Waste glass and agro-waste for concrete production. Mechanical properties and carbon dioxide emissions
La adición de residuos agroindustriales (ceniza de bagazo de caña (CBC) o ceniza de cascarilla de arroz (CCA)) y residuos de vidrio (RV) como sustituto del cemento modifica las propiedades del hormigón. En este estudio se utilizó RV y residuos agrícolas como reemplazo parcial del cemento (5% en masa...
- Autores:
-
Sánchez Trillos, Iván José
Naranjo Betancourt, Diego Fernando
Vásquez Lugo, Sebastián
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2022
- Institución:
- Universidad Cooperativa de Colombia
- Repositorio:
- Repositorio UCC
- Idioma:
- OAI Identifier:
- oai:repository.ucc.edu.co:20.500.12494/47501
- Acceso en línea:
- https://hdl.handle.net/20.500.12494/47501
- Palabra clave:
- Ceniza de bagazo de caña
Ceniza de cascarilla de arroz
Residuos de vidrio
Ecoeficiencia
Hormigón verde
TG 2022 ICI 47501
Cane bagasse
Rice husk ash
ash waste glass
green concrete
eco-efficiency
- Rights
- closedAccess
- License
- Atribución – No comercial – Sin Derivar
id |
COOPER2_7463a6ef2587c7e01ee0013da2fc8038 |
---|---|
oai_identifier_str |
oai:repository.ucc.edu.co:20.500.12494/47501 |
network_acronym_str |
COOPER2 |
network_name_str |
Repositorio UCC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Waste glass and agro-waste for concrete production. Mechanical properties and carbon dioxide emissions |
title |
Waste glass and agro-waste for concrete production. Mechanical properties and carbon dioxide emissions |
spellingShingle |
Waste glass and agro-waste for concrete production. Mechanical properties and carbon dioxide emissions Ceniza de bagazo de caña Ceniza de cascarilla de arroz Residuos de vidrio Ecoeficiencia Hormigón verde TG 2022 ICI 47501 Cane bagasse Rice husk ash ash waste glass green concrete eco-efficiency |
title_short |
Waste glass and agro-waste for concrete production. Mechanical properties and carbon dioxide emissions |
title_full |
Waste glass and agro-waste for concrete production. Mechanical properties and carbon dioxide emissions |
title_fullStr |
Waste glass and agro-waste for concrete production. Mechanical properties and carbon dioxide emissions |
title_full_unstemmed |
Waste glass and agro-waste for concrete production. Mechanical properties and carbon dioxide emissions |
title_sort |
Waste glass and agro-waste for concrete production. Mechanical properties and carbon dioxide emissions |
dc.creator.fl_str_mv |
Sánchez Trillos, Iván José Naranjo Betancourt, Diego Fernando Vásquez Lugo, Sebastián |
dc.contributor.advisor.none.fl_str_mv |
Arbeláez Pérez, Oscar Felipe |
dc.contributor.author.none.fl_str_mv |
Sánchez Trillos, Iván José Naranjo Betancourt, Diego Fernando Vásquez Lugo, Sebastián |
dc.subject.spa.fl_str_mv |
Ceniza de bagazo de caña Ceniza de cascarilla de arroz Residuos de vidrio Ecoeficiencia Hormigón verde |
topic |
Ceniza de bagazo de caña Ceniza de cascarilla de arroz Residuos de vidrio Ecoeficiencia Hormigón verde TG 2022 ICI 47501 Cane bagasse Rice husk ash ash waste glass green concrete eco-efficiency |
dc.subject.classification.spa.fl_str_mv |
TG 2022 ICI 47501 |
dc.subject.other.spa.fl_str_mv |
Cane bagasse Rice husk ash ash waste glass green concrete eco-efficiency |
description |
La adición de residuos agroindustriales (ceniza de bagazo de caña (CBC) o ceniza de cascarilla de arroz (CCA)) y residuos de vidrio (RV) como sustituto del cemento modifica las propiedades del hormigón. En este estudio se utilizó RV y residuos agrícolas como reemplazo parcial del cemento (5% en masa). Se evaluó su efecto sobre las propiedades del estado fresco y endurecido y la emisión de CO2 (en términos de ecoeficiencia). Los resultados mostraron que la sustitución de ceniza de bagazo, ceniza de cascarilla y vidrio por cemento aumentó el asentamiento relacionado con la baja absorción de agua de los residuos. La densidad del hormigón modificado fue ligeramente superior a la del hormigón normal, pero no se observó una tendencia definida. Los resultados mostraron que la adición de residuos agroindustriales aumentó la resistencia a la compresión en comparación con el hormigón de referencia y el hormigón con residuos. La mezcla ternaria con mayor contenido de bagazo de caña de azúcar presentó la mayor resistencia a la compresión (52,6% superior al hormigón normal). Si se reemplaza parcialmente el 5% del cemento por residuos agroindustriales y residuos de vidrio, es posible reducir la ecoeficiencia por metro cúbico de material producido, porque se reduce la emisión de dióxido de carbono. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-12-13T20:05:55Z |
