oh, J.; Li, L.; Hong, S.; Jo, K.D.; Dana, C.E.; Miljkovic, N.; et al.Molecular and Topographical Organization: Influence on Cicada Wing Wettability and Bactericidal Properties.Adv. Mater.Interfaces2020,7, 2000112Román-Kustas, J.; Hoffman, J.B.; Alonso, D.; Reed, J.H.; Gonsalves, A.E.; Oh, J.; Hong, S.; Jo, K.D.; Dana, C.E.; Alleyne, M.; et al.Analysis of cicada wing surface constituents by comprehensive multidimensional gas chromatography for species differentiation.Microchem. J.2020,158, 105089Ivanova, E.P.; Hasan, F.; Webb, H.K.; Truong, V.K.; Watson, G.S.; Watson, J.A.; Baulin, V.A.; Pogodin, S.; Wang, J.Y.;Tobin, M.J.; et al.Natural bactericidal surfaces: Mechanical rupture ofPseudomonas aeruginosacells by cicada wings.Small2012,8, 2489–2494Fisher, L.E.; Yang, Y.; Yuen, M.-F.; Zhang, W.; Nobbs, A.H.; Su, B. Bactericidal activity of biomimetic diamond nanocone surfaces.Biointerphases2016,11, 011014Zhang, G.; Zhang, J.; Xie, G.; Liu, Z.; Shao, H. Cicada Wings: A Stamp from Nature for Nanoimprint Lithography.Small2006,2, 1440–1443Ivanova, E.P.; Hasan, F.; Webb, H.K.; Gervinskas, G.; Juodkazis, S.; Truong, V.K.; Wu, A.H.F.; Lamb, R.N.; Baulin, V.A.;Watson, G.S.; et al. Bactericidal activity of black silicon.Nat. Commum.2013,4, 2838Nguyen, S.H.T.; Webb, H.K.; Hasan, J.; Tobin, M.J.; Crawford, R.J.; Ivanova, E.P. Dual role of outer epicuticular lipids indetermining the wettability of dragonfly wings.Colloids Surf. B Biointerfaces2013,106, 126–134Watson, G.S.; Green, D.W.; Schwarzkopf, L.; Li, X.; Cribb, B.W.; Myhra, S.; Watson, J.A. A gecko skin micro/nano structure –A lowadhesion, superhydrophobic, anti-wetting, self-cleaning, biocompatible, antibacterial surface.Acta Biomater.2015,21, 109–122.Badge, I.; Stark, A.Y.; Paoloni, E.L.; Niewiarowski, P.H.; Dhinojwala, A. The Role of Surface Chemistry in Adhesion and Wettingof Gecko Toe Pads.Sci. Rep.2014,4, 6643.Watson, G.S.; Green, D.W.; Cribb, B.W.; Brown, C.L.; Meritt, C.R.; Tobin, M.J.; Vongsvivut, J.; Sun, M.; Liang, A.P.; Watson, J.A. In-sect Analogue to the Lotus Leaf: A Planthopper Wing Membrane Incorporating a Low-Adhesion, Nonwetting, Superhydrophobic,Bactericidal, and Biocompatible Surface.ACS Appl. Mater. Interfaces2017,9, 24381–24392Pu, X.; Li, G.; Huang, H. Preparation, anti-biofouling and drag-reduction properties of a biomimetic shark skin surface.Biol. Open2016,5, 389–396.Magyar, A.; Arthanareeswaran, V.K.A.; Soós, L.; Nagy, K.; Dobák, A.; Szilágyi, I.M.; Justh, N.; Chandra, A.R.; Köves, B.; Tenke, P.Does micropattern (sharklet) on urinary catheter surface reduce urinary tract infections? Results from phase I randomized openlabel interventional trial.Eur. Urol. Suppl.2017,16, e146–e148Shahali, H.; Hasan, J.; Mathews, A.; Wang, H.; Yan, C.; Tesfamichael, T.; Yarlagadda, P.K.D.V. Multi-biofunctional properties ofthree species of cicada wings and biomimetic fabrication of nanopatterned titanium pillars.J. Mater. Chem. B2019,7, 1300–1310Hazell, G.; Fisher, L.; Murray, A.; Nobbs, A.; Su, B. Bioinspired bactericidal surfaces with polymer nanocone arrays.J. ColloidsInterf.2018,528, 389–399Magin, C.M.; May, R.M.; Drinker, M.C.; Cuevas, K.H.; Brennan, A.B.; Reddy, S.T. Micropatterned