dc.date.available.none.fl_str_mv |
2022-12-13T20:05:55Z 2023-06-01 |
dc.date.issued.none.fl_str_mv |
2022-12-01 |
dc.type.none.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12494/47501 |
dc.identifier.bibliographicCitation.spa.fl_str_mv |
Sanchez, I., Naranjo D. y Vásquez, L. (2023). Waste glass and agro-waste for concrete production. Mechanical properties and carbon dioxide emissions. [Tesis de pregrado, Universidad Cooperativa de Colombia]. Repositorio Institucional Universidad Cooperativa de Colombia. https://repository.ucc.edu.co/handle/20.500.12494/47501 |
url |
https://hdl.handle.net/20.500.12494/47501 |
identifier_str_mv |
Sanchez, I., Naranjo D. y Vásquez, L. (2023). Waste glass and agro-waste for concrete production. Mechanical properties and carbon dioxide emissions. [Tesis de pregrado, Universidad Cooperativa de Colombia]. Repositorio Institucional Universidad Cooperativa de Colombia. https://repository.ucc.edu.co/handle/20.500.12494/47501 |
dc.relation.references.spa.fl_str_mv |
K. Ullah, M. Irshad Qureshi, A. Ahmad, and Z. Ullah, “Substitution potential of plastic fine aggregate in concrete for sustainable production,” Structures, vol. 35, no. October 2021, pp. 622–637, 2022, doi: 10.1016/j.istruc.2021.11.003. B. A. Tayeh, H. M. Hamada, I. Almeshal, and B. H. A. Bakar, “Case Studies in Construction Materials Durability and mechanical properties of cement concrete comprising pozzolanic materials with alkali-activated binder : A comprehensive review,” Case Stud. Constr. Mater., vol. 17, no. July, p. e01429, 2022, doi: 10.1016/j.cscm.2022.e01429. K. Assawamartbunlue, P. Surawattanawan, and W. Luknongbu, “ScienceDirect ScienceDirect ScienceDirect ScienceDirect temperature function for a long-term district heat demand forecast Assessing the feasibility of using the heat , demand-outdoor Specific energy consumption of cement in Thailand Specific energy consu,” Energy Procedia, vol. 156, no. September 2018, pp. 212–216, 2019, doi: 10.1016/j.egypro.2018.11.130. R. Kajaste and M. Hurme, “Cement industry greenhouse gas emissions - Management options and abatement cost,” J. Clean. Prod., vol. 112, pp. 4041–4052, 2016, doi: 10.1016/j.jclepro.2015.07.055. T. Dey, T. Bhattacharjee, P. Nag, Ritika, A. Ghati, and A. Kuila, “Valorization of agro-waste into value added products for sustainable development,” Bioresour. Technol. Reports, vol. 16, no. August, p. 100834, 2021, doi: 10.1016/j.biteb.2021.100834. R. U. D. Nassar, P. Soroushian, and M. Sufyan-Ud-Din, “Long-term field performance of concrete produced with powder waste glass as partial replacement of cement,” Case Stud. Constr. Mater., vol. 15, no. September, p. e00745, 2021, doi: 10.1016/j.cscm.2021.e00745. A. Mohajerani, J. Vajna, T. H. H. Cheung, H. Kurmus, A. Arulrajah, and S. Horpibulsuk, “Practical recycling applications of crushed waste glass in construction materials: A review,” Constr. Build. Mater., vol. 156, pp. 443–467, 2017, doi: 10.1016/j.conbuildmat.2017.09.005. A. S. Raju, K. B. Anand, and P. Rakesh, “Partial replacement of Ordinary Portlands cement by LCD glass powder in concrete,” Mater. Today Proc., vol. 46, pp. 5131–5137, 2019, doi: 10.1016/j.matpr.2020.10.661. X. Jiang, R. Xiao, Y. Bai, B. Huang, and Y. Ma, “Influence of waste glass powder as a supplementary cementitious material (SCM) on physical and mechanical properties of cement paste under high temperatures,” J. Clean. Prod., vol. 340, no. January, 2022, doi: 10.1016/j.jclepro.2022.130778. V. Torres et al., “Potential use of sugar cane bagasse ash as