Protective Membranes InhibitLens Epithelial Cell Migration in Posterior Capsule Opacification Model.Transl. Vis. Sci. Technol.2015,4, 9.Mann, E.E.; Manna, D.; Mettetal, M.R.; May, R.M.; Dannemiller, E.M.; Chung, K.K.; Brennan, A.B.; Reddy, S.T. Surface micropatternlimits bacterial contamination. Antimicrob.Resist. Infect. Control2014,3, 28Mann, E.E.; Magin, C.M.; Mettetal, M.R.; May, R.M.; Henry, M.K.M.; DeLoid, H.; Prater, J.; Sullivan, L.; Thomas, J.G.;Twite, M.D.; et al. Micropatterned Endotracheal Tubes Reduce Secretion-Related Lumen Occlusion.Ann. Biomed. Eng.2016,44, 3645Reddy, S.T.; Chung, K.K.; McDaniel, C.J.; Darouiche, R.O.; Landman, J.; Brennan, A.B. Micropatterned surfaces for reducing therisk of catheter-associated urinary tract infection: Anin vitrostudy on the effect of sharklet micropatterned surfaces to inhibitbacterial colonization and migration of uropathogenicEscherichia coli.J. Endourol.2011,25, 1547–155May, R.M.; Magin, C.M.; Mann, E.E.; Drinker, M.C.; Fraser, J.C.; Siedlecki, C.A.; Brennan, A.B.; Reddy, S.T. An engineeredmicropattern to reduce bacterial colonization, platelet adhesion and fibrin sheath formation for improved biocompatibility ofcentral venous catheters.Clin. Transl. Med.2015,26, 9Arisoy, F.D.; Kolewe, K.W.; Homyak, B.; Kurtz, I.S.; Schiffman, I.D.; Watkins, J.J. Bioinspired Photocatalytic Shark-Skin Surfaceswith Antibacterial and Antifouling Activity via Nanoimprint Lithography.ACS Appl. Mater. Interfaces2018,10, 20055–20063Rostami, S.; Puza, F.; Ucak, M.; Ozgur, E.; Gul, O.; Ercan, U.K.; Garipcan, B. Bifunctional sharkskin mimicked chitosan/grapheneoxide membranes: Reduced biofilm formation and improved cytocompatibility.Appl. Surf. Sci.2021,544, 148828Dehghani, S.; Mashreghi, M.; Nezhad, A.H.N.; Karimi, J.; Hosseinpour, S.; Davoodi, A. Exploring mechano-bactericidal nature ofPsalmocharias cicadaswings: An analytical nanotopology investigation based on atomic force microscopy characterization.Surf.Interfaces2021,26, 101407Bhadra, C.M.; Truong, V.K.; Pham, V.T.H.; Al Kobaisi, M.; Senituinas, G.; Wang, J.Y.; Juodkazis, S.; Crawford, R.J.; Ivanova, E.P.Antibacterial titanium nanopatterned arrays inspired by dragonfly wings.Sci. Rep.2015,5, 16817Li, C.; Yang, L.; Liu, N.; Yang, Y.; Zhao, J.; Yang, P.; Cheng, G. Bioinspired surface hierarchical microstructures of Ti6Al4V alloywith a positive effect on osteoconduction.Surf. Coat. Technol.2020,388, 125594.Mobini, S.; Kuliasha, C.A.; Siders, Z.A.; Bohmann, N.A.; Jamal, S.M.; Judy, J.W.; Schmidt, C.E.; Brennan, A.B. MicrotopographicalPatterns Promote Different Responses in Fibroblasts and Schwann Cells: A Possible Feature for Neural Implants.J. Biomed. Mater.Res. A2021,109, 64–76Ensikat, H.J.; Ditsche-Kuru, P.; Neinhuis, C.; Barthlott, W. Superhydrophobicity in perfection: The outstanding properties of thelotus leaf.Beilstein J. Nanotechnol.2011,2, 152–161Guo, Z.; Liu, W.; Su, B.L. Superhydrophobic surfaces: From natural to biomimetic to functional.J. Colloid Interface. Sci.2011,353, 335–355Wang, C.; Shao, R.; Wang, Q.; Sun, S. Hierarchical hydrophobic surfaces with controlled dual