sand replacement for durable concrete,” J. Build. Eng., vol. 39, no. September 2020, p. 102277, 2021, doi: 10.1016/j.jobe.2021.102277. E. Aprianti, P. Shafigh, S. Bahri, and J. N. Farahani, “Supplementary cementitious materials origin from agricultural wastes - A review,” Constr. Build. Mater., vol. 74, pp. 176–187, 2015, doi: 10.1016/j.conbuildmat.2014.10.010. P. Jha, A. K. Sachan, and R. P. Singh, “Agro-waste sugarcane bagasse ash (ScBA) as partial replacement of binder material in concrete,” Mater. Today Proc., vol. 44, pp. 419–427, 2021, doi: 10.1016/j.matpr.2020.09.751. R. Somna, C. Jaturapitakkul, P. Rattanachu, and W. Chalee, “Effect of ground bagasse ash on mechanical and durability properties of recycled aggregate concrete,” Mater. Des., vol. 36, pp. 597–603, 2012, doi: 10.1016/j.matdes.2011.11.065. S. Kumar Das, A. Adediran, C. Rodrigue Kaze, S. Mohammed Mustakim, and N. Leklou, “Production, characteristics, and utilization of rice husk ash in alkali activated materials: An overview of fresh and hardened state properties,” Constr. Build. Mater., vol. 345, no. February, p. 128341, 2022, doi: 10.1016/j.conbuildmat.2022.128341. V. Jittin, A. Bahurudeen, and S. D. Ajinkya, “Utilisation of rice husk ash for cleaner production of different construction products,” J. Clean. Prod., vol. 263, p. 121578, 2020, doi: 10.1016/j.jclepro.2020.121578. K. Wu, H. Han, C. Rößler, L. Xu, and H. M. Ludwig, “Rice hush ash as supplementary cementitious material for calcium aluminate cement – Effects on strength and hydration,” Constr. Build. Mater., vol. 302, no. May, 2021, doi: 10.1016/j.conbuildmat.2021.124198. Z. Syahida Adnan, N. F. Ariffin, S. M. Syed Mohsin, and N. H. Abdul Shukor Lim, “Review paper: Performance of rice husk ash as a material for partial cement replacement in concrete,” Mater. Today Proc., no. xxxx, 2021, doi: 10.1016/j.matpr.2021.02.400. R. Khan, A. Jabbar, I. Ahmad, W. Khan, A. N. Khan, and J. Mirza, “Reduction in environmental problems using rice-husk ash in concrete,” Constr. Build. Mater., vol. 30, pp. 360– 365, 2012, doi: 10.1016/j.conbuildmat.2011.11.028. M. Harihanandh and K. Rajashekhar reddy, “Study on durability of concrete by using rice husk as partial replacement of cement,” Mater. Today Proc., vol. 52, pp. 1794–1799, 2022, doi: 10.1016/j.matpr.2021.11.448. N. Camargo Pérez and C. Higuera Sandoval, “Concreto Hidraulico Modificado con Silice obtenida de la cascarilla de arroz.,” Cienc. e Ing. Neogranadina, vol. 27, pp. 91–110, 2017, [Online]. Available: http://www.scielo.org.co/pdf/cein/v27n1/v27n1a0 6.pdf. K. G. Santhosh, S. M. Subhani, and A. Bahurudeen, “Recycling of palm oil fuel ash and rice husk ash in the cleaner production of concrete,” J. Clean. Prod., vol. 354, no. November 2021, p. 131736, 2022, doi: 10.1016/j.jclepro.2022.131736. I. Y. Hakeem, M. Amin, A. M. Zeyad, B. A. Tayeh, A. M. Maglad, and I. Saad, “Effects of nano sized sesame stalk and rice straw ashes on high-strength concrete properties,” J. Clean. Prod., vol. 370, no. October 2021, p. 133542, 2022, doi: 10.1016/j.jclepro.2022.133542. Z. Chen et al., “Effect of incorporation of rice husk ash and iron ore tailings on properties of concrete,” Constr. Build. Mater., vol. 338, no. December 2021, p. 127584, 2022, doi: 10.1016/j.conbuildmat.2022.127584. A. Adesina, “Recent advances in the concrete industry to reduce its carbon dioxide emissions,” Environ. Challenges, vol. 1, no. November, p. 100004, 2020, doi: 10.1016/j.envc.2020.100004. E. Ozturk, C. Ince, S. Derogar, and R. Ball, “Factors affecting the CO2 emissions, cost efficiency and eco-strength efficiency of concrete containing rice husk ash: A database study,” Constr. Build. Mater., vol. 326, no. February, p. 126905, 2022, doi: 10.1016/j.conbuildmat.2022.126905. K. Selvaranjan, J. C. P. H. Gamage, G. I. P. De Silva, and S. Navaratnam, “Development of sustainable mortar using waste rice husk ash from rice mill plant: Physical and thermal properties,” J. Build. Eng., vol. 43, no. March, p. 102614, 2021, doi: 10.1016/j.jobe.2021.102614. M. F. Alnahhal, U. J. Alengaram, M. Z. Jumaat, F. Abutaha, M. A. Alqedra, and R. R. Nayaka, “Assessment on engineering properties and CO2 emissions of recycled aggregate concrete incorporating waste products as supplements to Portland cement,” J. Clean. Prod., vol. 203, pp. 822–835, 2018, doi: 10.1016/j.jclepro.2018.08.292. O. F, Arbealez. K. Alejandra, D. Varela, and D. Casta, “˜ en las propiedades mecánicas y las ca na emisiones de dióxido de carbono del hormigón preparado con residuos de vidrio,” pp. 1–9, 2022, doi: 10.1016/j.bsecv.2022.08.001. J. L. Santana-Carrillo, O. Burciaga-Díaz, and J. I. Escalante-Garcia, “Blended limestonePortland cement binders enhanced by waste glass based and commercial sodium silicate - Effect on properties and CO2 emissions,” Cem. Concr. Compos., vol. 126, no. November 2021, p. 104364, 2022, doi: 10.1016/j.cemconcomp.2021.104364. [30] A. A. Raheem and B. D. Ikotun, “Incorporation of agricultural residues as partial substitution for cement in concrete and mortar – A review,” J. Build. Eng., vol. 31, no. July 2019, p. 101428, 2020, doi: 10.1016/j.jobe.2020.101428. A. R. Pourkhorshidi, M. Najimi, T. Parhizkar, F. Jafarpour, and B. Hillemeier, “Cement & Concrete Composites Applicability of the standard specifications of ASTM C618 for evaluation of natural pozzolans,” Cem. Concr. Compos., vol. 32, no. 10, pp. 794–800, 2010, doi: 10.1016/j.cemconcomp.2010.08.007. M. Kamali and A. Ghahremaninezhad, “Effect of glass powders on the mechanical and durability properties of cementitious materials,” Constr. Build. Mater., vol. 98, pp. 407–416, 2015, doi: 10.1016/j.conbuildmat.2015.06.010. A. Joshaghani and M. A. Moeini, “Evaluating the effects of sugar cane bagasse ash (SCBA) and nanosilica on the mechanical and durability properties of mortar,” Constr. Build. Mater., vol. 152, pp. 818–831, 2017, doi: 10.1016/j.conbuildmat.2017.07.041. S. . Banger, S. . Phalke, A. . Gawade, R. . Tambe, and A. . Rahane, “A review paper on replacement of cement with bagasse,” Int. J. Eng. Sci. Manag., vol. 7, no. March, pp. 127–131, 2017. A. P. Gursel, H. Maryman, and C. Ostertag, “A life-cycle approach to environmental, mechanical, and durability properties of ‘green’ concrete mixes with rice husk ash,” J. Clean. Prod., vol. 112, pp. 823–836, 2016, doi: 10.1016/j.jclepro.2015.06.029. |
dc.rights.license.none.fl_str_mv |
Atribución – No comercial – Sin Derivar |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/closedAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
rights_invalid_str_mv |
Atribución – No comercial – Sin Derivar http://purl.org/coar/access_right/c_14cb |
eu_rights_str_mv |
closedAccess |
dc.format.extent.spa.fl_str_mv |
11 p. |
dc.publisher.spa.fl_str_mv |
Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Civil, Medellín y Envigado |
dc.publisher.program.spa.fl_str_mv |
Ingeniería Civil |
dc.publisher.place.spa.fl_str_mv |
Medellín |
institution |
Universidad Cooperativa de Colombia |
bitstream.url.fl_str_mv |
https://repository.ucc.edu.co/bitstreams/3cf3061a-05fd-4631-9250-8cd2b936c15d/download https://repository.ucc.edu.co/bitstreams/2c785955-6514-44d4-9ada-58f4b8ab92ec/download https://repository.ucc.edu.co/bitstreams/c98b3ed3-c4bf-4270-b59e-87668985459c/download https://repository.ucc.edu.co/bitstreams/db57c4af-9e95-4609-9f5d-cdc5f88b6f44/download https://repository.ucc.edu.co/bitstreams/316f11be-0dae-49f0-8995-6f4af1a8d55e/download https://repository.ucc.edu.co/bitstreams/bb1f1179-1c4b-43e8-99ba-7d608ea346b6/download https://repository.ucc.edu.co/bitstreams/18fcf6f2-05db-4bd7-812c-d8daa67b7296/download https://repository.ucc.edu.co/bitstreams/ae2168a6-fcdb-4167-9a08-4be40ee76f50/download https://repository.ucc.edu.co/bitstreams/bd4b541e-0fa0-4af8-986c-5a8de65d6cd7/download https://repository.ucc.edu.co/bitstreams/6f79f9e4-9763-4664-9701-2b8ba270d3d4/download |
bitstream.checksum.fl_str_mv |
941a871abd88ea307625b87846498821 607913d4c2f5ec893d39539e6cdb50e1 bca1cccd48494a58dc87371e18cbe2de 8a4605be74aa9ea9d79846c1fba20a33 1e7f382502402ba0cff95bf4c72762f8 6a1c30c8126cf9b26e9553b7a235e656 fbdad098f980a439e2812667fc1516cd a1cacbf30f67d68753ecb6684ff44765 68661b6d3261a90cd01c4d9d4c1b1639 d9cd3c6405299ec81de7588ac2cc63d8 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Cooperativa de Colombia |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1814247055866986496 |