transition between rose petal effectand lotus effect via structure tailoring or chemical modification.Coll. Surf. A Physichem. Eng. Asp.2021,622, 126661Bhushan, B.; Nosonovsky, M. The rose petal effect and the modes of superhydrophobicity.Philos. Trans. R Soc. A2010,368, 4713–4728Cao, Y.; Jana, S.; Bowen, L.; Tan, X.; Liu, H.; Rostami, N.; Brown, J.; Jakubovics, N.S.; Chen, J. Hierarchical Rose Petal SurfacesDelay the Early-Stage Bacterial Biofilm Growth.Langmuir2019,35, 14670–14680Nowak, R.; Olech, M.; Pecio, L.; Oleszek, W.; Los, R.; Malm, A.; Rzymowska, J. Cytotoxic, antioxidant, antimicrobial propertiesand chemical composition of rose petals.J. Sci. Food. Agric.2013,94, 3Mitharwal, S.; Kumar, A.; Chauhan, K.; Taneja, N.K. Nutritional, phytochemical composition and potential health benefits of taro(Colocasia esculentaL.) leaves: A review.Food Chem.2022,383, 132406Modificación de superficiesBiomiméticaSharkletHoja de lotoAdhesión bacterianaComportamiento celularTG 2022 ODO 44555Surface modificationBiomimeticsSharkletLotus leafBacterial adhesionCell behaviorBioinspired Topographic Surface Modification of BiomaterialsArtículohttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribución – No comercial – Sin Derivarinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationORIGINAL2022_Bioinspired_Topographic_Surface_Formatolicenciadeuso.pdf2022_Bioinspired_Topographic_Surface_Formatolicenciadeuso.pdfLicencia de usoapplication/pdf479022https://repository.ucc.edu.co/bitstreams/88dfbc96-6df6-40bb-a6aa-efa05e87b690/download58a6f0ba9c86faaf4e8369f2562655ddMD512022_Bioinspired_topographic_surface.pdf2022_Bioinspired_topographic_surface.pdfArtículoapplication/pdf2567344https://repository.ucc.edu.co/bitstreams/74998335-b2b2-47fe-8fb8-82f8cc62941e/downloadd03714bfb031588509186edc73747aafMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/54c9fd5d-8113-48f6-a3a3-7cc9aacdf6d8/download3bce4f7ab09dfc588f126e1e36e98a45MD53THUMBNAIL2022_Bioinspired_Topographic_Surface_Formatolicenciadeuso.pdf.jpg2022_Bioinspired_Topographic_Surface_Formatolicenciadeuso.pdf.jpgGenerated Thumbnailimage/jpeg5385https://repository.ucc.edu.co/bitstreams/1322d055-dfdb-4496-a5e4-75749d95edc0/download48e340f7b7bb2a48d8e88cde705fb3adMD542022_Bioinspired_topographic_surface.pdf.jpg2022_Bioinspired_topographic_surface.pdf.jpgGenerated Thumbnailimage/jpeg5712https://repository.ucc.edu.co/bitstreams/dcc311b4-7c0b-4f3d-ad2c-608895dd5c8c/download50338e5ce1722f01cd29d849f76c232cMD55TEXT2022_Bioinspired_Topographic_Surface_Formatolicenciadeuso.pdf.txt2022_Bioinspired_Topographic_Surface_Formatolicenciadeuso.pdf.txtExtracted texttext/plain5326https://repository.ucc.edu.co/bitstreams/8acac664-c5dc-4e2f-8a50-9f8edd8d18b6/download610108f739dbb31a0d9c687dcc81c103MD562022_Bioinspired_topographic_surface.pdf.txt2022_Bioinspired_topographic_surface.pdf.txtExtracted texttext/plain94183https://repository.ucc.edu.co/bitstreams/f14e1622-017e-4176-99b9-0748db634b25/downloadb41fe31d6efada9ac0972a9478729d17MD5720.500.12494/44555oai:repository.ucc.edu.co:20.500.12494/445552024-08-10 22:43:44.43restrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo= |