spelling |
Arbeláez Pérez, Oscar FelipeSánchez Trillos, Iván JoséNaranjo Betancourt, Diego FernandoVásquez Lugo, Sebastián2022-12-13T20:05:55Z2022-12-13T20:05:55Z2023-06-012022-12-01https://hdl.handle.net/20.500.12494/47501Sanchez, I., Naranjo D. y Vásquez, L. (2023). Waste glass and agro-waste for concrete production. Mechanical properties and carbon dioxide emissions. [Tesis de pregrado, Universidad Cooperativa de Colombia]. Repositorio Institucional Universidad Cooperativa de Colombia. https://repository.ucc.edu.co/handle/20.500.12494/47501La adición de residuos agroindustriales (ceniza de bagazo de caña (CBC) o ceniza de cascarilla de arroz (CCA)) y residuos de vidrio (RV) como sustituto del cemento modifica las propiedades del hormigón. En este estudio se utilizó RV y residuos agrícolas como reemplazo parcial del cemento (5% en masa). Se evaluó su efecto sobre las propiedades del estado fresco y endurecido y la emisión de CO2 (en términos de ecoeficiencia). Los resultados mostraron que la sustitución de ceniza de bagazo, ceniza de cascarilla y vidrio por cemento aumentó el asentamiento relacionado con la baja absorción de agua de los residuos. La densidad del hormigón modificado fue ligeramente superior a la del hormigón normal, pero no se observó una tendencia definida. Los resultados mostraron que la adición de residuos agroindustriales aumentó la resistencia a la compresión en comparación con el hormigón de referencia y el hormigón con residuos. La mezcla ternaria con mayor contenido de bagazo de caña de azúcar presentó la mayor resistencia a la compresión (52,6% superior al hormigón normal). Si se reemplaza parcialmente el 5% del cemento por residuos agroindustriales y residuos de vidrio, es posible reducir la ecoeficiencia por metro cúbico de material producido, porque se reduce la emisión de dióxido de carbono.The individual incorporation of agro-waste (cane bagasse ash (CBA), rice husk ash (RHA)) and waste glass (WG) as cement replacement modifies the properties of concrete. In this study, waste glass and agro-waste were used as partial replacement for cement (5% by mass). Evaluation of the effect of their use on the fresh and hardening properties of concrete mixtures and CO2 emissions (from the point of view of eco-efficiency). The experimental results evidenced that the substitution of cement by agro-waste or waste glass increased the slump related with the low water absorption of residues. Additionally, the density of concrete incorporating waste glass, rice husk ash or cane bagasse ash was slightly higher than traditional concrete, but not definite trend was observed. The results exhibited that the incorporation of agro-waste increased the compressive strength in comparison to control concrete and concrete that incorporating waste glass. The ternary concrete mixture with the highest cane bagasse ash content exhibited the highest compressive strength (52.6% higher than reference concrete). With the partial substitution of 5% of cement by ashes from cane bagasse or rice husk and waste glass, it is possible to reduce the eco-efficiency for each m3 of material produced, due to the carbon dioxide emissions abatement ensuing.0000-0001-5198-23990000-0002-3128-30290000-0003-1778-4369ivan.sanchezt@campusucc.edu.codiego.naranjob@campusucc.edu.cosebastian.vasquezl@campusucc.edu.co11 p.Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Civil, Medellín y EnvigadoIngeniería CivilMedellínCeniza de bagazo de cañaCeniza de cascarilla de arrozResiduos de vidrioEcoeficienciaHormigón verdeTG 2022 ICI 47501Cane bagasseRice husk ashash waste glassgreen concreteeco-efficiencyWaste glass and agro-waste for concrete production. Mechanical properties and carbon dioxide emissionsTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionAtribución – No comercial – Sin Derivarinfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbK. Ullah, M. Irshad Qureshi, A. Ahmad, and Z. Ullah, “Substitution potential of plastic fine aggregate in concrete for sustainable production,” Structures, vol. 35, no. October 2021, pp. 622–637, 2022, doi: 10.1016/j.istruc.2021.11.003.B. A. Tayeh, H. M. Hamada, I. Almeshal, and B. H. A. Bakar, “Case Studies in Construction Materials Durability and mechanical properties of cement concrete comprising pozzolanic materials with alkali-activated binder : A comprehensive review,” Case Stud. Constr. Mater., vol. 17, no. July, p. e01429, 2022, doi: 10.1016/j.cscm.2022.e01429.K. Assawamartbunlue, P. Surawattanawan, and W. Luknongbu, “ScienceDirect ScienceDirect ScienceDirect ScienceDirect temperature function for a long-term district heat demand forecast Assessing the feasibility of using the heat , demand-outdoor Specific energy consumption of cement in Thailand Specific energy consu,” Energy Procedia, vol. 156, no. September 2018, pp. 212–216, 2019, doi: 10.1016/j.egypro.2018.11.130.R. Kajaste and M. Hurme, “Cement industry greenhouse gas emissions - Management options and abatement cost,” J. Clean. Prod., vol. 112, pp. 4041–4052, 2016, doi: 10.1016/j.jclepro.2015.07.055.T. Dey, T. Bhattacharjee, P. Nag, Ritika, A. Ghati, and A. Kuila, “Valorization of agro-waste into value added products for sustainable development,” Bioresour. Technol. Reports, vol. 16, no. August, p. 100834, 2021, doi: 10.1016/j.biteb.2021.100834.R. U. D. Nassar, P. Soroushian, and M. Sufyan-Ud-Din, “Long-term field performance of concrete produced with powder waste glass as partial replacement of cement,” Case Stud. Constr. Mater., vol. 15, no. September, p. e00745, 2021, doi: 10.1016/j.cscm.2021.e00745.A. Mohajerani, J. Vajna, T. H. H. Cheung, H. Kurmus, A. Arulrajah, and S. Horpibulsuk, “Practical recycling applications of crushed waste glass in construction materials: A review,” Constr. Build. Mater., vol. 156, pp. 443–467, 2017, doi: 10.1016/j.conbuildmat.2017.09.005.A. S. Raju, K. B. Anand, and P. Rakesh, “Partial replacement of Ordinary Portlands cement by LCD glass powder in concrete,” Mater. Today Proc., vol. 46, pp. 5131–5137, 2019, doi: 10.1016/j.matpr.2020.10.661.X. Jiang, R. Xiao, Y. Bai, B. Huang, and Y. Ma, “Influence of waste glass powder as a supplementary cementitious material (SCM) on physical and mechanical properties of cement paste under high temperatures,” J. Clean. Prod., vol. 340, no. January, 2022, doi: 10.1016/j.jclepro.2022.130778.V. Torres et al., “Potential use of sugar cane bagasse ash as sand replacement for durable concrete,” J. Build. Eng., vol. 39, no. September 2020, p. 102277, 2021, doi: 10.1016/j.jobe.2021.102277.E. Aprianti, P. Shafigh, S. Bahri, and J. N. Farahani, “Supplementary cementitious materials origin from agricultural wastes - A review,” Constr. Build. Mater., vol. 74, pp. 176–187, 2015, doi: 10.1016/j.conbuildmat.2014.10.010.P. Jha, A. K. Sachan, and R. P. Singh, “Agro-waste sugarcane bagasse ash (ScBA) as partial replacement of binder material in concrete,” Mater. Today Proc., vol. 44, pp. 419–427, 2021, doi: 10.1016/j.matpr.2020.09.751.R. Somna, C. Jaturapitakkul, P. Rattanachu, and W. Chalee, “Effect of ground bagasse ash on mechanical and durability properties of recycled aggregate concrete,” Mater. Des., vol. 36, pp. 597–603, 2012, doi: 10.1016/j.matdes.2011.11.065.S. Kumar Das, A. Adediran, C. Rodrigue Kaze, S. Mohammed Mustakim, and N. Leklou, “Production, characteristics, and utilization of rice husk ash in alkali activated materials: An overview of fresh and hardened state properties,” Constr. Build. Mater., vol. 345, no. February, p. 128341, 2022, doi: 10.1016/j.conbuildmat.2022.128341.V. Jittin, A. Bahurudeen, and S. D. Ajinkya, “Utilisation of rice husk ash for cleaner production of different construction products,” J. Clean. Prod., vol. 263, p. 121578, 2020, doi: 10.1016/j.jclepro.2020.121578.K. Wu, H. Han, C. Rößler, L. Xu, and H. M. Ludwig, “Rice hush ash as supplementary cementitious material for calcium aluminate cement – Effects on strength and hydration,” Constr. Build. Mater., vol. 302, no. May, 2021, doi: 10.1016/j.conbuildmat.2021.124198.Z. Syahida Adnan, N. F. Ariffin, S. M. Syed Mohsin, and N. H. Abdul Shukor Lim, “Review paper: Performance of rice husk ash as a material for partial cement replacement in concrete,” Mater. Today Proc., no. xxxx, 2021, doi: 10.1016/j.matpr.2021.02.400.R. Khan, A. Jabbar, I. Ahmad, W. Khan, A. N. Khan, and J. Mirza, “Reduction in environmental problems using rice-husk ash in concrete,” Constr. Build. Mater., vol. 30, pp. 360– 365, 2012, doi: 10.1016/j.conbuildmat.2011.11.028.M. Harihanandh and K. Rajashekhar reddy, “Study on durability of concrete by using rice husk as partial replacement of cement,” Mater. Today Proc., vol. 52, pp. 1794–1799, 2022, doi: 10.1016/j.matpr.2021.11.448.N. Camargo Pérez and C. Higuera Sandoval, “Concreto Hidraulico Modificado con Silice obtenida de la cascarilla de arroz.,” Cienc. e Ing. Neogranadina, vol. 27, pp. 91–110, 2017, [Online]. Available: http://www.scielo.org.co/pdf/cein/v27n1/v27n1a0 6.pdf.K. G. Santhosh, S. M. Subhani, and A. Bahurudeen, “Recycling of palm oil fuel ash and rice husk ash in the cleaner production of concrete,” J. Clean. Prod., vol. 354, no. November 2021, p. 131736, 2022, doi: 10.1016/j.jclepro.2022.131736.I. Y. Hakeem, M. Amin, A. M. Zeyad, B. A. Tayeh, A. M. Maglad, and I. Saad, “Effects of nano sized sesame stalk and rice straw ashes on high-strength concrete properties,” J. Clean. Prod., vol. 370, no. October 2021, p. 133542, 2022, doi: 10.1016/j.jclepro.2022.133542.Z. Chen et al., “Effect of incorporation of rice husk ash and iron ore tailings on properties of concrete,” Constr. Build. Mater., vol. 338, no. December 2021, p. 127584, 2022, doi: 10.1016/j.conbuildmat.2022.127584.A. Adesina, “Recent advances in the concrete industry to reduce its carbon dioxide emissions,” Environ. Challenges, vol. 1, no. November, p. 100004, 2020, doi: 10.1016/j.envc.2020.100004.E. Ozturk, C. Ince, S. Derogar, and R. Ball, “Factors affecting the CO2 emissions, cost efficiency and eco-strength efficiency of concrete containing rice husk ash: A database study,” Constr. Build. Mater., vol. 326, no. February, p. 126905, 2022, doi: 10.1016/j.conbuildmat.2022.126905.K. Selvaranjan, J. C. P. H. Gamage, G. I. P. De Silva, and S. Navaratnam, “Development of sustainable mortar using waste rice husk ash from rice mill plant: Physical and thermal properties,” J. Build. Eng., vol. 43, no. March, p. 102614, 2021, doi: 10.1016/j.jobe.2021.102614.M. F. Alnahhal, U. J. Alengaram, M. Z. Jumaat, F. Abutaha, M. A. Alqedra, and R. R. Nayaka, “Assessment on engineering properties and CO2 emissions of recycled aggregate concrete incorporating waste products as supplements to Portland cement,” J. Clean. Prod., vol. 203, pp. 822–835, 2018, doi: 10.1016/j.jclepro.2018.08.292.O. F, Arbealez. K. Alejandra, D. Varela, and D. Casta, “˜ en las propiedades mecánicas y las ca na emisiones de dióxido de carbono del hormigón preparado con residuos de vidrio,” pp. 1–9, 2022, doi: 10.1016/j.bsecv.2022.08.001.J. L. Santana-Carrillo, O. Burciaga-Díaz, and J. I. Escalante-Garcia, “Blended limestonePortland cement binders enhanced by waste glass based and commercial sodium silicate - Effect on properties and CO2 emissions,” Cem. Concr. Compos., vol. 126, no. November 2021, p. 104364, 2022, doi: 10.1016/j.cemconcomp.2021.104364. [30] A. A. Raheem and B. D. Ikotun, “Incorporation of agricultural residues as partial substitution for cement in concrete and mortar – A review,” J. Build. Eng., vol. 31, no. July 2019, p. 101428, 2020, doi: 10.1016/j.jobe.2020.101428.A. R. Pourkhorshidi, M. Najimi, T. Parhizkar, F. Jafarpour, and B. Hillemeier, “Cement & Concrete Composites Applicability of the standard specifications of ASTM C618 for evaluation of natural pozzolans,” Cem. Concr. Compos., vol. 32, no. 10, pp. 794–800, 2010, doi: 10.1016/j.cemconcomp.2010.08.007.M. Kamali and A. Ghahremaninezhad, “Effect of glass powders on the mechanical and durability properties of cementitious materials,” Constr. Build. Mater., vol. 98, pp. 407–416, 2015, doi: 10.1016/j.conbuildmat.2015.06.010.A. Joshaghani and M. A. Moeini, “Evaluating the effects of sugar cane bagasse ash (SCBA) and nanosilica on the mechanical and durability properties of mortar,” Constr. Build. Mater., vol. 152, pp. 818–831, 2017, doi: 10.1016/j.conbuildmat.2017.07.041.S. . Banger, S. . Phalke, A. . Gawade, R. . Tambe, and A. . Rahane, “A review paper on replacement of cement with bagasse,” Int. J. Eng. Sci. Manag., vol. 7, no. March, pp. 127–131, 2017.A. P. Gursel, H. Maryman, and C. Ostertag, “A life-cycle approach to environmental, mechanical, and durability properties of ‘green’ concrete mixes with rice husk ash,” J. Clean. Prod., vol. 112, pp. 823–836, 2016, doi: 10.1016/j.jclepro.2015.06.029.PublicationORIGINAL2022-Sanchez,NaranjoyVasquez-Waste_Glass_and_agro-waste_for_concrete_production-LicenciaUso.pdf2022-Sanchez,NaranjoyVasquez-Waste_Glass_and_agro-waste_for_concrete_production-LicenciaUso.pdfLicencia de Usoapplication/pdf215803https://repository.ucc.edu.co/bitstreams/3cf3061a-05fd-4631-9250-8cd2b936c15d/download941a871abd88ea307625b87846498821MD512022-Sanchez,NaranjoyVasquez-Waste_Glass_and_agro-waste_for_concrete_production.pdf2022-Sanchez,NaranjoyVasquez-Waste_Glass_and_agro-waste_for_concrete_production.pdfTrabajo de Gradoapplication/pdf293291https://repository.ucc.edu.co/bitstreams/2c785955-6514-44d4-9ada-58f4b8ab92ec/download607913d4c2f5ec893d39539e6cdb50e1MD522022-Sanchez,NaranjoyVasquez-Waste_Glass_and_agro-waste_for_concrete_production-ActaAprobacion.pdf2022-Sanchez,NaranjoyVasquez-Waste_Glass_and_agro-waste_for_concrete_production-ActaAprobacion.pdfActa de Aprobaciónapplication/pdf79314https://repository.ucc.edu.co/bitstreams/c98b3ed3-c4bf-4270-b59e-87668985459c/downloadbca1cccd48494a58dc87371e18cbe2deMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repository.ucc.edu.co/bitstreams/db57c4af-9e95-4609-9f5d-cdc5f88b6f44/download8a4605be74aa9ea9d79846c1fba20a33MD54THUMBNAIL2022-Sanchez,NaranjoyVasquez-Waste_Glass_and_agro-waste_for_concrete_production-LicenciaUso.pdf.jpg2022-Sanchez,NaranjoyVasquez-Waste_Glass_and_agro-waste_for_concrete_production-LicenciaUso.pdf.jpgGenerated Thumbnailimage/jpeg5446https://repository.ucc.edu.co/bitstreams/316f11be-0dae-49f0-8995-6f4af1a8d55e/download1e7f382502402ba0cff95bf4c72762f8MD552022-Sanchez,NaranjoyVasquez-Waste_Glass_and_agro-waste_for_concrete_production.pdf.jpg2022-Sanchez,NaranjoyVasquez-Waste_Glass_and_agro-waste_for_concrete_production.pdf.jpgGenerated Thumbnailimage/jpeg5254https://repository.ucc.edu.co/bitstreams/bb1f1179-1c4b-43e8-99ba-7d608ea346b6/download6a1c30c8126cf9b26e9553b7a235e656MD562022-Sanchez,NaranjoyVasquez-Waste_Glass_and_agro-waste_for_concrete_production-ActaAprobacion.pdf.jpg2022-Sanchez,NaranjoyVasquez-Waste_Glass_and_agro-waste_for_concrete_production-ActaAprobacion.pdf.jpgGenerated Thumbnailimage/jpeg5046https://repository.ucc.edu.co/bitstreams/18fcf6f2-05db-4bd7-812c-d8daa67b7296/downloadfbdad098f980a439e2812667fc1516cdMD57TEXT2022-Sanchez,NaranjoyVasquez-Waste_Glass_and_agro-waste_for_concrete_production-LicenciaUso.pdf.txt2022-Sanchez,NaranjoyVasquez-Waste_Glass_and_agro-waste_for_concrete_production-LicenciaUso.pdf.txtExtracted texttext/plain6079https://repository.ucc.edu.co/bitstreams/ae2168a6-fcdb-4167-9a08-4be40ee76f50/downloada1cacbf30f67d68753ecb6684ff44765MD582022-Sanchez,NaranjoyVasquez-Waste_Glass_and_agro-waste_for_concrete_production.pdf.txt2022-Sanchez,NaranjoyVasquez-Waste_Glass_and_agro-waste_for_concrete_production.pdf.txtExtracted texttext/plain36494https://repository.ucc.edu.co/bitstreams/bd4b541e-0fa0-4af8-986c-5a8de65d6cd7/download68661b6d3261a90cd01c4d9d4c1b1639MD592022-Sanchez,NaranjoyVasquez-Waste_Glass_and_agro-waste_for_concrete_production-ActaAprobacion.pdf.txt2022-Sanchez,NaranjoyVasquez-Waste_Glass_and_agro-waste_for_concrete_production-ActaAprobacion.pdf.txtExtracted texttext/plain1806https://repository.ucc.edu.co/bitstreams/6f79f9e4-9763-4664-9701-2b8ba270d3d4/downloadd9cd3c6405299ec81de7588ac2cc63d8MD51020.500.12494/47501oai:repository.ucc.edu.co:20.500.12494/475012024-08-10 21:18:18.522restrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |